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Abstract

The strategy of selecting “most informative” hard samples
in active learning has proven a boon for alleviating the chal-
lenges of few-shot learning and costly data annotation in deep
learning. However, this very preference towards hard samples
engenders bias issues, thereby impeding the full potential of
active learning. It has witnessed an increasing trend to miti-
gate this stubborn problem, yet most neglect the quantifica-
tion of bias itself and the direct rectification of dynamically
evolving biases. Revisiting the bias issue, this paper presents
an active learning approach based on the Variational Gradient
Rectifier (VaGeRy). First, we employ variational methods to
quantify bias at the level of latent state representations. Then,
harnessing historical training dynamics, we introduce Uncer-
tainty Consistency Regularization and Fluctuation Restric-
tion, which asynchronously iterate to rectify gradient back-
propagation. Extensive experiments demonstrate that our pro-
posed methodology effectively counteracts bias phenomena
in a majority of active learning scenarios.

Introduction
The substantial success of many deep networks across di-
verse tasks is largely attributed to the availability of vast
amounts of labeled data, yet this comes at a cost of anno-
tation proportional to both the volume of data and the intri-
cacy of labeling. Active learning has long been devoted to
realizing the fastest possible convergence rate of deep net-
works with minimal labeling budget, thereby attaining the
desired generalization performance (Liu et al. 2022; Zhang,
Strubell, and Hovy 2022; Wan et al. 2023).

The objective of active learning strategies lies in the se-
lective querying of “most informative” samples within a
human-in-loop (Mosqueira-Rey et al. 2023) iterative frame-
work. The quantification of “most informative” currently en-
compasses uncertainty-aware (Cao et al. 2019; Pleiss et al.
2020; Roth and Small 2006; Wu, Chen, and Huang 2022),
variety-aware (Guo 2010), representation-aware (Sener and
Savarese 2018), and predicting-auxiliary or synthesizing
(Kye et al. 2023; Sinha, Ebrahimi, and Darrell 2019; Yoo
and Kweon 2019) approaches. However, the combination
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Figure 1: Comparison of bias phenomenon of the 1th, 5th
and 9th iterations of (I) Entropy based active learning with
bias phenomenon and (II) VeGeRy with rectified bias, cor-
responding to the three instances highlighted within boxes
on the accuracy curves on Newsgroup dataset. The two in-
tuitive frameworks in the blue and red dashed boxes re-
spectively denote standard entropy based active learning and
its VaGeRy-enhanced counterpart. The gray, blue, and red
points in the scatter diagrams represent the unlabeled (XU ),
labeled (XL) samples and hard (XH ) samples respectively
of a current iteration. The stars represent the approximated
posterior distribution. It is obvious that the hard samples in
(I) are clustered and the approximated posterior distribution
has a large shift between iterations and behaves unstable. On
the contotary, the hard samples in (II) are more evenly dis-
tributed and the approximated posterior distribution is rubust
with a small shift between iterations.
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of the inherent limitations imposed by small sample sizes
during the early stages of active learning iterations, coupled
with the persistent inclination towards hard samples, engen-
ders a bias phenomenon (Farquhar, Gal, and Rainforth 2021;
Krishnan et al. 2021; Li et al. 2023; Chen et al. 2022) aptly
characterized as the “Matthew Effect” by (Chen et al. 2022).
Intuitively, model fitting to a limited number of annotated
samples engenders overfitting bias, which, in turn, prompts
active learning heuristics to selectively seek out hard exam-
ples, thereby introducing an appreciable degree of extrem-
ity in the distributional divergence between the training and
overall population data, effectively constituting statistical
bias (Farquhar, Gal, and Rainforth 2021). This bias issue in-
troduces instability in training and slows down convergence
rates, ultimately impeding the efficacy of active learning, as
shown in Fig. 1. Hence, the measurement and mitigation of
such bias concerns assume paramount importance.

Current remedies can be categorized into three broad
classes: sampling optimization strategies, semi-supervised
strategies and latent space representation strategies. Sam-
pling optimization strategies mitigate bias by refining the
hard sample selection mechanism, encompassing methods
such as universal model data sampling (Xie et al. 2023),
confidence-based pseudo-labeling (Elezi et al. 2022), and
approaches rooted in training dynamics (Swayamdipta et al.
2020; Yao et al. 2022; Kye et al. 2023). Semi-supervised
strategies incorporate consistency constraints on unlabeled
data into the active learning training process, thereby en-
hancing model generalization across the broader data land-
scape and indirectly attenuating bias (Gao et al. 2020; Laine
and Aila 2017; Verma et al. 2022; Athiwaratkun et al. 2019;
Huang et al. 2024; Laine and Aila 2017). Latent space rep-
resentation strategies endeavor to embed both labeled and
unlabeled data into a shared latent space in an adversarial
manner (Kim et al. 2021; Liu et al. 2023; Wu et al. 2023;
Zhang et al. 2020), thereby enhancing the model’s general-
ization capacity.

While the aforementioned methods have demonstrated
their efficacy, they either exclusively revolve around sample
selection heuristics or indiscriminately apply consistency
constraints to stochastic gradient updates. In fact, bias man-
ifests as a dynamic phenomenon that evolves alongside the
iterative process of active learning. The majority of these
approaches fail to directly confront bias itself, neglecting its
quantification and monitoring. This prompts us to pose two
critical inquiries: Can bias be effectively measured? And,
can dynamically evolving bias be rectified?

In this paper, we concentrate on improving uncertainty-
aware active learning methodologies without proposing spe-
cific enhancements to the underlying uncertainty measure-
ment techniques. Instead, we introduce a rectification frame-
work applicable to any chosen uncertainty metric, designed
to mitigate bias arising during iterative processes under
that metric. Specifically, we put forth an active learning
framework with Variational Gradient Rectifier (VaGeRy),
which embeds both labeled and unlabeled data into a la-
tent space, measures bias based on shared latent variables,
and subsequently employs Uncertainty Consistency Regu-
lation (UCR) along with Fluctuation Restriction (FR) con-

straints on unlabeled data, utilizing asynchronous iterations
that draw upon historical training dynamics. In summary, the
contributions are as follows:
• We revisit the issue of bias and, utilizing visualization

techniques, assess its potential to impede active learning
performance. Moreover, we explore a “quantification-to-
rectification” pathway to alleviate bias phenomena.

• We propose an asynchronous alternating iterative frame-
work, named Variational Gradient Rectifier, tailored to
rectify biases in a diverse spectrum of uncertainty-aware
methods, ultimately unlocking the untapped potential of
active learning.

• We utilize latent state representations to measure bias
phenomena and also apply training dynamics to the bias
rectification process in active learning, integrating train-
ing dynamics with the design of UCR and FR.

• We conduct extensive experiments using VaGeRy to rec-
tify six types of uncertainty measurements and two state-
of-the-art methods across ten text datasets and two image
datasets, demonstrating the effectiveness of VaGeRy’s
rectification capabilities.

Preliminaries
Let (xL, yL) ∈ (XL, YL) be a labeled sample pair from
XL and YL; (X0

L, Y
0
L ) are the initial labeled samples and

labels; XU denotes the pool of unlabeled samples; M0
θ is

the randomly initialized model with parameters θ, and M i
θ

represents the model after the i-th iteration. Active learn-
ing is a Human-in-the-Loop process (Mosqueira-Rey et al.
2023) where “informative” samples from the unlabeled pool
XU—determined by uncertainty, representativeness, and va-
riety—are selected based on the model’s current and past
versions {M j

θ}
i−1
j=0. After human labeling, these samples re-

fresh the labeled pool Xi−1
L . Subsequent training with Xi−1

L

updates the model to M i
θ.

Bias and Debias in Active Learning
Due to the training data no longer following the popula-
tion distribution, active learning inherently introduces bi-
ases (Krishnan et al. 2021; Parmar et al. 2023). Litera-
ture (Farquhar, Gal, and Rainforth 2021) highlights the in-
herent statistical biases and overfitting biases within active
learning. An increasing body of research is now focused on
how to mitigate harmful biases in this domain.

Training Dynamics significantly impact data diagnosis
and selection (Swayamdipta et al. 2020). In dynamic con-
sistency regularization, the temporal ensembling method
(Laine and Aila 2017) integrates historical outputs for un-
labeled data and substitutes them for the current model in-
put, applying historical information in active learning. Mod-
els like mean teacher (Tarvainen and Valpola 2017) and
COD (Huang et al. 2024, 2021) use exponential moving av-
erage to incorporate historical data into model parameters.
Historical sequence-based sampling (Yao et al. 2022) selects
samples based on the trends and variances of historical un-
certainty trends, while TiDAL (Kye et al. 2023) predicts dy-
namic trends to measure uncertainty.
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Figure 2: Overall process (left) and framework (middle) of VaGeRy. After a round of supervised training, a rectified training
round is performed, during which the bias from the previous round is “saved” for rectification and subsequently “received” into
the next round of supervised training. The bias variable serves as a measure of bias, quantifying the discrepancy between the
posterior distribution of the current labeled samples and an approximate overall posterior distribution. After passing through the
rectification memorization module, it informs the training of the rectifier; upon traversing the rectification receptance module,
it guides the rectification of the supervised training process.

Consistency Constraints Semi-supervised learning
(SSL) and active learning share similar goals and can
complement each other. Bias phenomenon exists as well
in SSL (Chen et al. 2022), characterized as the “Matthew
Effect”. To address bias in few-shot learning, many semi-
supervised active learning methods integrate SSL and active
learning, using active learning to collect hard samples from
unlabeled data and SSL to harness consistency constraints
for model training (Gao et al. 2020; Guo et al. 2021; Huang
et al. 2024, 2021; Hwang et al. 2023). Some studies also use
pseudo-labeling methods to reduce bias from hard sample
collection in active learning (Elezi et al. 2022).

Latent Space Representation, widely used in Deep
Learning (Goodfellow et al. 2014; Ho, Jain, and Abbeel
2020; Kingma and Welling 2014), embeds both labeled
and unlabeled data into a latent space, primarily using
VAEs (Kingma and Welling 2014) in adversarial active
learning methods (Deng et al. 2018; Geng, Liu, and Qin
2023; Guo et al. 2021; Liu et al. 2020; Sinha, Ebrahimi,
and Darrell 2019). These methods focus on using latent rep-
resentations for selecting hard samples without incorporat-
ing them into model training. Despite task-aware approaches
like TA-VAAL (Kim et al. 2021) and SRAAL (Zhang et al.
2020), the potential of latent variable biases in enhancing
model training is overlooked.

Methodology
This paper proposes an active learning framework based on
Variational Gradient Rectifier (VaGeRy). We first introduce
the process of rectification and the working principles of the
overall framework; Then we discuss the core component of
the rectification framework: the latent space representation
based variational bias quantification; And finally, we present
the objective functions for training the rectifier: Uncertainty
Consistency Regularization and Fluctuation Restriction.

Overview of Historical Ensembled Rectifier
As shown in Fig. 2, in each round of rectification iteration,
the process begins with training the Variational Gradient

Rectifier Ri−1
φ on the unlabeled data XU based on the ex-

isting model and its historical versions {M j
θ}

i−1
j=0. This stage

is referred to as the rectification memorization phase (indi-
cated by the orange arrow in Fig. 2). Next, the model M i−1

θ

is trained on Xi−1
L based on Ri−1

φ to obtain M i
θ, which rec-

tifies for biases in historical models from previous active
learning iterations while embarking on a new round of it-
eration. This stage is called the rectification reception phase
(indicated by the blue arrow in Fig. 2). Finally, based on M i

θ
and a specific uncertainty measurement method, the most in-
formative unlabeled data is selected from the unlabeled data
pool and sent to oracle for labeling, updating the labeled data
pool Xi

L. This stage is referred to as the data selecting and
labeling phase (indicated by the green arrow in Fig. 2). Let
M i−1

θ⋆ denotes the historical baseline model {M j
θ}

i−1
j=0, with

the gray arrow representing its historical ensembling. Fig. 2
provides a detailed structure of VaGeRy, where Mθ is disen-
tangled into encoder fEθ

and decoder gDθ
. Similarly, Mθ⋆

is disentangled into fE⋆
θ

and gD⋆
θ
. The Rectifier consists of

three parts: the Memory module mRθ
, the bias Variable W ,

and the Receptance module rRθ
. The behaviors of the three

modules are detailed differently three stages below:
The Rectification Memorization Phase: The bias gen-

erated during the training of M i−1
θ on Xi−2

L is “saved” in
the Memory module after being measured on XU against
{M j

θ}
i−1
j=0 and updated via stochastic gradient descent. Sim-

ilar to the approach in (Baevski et al. 2022; Grill et al. 2020;
He et al. 2020; Huang et al. 2021; Tarvainen and Valpola
2017), this paper also employs exponential moving aver-
age for momentum updating of the historical model Mθ⋆ :
θ⋆i = m × θ⋆i−1 + (1−m) × θi where m is the EMA de-
cay rate. Subsequently, mRθ

is updated using the rectified
loss LR (introduced in Eq. (13)). Specifically, the objective
is optimized as follows:

min
Rθ

EzU∼pxU
Ez⋆

U∼p⋆
xU

[
LR

[
mRθ

(
gD⋆

θ
(z⋆U ) , w

⋆
U

)
,

rRθ
(gDθ

(zU ) , wU )
]] (1)

where zU ∼ pxU
represents zU = fθ (xU ) , xU ∼ XU ,
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and z⋆U ∼ p⋆xU
represents z⋆U = fθ⋆ (xU ) , xU ∼ XU . wU

and w⋆
U serve as references for rectification, constrained by

a variational loss LV , specifically optimizing the following
objective:

min
Rθ

EzU∼pxU

[
LV (zu, wu)

]
(2)

which will be detailed in Eq. (10).
The Rectification Reception Phase: The historical recti-

fication information “saved” in the Memory module is “re-
ceived” into the new round of training for M i−1

θ based on
Xi−1

L . the supervised task loss LS is used to update M i−1
θ

and rRθ
, optimizing the following objective:

min
Mi

θ,Rθ

EzL∼pxL

[
LS

(
rRθ

(gDθ
(zL) , wL) , yL

)]
(3)

where zL ∼ pxL
represents zL = fθ (xL) , xL ∼ Xi−1

L . wL

also serves as a reference for rectification. For a classifica-
tion task, LS is the cross-entropy loss.

The Data Selecting and Labeling Phase: It is fundamen-
tally consistent with existing active learning methods, with
the distinction that our method applies a rectification to the
predictions. The probability prediction of M i

θ for an unla-
beled sample xU is given by:

ŷ
(i)
U =

[
p(i) (1 | xU ) , p

(i) (2 | xU ) · · · , p(i) (C | xU )
]

(4)

where C is the number of classes in the dataset. In existing
active learning methods, the uncertainty of a sample xU un-
der M i

θ is measured using ŷ
(i)
U , such as the Entropy method

H (Shannon 1948). The samples with the highest uncer-
tainty are sorted and the top k samples are selected for la-
beling by the oracle:

Xi
L = Xi−1

L ∪
{

argTopkH(ŷU )
}

(5)

In VaGeRy, we apply the Rectifier for rectification, obtain-
ing the rectified probability prediction M i

θ for an unlabeled
sample xU : rRθ

(
p(i) (1 | xU ) , wU

)
. Based on ȳ

(i)
U , we mea-

sure the uncertainty of a sample xU under M i
θ and obtain the

rectified selection:

Xi
L = Xi−1

L ∪
{

argTopkH
(
ŷ
(i)
U

)}
= Xi−1

L ∪
{

argTopk −
C∑

c=1

[
rRθ

(
p(i) (c | xU ) , wU

)
× log rRθ

(
p(i) (c | xU ) , wU

) ]}
(6)

Our method is a combination of active learning and SSL,
but unlike (Elezi et al. 2022; Huang et al. 2024) , VaGeRy
operates through an alternating iteration, delayed rectifica-
tion process. Furthermore, most SSL methods indiscrimi-
nately apply consistency regularization signals obtained XU

and LS obtained from XL in an equivalent manner to gradi-
ent updates of parameters. However, there inevitably exists
a “local-global” or “bias-generalization” difference between
XL and XU , our paper introduces the Memory module and
Receptance module to allow the model to asynchronously
and adaptively save and receive signals for bias rectification
from XU .

Variational Bias Quantification
The task of obtaining the posterior distribution of the data
domain’s generality is intricate, and the representation of la-
tent spaces via variational methods has been demonstrated to
yield significant outcomes (Kingma and Welling 2014). The
application of latent space representations in active learning,
through the lens of variational adversarial methods (Kim
et al. 2021; Sinha, Ebrahimi, and Darrell 2019; Zhang et al.
2020), marks a novel approach. Yet, their primary focus re-
mains on optimizing the structure of the selected samples,
overlooking the intrinsic value of latent spaces in training
processes. This paper endeavors to construct a reference for
bias rectification based on latent spaces, specifically, the bias
variables W mentioned in the aforementioned framework.

Our objective is to approximate the deviation of the cur-
rent labeled data pool’s distribution from the overall distri-
bution within the data domain, leveraging the extensive pool
of unlabeled data that remains untapped. Denoting Z as the
latent variable, we aim to optimize the following Variational
Lower Bound:

ExL,yL∼XL,YL
Eqφ(zL|xL)

[
log pθ(yL | zL)

]
− βKL

[
qφ(zL | xL) ∥ pθ(z̃)

]
+ExU∼XU

Eqφ(zU |xU )

[
KL

[
p⋆θ(y

⋆
U | z⋆U ) ∥ pθ(yU | zU )

]]
− βKL

[
qφ(zU | xU ) ∥ pθ(z̃)

]
(7)

where pz represents the probability distribution of z, and
KL denotes the Kullback–Leibler (KL) divergence. Upon
determining pz , we define w⋆

U ≜ z − z⋆U , wU ≜ z − zU
in Eq. (1), and wL ≜ z− zL in Eq. (3). We further delineate
the calculation of the rectified prediction distribution during
the rectification memorization phase as:

ȳ⋆U = mRθ

(
gD⋆

θ
(z⋆U ) , w

⋆
U

)
= MLP (w⋆

U ) + ŷ⋆U

ȳU = rRθ
(gDθ

(zU ) , wU ) = MLP (wU ) + ŷU (8)

and during the reception rectification phase as:

ȳL = rRθ
(gDθ

(zL) , wL) = MLP (wL) + ŷL (9)

Disentangling the supervised loss LS and the consistency
loss (Rectified Loss LR, which is modified in the following
section) from Variational Lower Bound, we ultimately arrive
at the variational loss LV expressed as:

LV = Ex∼XEqφ(z|x)KL
[
qφ(z | x) ∥ pθ(z̃)

]
(10)

Rectification Memorization Objectives
In this section, we provide a detailed discussion on the rec-
tified loss LR mentioned in Eq. (1). Most existing meth-
ods apply consistency regularization at the distribution
level (Gao et al. 2020; Hekimoglu et al. 2023; Roth and
Small 2006), neglecting more fine-grained level consistency
measures. The characteristics of training dynamics (Kye
et al. 2023; Swayamdipta et al. 2020; Yao et al. 2022) are
typically utilized for ranking the informational content of
unlabeled samples in active learning. Training Dynamics
can also be leveraged to alleviate the bias issues associated
with active learning. The designed rectified loss LR in this
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Figure 3: The training dynamics delineate two contradic-
tions often overlooked in conventional active learning. (a)
and (b) respectively present the uncertainty assessment of
a certain sample over three iterations and the standard de-
viation between these assessments. While the uncertainty
varies across each iteration, it ultimately converges to 1.2,
with a relatively small standard deviation. Similarly, (c) and
(d) offer analogous assessments, yet the uncertainty remains
constant at 1.2 across three iterations, albeit with a larger
standard deviation. (Chen et al. 2022) has also noticed simi-
lar contradictions.

paper comprises two parts: Uncertainty Consistency Reg-
ulation (UCR) and Fluctuation Restriction (FR).

UCR measures consistency at the uncertainty level, serv-
ing as a holistic metric. As depicted in Fig. 3(a), for con-
ventional uncertainty measures that do not employ Tempo-
ral Difference principles (e.g., entropy), a sample exhibit-
ing high predictive probability for a particular class and low
overall instability during the third measurement round may
appear to be a straightforward, easily learnable instance with
limited utility (Swayamdipta et al. 2020). However, upon
scrutiny of its historical dynamics, substantial inconsisten-
cies are revealed. Conventional semi-supervised methods
typically impose distribution-level consistency constraints to
enhance model generalization on unlabeled data. In contrast,
UCR aims to ensure consistency in uncertainty estimates be-
tween M i

θ and M⋆
θ , thereby mitigating bias. We optimize the

following objective:

LUCR = min
Rθ

E
[
max

(
H (ȳ⋆U )

H (ȳU ) + ϵu
, 1

)]
(11)

where ϵu is the inconsistency relaxation coefficient, a small
scalar. It’s important to note that, as training progresses,
the overall uncertainty of XU on M i

θ tends to increase and
converge. Hence, M i

θ and M⋆
θ should not strictly align in

their uncertainty measures of XU . ϵu serves as a hyper-
parameter to control convergence. Eq. (10) only generates
backpropagated gradients when H (ȳU ) < H(ȳ⋆U ) − ϵu,
since H (ȳU ) ≥ H(ȳ⋆U ) represents the “convergence of
the model”, termed “benign inconsistency.” This expecta-
tion is relaxed to H (ȳU ) ≥ H(ȳ⋆U ) − ϵu, while H (ȳU ) <
H(ȳ⋆U )− ϵu is considered as “malignant inconsistency”, ne-
cessitating rectification.

FR measures consistency at the class level, representing
a local metric. Even if certain samples exhibit consistency
in uncertainty measurement, their historical measures might

display varying statistical properties or fluctuations. As il-
lustrated in Fig. 3(c), across three historical iterations, an
unlabeled sample is predicted with consistently low insta-
bility but different outcomes. For methods that do not con-
sider Training Dynamics and even for the perspective of
UCR, this sample would not be classified as hard across
these rounds. However, as shown in Fig. 3(d), there is signifi-
cant fluctuation (standard deviation) between trainings. (Kye
et al. 2023; Yao et al. 2022) utilizes such fluctuations to se-
lect hard samples. we aim to rectify training bias by limiting
fluctuations at the class level. Specifically, we optimize the
following objective:

LFR = min
Rθ

E
[
max

(√
Var (ȳ − ȳ⋆U ), ϵf

)]
(12)

where ϵf is the fluctuation relaxation coefficient, a small
scalar hyperparameter similar to ϵu. We seek to limit the
fluctuation between M i

θ and M⋆
θ in their predictions of

XU : when fluctuations occur, even to the point of inconsis-
tency between argmaxc=1,2···C mRθ

· (p (c | xU ) , w
⋆
U ) and

argmaxc=1,2···C rRθ
· (p (c | xU ) , wU ), the fluctuation vari-

ance Var(ȳ − ȳ⋆U ) presents higher values. Corrective gradi-
ents are backpropagated when this exceeds a threshold ϵf .
Finally, the rectified loss LR is defined as:

LR = λLUCR + δLFR (13)

where λ and δ are hyperparameters.

Experiments
In this section, we subject VaGeRy to empirical scrutiny.
We first provide a detailed account of the datasets em-
ployed, baseline methodologies against which comparisons
are drawn, and the experimental configurations established.
Then we undertake bias rectification assessments on six
classical uncertainty-aware techniques and SOTA active
learning methodologies across six benchmark datasets for
text classification. We also compare VaGeRy with SOTAs
on image classification task. Next, we conduct compara-
tive evaluations of SOTA performance under extreme bias
conditions, particularly in the context of out-of-distribution
(OOD) generalization tasks over three additional benchmark
datasets for text classification. Lastly, we deliberate upon the
inherent limitations of our proposed methodology. We per-
form extensive ablation study to elucidate the influence of
individual modules within VaGeRy in the Appendix.

Experimental Setup
Datasets. We conduct bias rectification validations on six
text datasets: SST-2 (Socher et al. 2013), AGNews (Zhang,
Zhao, and LeCun 2015), PubMed (Dernoncourt and Lee
2017), TREC (Li and Roth 2002), SST-5 (Socher et al. 2013)
and Newsgroup (Lang 1995). We also conduct experiments
on two image datasets: Cifar-10 and Cifar-100 (Krizhevsky
and Hinton 2009). For OOD generalization tasks, we employ
the same datasets as in (Deng et al. 2023): SA (Kaushik,
Hovy, and Lipton 2020), NLI (Kaushik, Hovy, and Lipton
2020), and ANLI (Houlsby et al. 2011). However, differ-
ent from (Deng et al. 2023), we concatenate the unlabelled
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Figure 4: The relative improvement of six uncertainty-aware
methods rectified by VaGeRy on the SST-2, AGNews, SST-
5, PubMed, TREC, and Newsgroup datasets. Detailed com-
parisons are provided in the Appendix.

portions of the Twitter (Rosenthal, Farra, and Nakov 2017)
dataset with those of SA to form the unlabelled data used for
training the rectifier (with each new subset of the hard sam-
ple selected per round still originating from the unlabelled
portion of SA). We merge the unlabelled portions of ANLI
and NLI with each other’s respective unlabelled sets to con-
stitute the unlabelled data for rectifier training.

Baselines. We choose classical uncertainty-aware meth-
ods: MoC (Cao et al. 2019; Pleiss et al. 2020; Roth
and Small 2006), LC (Culotta and McCallum 2005),
RoC (Mosqueira-Rey et al. 2023), Entropy (Shannon 1948;
Wang et al. 2023; Wu, Chen, and Huang 2022); diversity-
aware methods: Core-set (Sener and Savarese 2018), Core-
GCN (Caramalau, Bhattarai, and Kim 2021) alongside the
BALD (Houlsby et al. 2011), Learning Loss (Yoo and
Kweon 2019) and the SOTA methods NoiseStability (Li
et al. 2024), TiDAL (Kye et al. 2023) as baselines, integrat-
ing our approach with these to mitigate their inherent biases.
For the OOD generalization task, we compare our VaGeRy
method with the CounterAL (Deng et al. 2023) method.

Evaluation details. To ensure a fair comparison, we fix
five random seeds. After reproducing the baseline methods,
we integrate them into our framework for rectification. We
compute the mean accuracy across five trials with 95% con-
fidence intervals. Each experiment consists of ten iterations
(cycles); however, due to consistent initial labeled samples,
we discard the first round and, for brevity, report accuracies
at checkpoints 2, 4, 6, 8, and 10. For images classification
task, we report checkpoints from 1 to 7. Implementation de-
tails are provided in the Appendix.

Results on Uncertainty-Aware Methods
Improvement on text classification task. Figure 4 show-
cases the improvements achieved by augmenting six classi-
cal uncertainty-aware methods with our VaGeRy approach
across six datasets. Overall, our method yields enhance-

Figure 5: A T-SNE visualization of the iterative active learn-
ing process based on entropy, along with its rectification by
VaGeRy, exemplified on the Newsgroup dataset.

ments in almost all 36 configurations, encompassing 80%
checkpoint uplifts. We compare the SOTA method NoiseS-
tability (Li et al. 2024) with our approach on two datasets, as
illustrated in Figure 6, where our method demonstrates sig-
nificant improvement in 80% of the iterations (9 checkpoints
in 10 for SST-5 and 7 checkpoints in 10 for TREC). These
observations suggest that the enhancements our method
brings to different baselines are contingent upon the strength
of the baselines themselves. More intuitive results can be
found in Table 1 in the Appendix.

Improvement on image classification task. We also
compare our method with the SOTAs on the Cifar-10 and
Cifar-100 datasets, as shown in Figure 7. Our Entropy
based version of VaGeRy outperforms the diversity-aware
based CoreSet (Sener and Savarese 2018), Core-GCN (Cara-
malau, Bhattarai, and Kim 2021) and predicting-auxiliary
based Learning Loss (Yoo and Kweon 2019) methods and
even comparable to TiDAL (Kye et al. 2023). We assume
that diversity-aware methods comparatively crude since they
strive for unbiasedness at the data collection level instead of
the post-prior distribution level.

Visualizations and analysis. We further employ t-SNE
mapping to visually demonstrate the effect of our VaGeRy
rectification on an entropy-based uncertainty-aware active
learning method applied to the Newsgroups dataset, as de-
picted in Figure. 5. In the entropy-based approach, hard sam-
ples selected during each iteration exhibit a pronounced ten-
dency to cluster, reflecting the model’s preference for what
it deems as “most informative” examples at that moment.
Post-VaGeRy rectification, the degree of clustering among
hard samples diminishes, with these instances now predom-
inantly scattered across ambiguous regions between clusters
rather than aggregating as a whole. Additionally, we visual-
ize the representations in the normalized latent space (i.e.,
qφ(z | x)), revealing a similarly widespread distribution
of the selected hard samples. Despite exhibiting diminished
discriminative information after normalization, the corre-
sponding accuracy indeed improves, as evidenced in Table 1.
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Figure 6: The performance enhancement resulting from
VaGeRy’s rectification of NoiseStability on the SST-5 and
TREC datasets.

Figure 7: The performance comparison between Entropy
based VaGeRy and current SOTAs on Cifar-10 and Cifar-
100 datasets.

Out of Distribution Generalization
In the extreme case of bias, OOD generalization tasks,
we contrast the performance of SOTA methods Coun-
terAL(Deng et al. 2023). We posit that when statistical bias
manifests as a disparity between independent and identically
distributed (IID) and OOD data, models may suffer from
poor OOD generalization due to preference for the IID do-
main. VaGeRy enhances model performance across both do-
mains by its comprehensive understanding of both IID and
OOD data. Improvement. Figure 8 presents the compari-
son of CounterAL and its rectified version under VaGeRy on
three datasets. For the SA and ANLI datasets, VaGeRy mod-
els outperform CounterAL, whereas for the NLI dataset, im-
provements are observed in the early and late rounds, but in-
termediate rounds show suboptimal performance. We spec-
ulate that this could be attributed to an inadequately con-
trolled ratio of unlabeled data used in the process.

Visualizations and analysis. On the ANLI dataset, we
employ t-SNE mapping to visually illustrate the model’s
behavior throughout the active learning iterative process.
Figure 9 reveals that upon the integration of VaGeRy into
CounterAL, a marked enhancement in the clustering char-
acteristics within the latent space is observed as the cycles
progress, with the labeled samples attaining greater repre-
sentativeness. This indicates that VaGeRy amplifies the ag-
glomeration of akin samples in the latent space, thereby bol-
stering the algorithm’s precision and generalization capabil-

Figure 8: A comparison of iid and ood performance based
on CounterAL, with and without VaGeRy rectification, as
observed on the SA, ANLI, and NLI datasets.

Figure 9: A comparison of T-sne visualization of iterative
latent state optimization between (I) CounterAL algorithm
across different data distributions and (II) CounterAL recti-
fied by VaGeRy, demonstrating how different iteration cy-
cles affect the latent representation of data, leading to a
clearer separation of distinct data distributions.

ities in the context of unlabeled data. Evident from the vi-
sual representation is the notable refinement in cluster def-
inition and delineation, especially between the 7th and 9th
cycles, which suggests that VaGeRy incrementally refines
the model’s internal representations, thus escalating the dis-
tinctiveness of the samples.

Conclusion
This paper revisits the inherent bias issue in active learn-
ing, analyzing its suppressive effect on active learning per-
formance. In response, we propose a framework named
VaGeRy, which dynamically adaptively rectifies bias to un-
lock the full potential of active learning. VaGeRy consists of
two main components: a bias measurement based on varia-
tional methods, and an Uncertainty Consistency Regulariza-
tion and Fluctuation Restriction that integrates training dy-
namics. Focusing on ten text classification datasets and two
image classification datasets, extensive experiments demon-
strats the efficacy of VaGeRy in mitigating bias within active
learning scenarios.
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Dataset Model Cycles Dataset Model Cycles
2-th 4-th 6-th 8-th 10-th 2-th 4-th 6-th 8-th 10-th

SST-2

Entropy 83.78 84.40 86.52 84.54 85.77

AGNews

Entropy 80.10 87.77 87.43 87.62 88.76
+VaGeRy 83.64 86.08 87.78 88.30 86.57 +VaGeRy 81.61 87.81 88.51 88.65 88.65

Improvement -0.13 1.68 1.26 3.76 0.80 Improvement 1.52 0.03 1.08 1.03 -0.12
LC 81.50 85.69 85.99 85.70 86.59 LC 79.84 87.88 88.20 88.28 87.64

+VaGeRy 83.65 85.68 86.42 88.08 87.59 +VaGeRy 81.19 87.70 87.47 88.42 88.00
Improvement 2.15 -0.01 0.43 2.38 1.00 Improvement 1.35 -0.18 -0.73 0.14 0.36

MoC 82.17 85.56 84.73 85.50 85.31 MoC 80.11 87.00 88.80 88.15 88.27
+VaGeRy 83.65 85.38 87.31 87.76 87.63 +VaGeRy 81.65 87.90 87.47 88.62 87.98

Improvement 1.48 -0.18 2.58 2.27 2.32 Improvement 1.54 0.9 -1.33 0.47 -0.29
MS 82.42 85.05 86.26 86.45 87.56 MS 76.43 88.17 88.35 87.46 88.21

+VaGeRy 81.03 86.58 86.67 86.94 87.83 +VaGeRy 78.06 87.47 85.84 88.05 88.72
Improvement -1.38 1.52 0.42 0.49 0.28 Improvement 1.63 -0.70 -2.51 0.60 0.52

RoC 82.17 85.56 84.73 85.49 85.31 RoC 81.21 87.95 87.46 88.01 87.33
+VaGeRy 83.71 84.76 86.74 87.40 86.55 +VaGeRy 82.93 87.06 88.28 88.14 87.98

Improvement 1.54 -0.80 2.01 1.91 1.24 Improvement 1.72 -0.90 0.82 0.13 0.65
BALD 81.70 83.92 85.97 84.91 87.29 BALD 68.98 86.12 87.92 88.21 88.53

+VaGeRy 83.06 86.50 85.94 88.20 87.85 +VaGeRy 68.13 86.89 88.09 88.61 87.96
Improvement 1.36 2.58 -0.03 3.30 0.57 Improvement -0.85 0.77 0.17 0.41 -0.58

SST-5

Entropy 38.56 43.46 45.86 45.23 47.72

PubMed

Entropy 69.64 77.62 78.97 79.16 79.57
+VaGeRy 38.34 43.54 47.13 47.32 47.29 +VaGeRy 71.64 79.77 79.53 80.18 79.29

Improvement -0.23 0.08 1.27 2.09 -0.44 Improvement 2.00 2.16 0.56 1.02 -0.28
LC 40.07 43.99 46.78 47.31 47.65 LC 70.45 77.34 79.36 79.49 79.48

+VaGeRy 38.78 46.67 47.23 47.80 48.77 +VaGeRy 71.08 78.94 80.63 80.98 80.98
Improvement -1.29 2.68 0.45 0.50 1.12 Improvement 0.63 1.60 1.27 0.48 1.50

MoC 39.62 43.90 45.18 47.44 47.51 MoC 70.83 78.99 79.83 80.78 79.35
+VaGeRy 41.90 45.33 48.41 47.75 48.58 +VaGeRy 71.04 80.01 79.70 80.54 80.50

Improvement 2.29 1.43 3.23 0.31 1.06 Improvement 0.21 1.02 -0.13 -0.25 1.15
MS 37.57 40.52 41.57 43.62 44.83 MS 70.26 78.93 79.59 79.79 80.36

+VaGeRy 38.78 42.21 41.84 42.94 45.34 +VaGeRy 68.50 79.57 80.12 80.70 80.54
Improvement 1.21 1.68 0.27 -0.68 0.51 Improvement -1.76 0.64 0.53 0.91 0.18

RoC 39.83 44.05 47.14 46.61 48.23 RoC 70.53 79.57 78.42 79.01 80.09
+VaGeRy 41.73 46.69 47.42 48.67 48.16 +VaGeRy 70.79 78.80 79.90 80.80 81.08

Improvement 1.91 2.64 0.28 2.06 -0.06 Improvement 0.25 -0.77 1.47 1.78 0.98
BALD 37.92 39.97 38.73 41.67 42.10 BALD 70.26 78.93 79.59 79.79 80.36

+VaGeRy 38.71 38.53 40.98 42.66 44.15 +VaGeRy 70.57 78.38 79.32 80.89 80.61
Improvement 0.79 -1.44 2.25 0.99 2.06 Improvement 0.32 -0.55 -0.27 1.10 0.24

TREC

Entropy 58.88 94.26 97.20 98.16 97.65

Newsgroups

Entropy 24.78 49.37 56.65 59.01 60.80
+VaGeRy 67.30 96.17 97.70 98.95 98.63 +VaGeRy 28.15 53.91 59.38 61.83 63.34

Improvement 8.42 1.90 0.50 0.79 0.98 Improvement 3.37 4.54 2.73 2.83 2.54
LC 52.67 96.66 96.73 98.44 98.24 LC 30.23 52.33 58.46 62.33 63.01

+VaGeRy 55.10 96.63 98.29 99.13 98.70 +VaGeRy 29.66 53.05 60.23 64.59 64.56
Improvement 2.42 -0.03 1.56 0.69 0.46 Improvement -0.57 0.72 1.77 2.26 1.55

MoC 60.08 94.98 98.39 97.73 98.10 MoC 32.71 54.24 58.51 61.74 62.43
+VaGeRy 63.87 96.47 98.53 98.54 98.68 +VaGeRy 32.62 54.79 59.51 63.00 64.10

Improvement 3.80 1.49 0.14 0.81 0.58 Improvement -0.08 0.55 1.00 1.27 1.68
MS 56.37 95.25 95.95 97.39 97.69 MS 21.90 39.30 48.50 53.98 56.97

+VaGeRy 53.96 87.22 97.82 98.00 98.43 +VaGeRy 25.16 41.97 51.37 57.04 60.34
Improvement -2.41 -8.03 1.87 0.61 0.74 Improvement 3.27 2.68 2.87 3.06 3.37

RoC 62.15 96.91 98.44 98.16 98.01 RoC 33.92 54.59 59.88 61.23 62.98
+VaGeRy 64.44 96.79 98.87 98.46 98.00 +VaGeRy 31.86 54.47 61.85 64.91 65.34

Improvement 2.28 -0.12 0.43 0.30 -0.01 Improvement -2.05 -0.12 1.97 3.68 2.36
BALD 57.93 91.45 97.12 97.55 97.79 BALD 29.87 48.62 53.56 56.13 59.38

+VaGeRy 59.02 97.45 97.82 98.03 98.16 +VaGeRy 31.27 49.24 54.41 57.53 59.78
Improvement 1.08 5.99 0.70 0.48 0.37 Improvement 1.39 0.63 0.85 1.39 0.40

Table 1: A comparative evaluation of six uncertainty-aware methods and their respective performances under VaGeRy rectifi-
cation, and associated improvements, conducted across six datasets.
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Related Work
Uncertainty-aware methods focus on selecting unlabeled
samples with high uncertainty, as they are believed to con-
tain more information for model generalization. The main
challenge in this branch is how to assess uncertainty. Clas-
sic methods include those based on the margin of confidence
(MoC) (Cao et al. 2019; Pleiss et al. 2020; Roth and Small
2006), least confidence (LC) (Culotta and McCallum 2005),
entropy-based methods (Shannon 1948; Wang et al. 2023;
Wu, Chen, and Huang 2022), and the ratio of confidence
(RoC) (Mosqueira-Rey et al. 2023).

Recent advances include predicting-auxiliary or synthe-
sizing methods that learnably measure the contribution of
unlabeled data to model convergence, such as loss predic-
tion (Yoo and Kweon 2019), adversarial methods (Deng
et al. 2018; Guo et al. 2021; Kim et al. 2021; Sinha,
Ebrahimi, and Darrell 2019; Zhang et al. 2020), and dy-
namic prediction (Kye et al. 2023). Training-Free methods
have also shown success (Xie et al. 2023).

Representation-aware approaches aim to represent the en-
tire dataset with a limited number of labeled samples to en-
hance model generalization on unlabeled data, with Core-
Set (Sener and Savarese 2018) being a typical example.
Variety-aware methods prioritize selecting a diverse set of
samples (Guo 2010).

Variational Lower Bound
Variational Lower Bound in Supervised Learning
The Deep Variational Information Bottleneck
(DVIB) (Alemi, Fischer, and Dillon 2017) employs
variational techniques to extend the information bottle-
neck (TISHBY 2000) concept from information theory
to deep neural networks, constituting a generalization of
the Variational Autoencoder (VAE) (Kingma and Welling
2014). Reference (Mahabadi, Belinkov, and Henderson
2021) applies the Variational Information Bottleneck to
low-resource text classification tasks. Specifically, for
typical supervised learning contexts, they optimize the
following variational lower bound:

Ex,y∼X,Y Eqφ(z|x) [logpθ(y | z)]− βKL [qφ(x | z) ∥ pθ(z)]
(14)

Variational Lower Bound in Active Learning
Paradigm
We now consider the variational lower bound within the
paradigm of active learning.

ExL,yL∼XL,YL
Eqφ(zL|xL) [logpθ(yL | zL)]

− βKL [qφ(zL | xL) ∥ pθ(ẑ)]
(15)

we now focus on the empirical evaluation of the variational
lower bound on the labeled data, rather than on the overall
distribution as in Eq. (14).In active learning scenarios, where
labeled data deviates from the global distribution, inherent
bias arises. To quantify this bias, we propose measuring the
Kullback-Leibler divergence between the parametrized la-
tent variables in the active learning context and those trained

under full supervision within the overall distribution.

KL [pθ(ẑ) ∥ pθ(z)] ≥ 0 (16)

For simplicity, in section 3.2, we introduce bias variable
wU = z − zU and wL = z − ZL.

Theorem It can be readily shown that minimizing w is
equivalent to minimizing KL[qφ(z|x) ∥ pθ(z̃)] when the
bias is minimized.

minE
[
w
]
⇔ minE

[
KL [qφ(z | x) ∥ pθ(z̃)]

]
(17)

Variational Lower Bound in VaGeRy
In the VaGeRy framework, we jointly minimize the empir-
ical variational lower bound on both labeled and unlabeled
datasets, with the latter contributing a consistency regular-
ization constraint.

ExL,yL∼XL,YL
Eqφ(zL|xL)

[
log pθ(yL | zL)

]
− βKL

[
qφ(zL | xL) ∥ pθ(z̃)

]
+ExU∼XU

Eqφ(zU |xU )

[
KL

[
p⋆θ(y

⋆
U | z⋆U ) ∥ pθ(yU | zU )

]]
− βKL

[
qφ(zU | xU ) ∥ pθ(z̃)

]
(18)

This objective aims to approximate the variational poste-
rior in an unbiased manner.

More Results
Upon application of the VaGeRy method to six distinct
datasets and six uncertainty sampling techniques, the com-
parison of accuracy across various active learning cycles
unequivocally demonstrates the method’s superior efficacy
within the active learning paradigm. As evidenced by Ta-
ble 1, the VaGeRy method consistently enhances accuracy
across a spectrum of active learning cycles, manifesting a
progressive amplification of the model’s learning efficiency
and predictive acumen. Furthermore, the VaGeRy method
exhibits a bolstering impact across diverse types of un-
certainty estimation techniques, reflecting its stability and
adaptability within varying contexts.
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T. 2019. Learning Imbalanced Datasets with Label-
Distribution-Aware Margin Loss. In NeurIPS 2019, 1565–
1576.
Caramalau, R.; Bhattarai, B.; and Kim, T. 2021. Sequen-
tial Graph Convolutional Network for Active Learning. In
CVPR 2021, 9583–9592.
Chen, B.; Jiang, J.; Wang, X.; Wan, P.; Wang, J.; and Long,
M. 2022. Debiased self-training for semi-supervised learn-
ing. NeurIPS 2022, 35: 32424–32437.
Culotta, A.; and McCallum, A. 2005. Reducing Labeling
Effort for Structured Prediction Tasks. In AAAI 2005, 746–
751.
Deng, X.; Wang, W.; Feng, F.; Zhang, H.; He, X.; and
Liao, Y. 2023. Counterfactual Active Learning for Out-of-
Distribution Generalization. In ACL 2023, 11362–11377.
Deng, Y.; Chen, K.; Shen, Y.; and Jin, H. 2018. Adversarial
Active Learning for Sequences Labeling and Generation. In
IJCAI 2018, 4012–4018.
Dernoncourt, F.; and Lee, J. Y. 2017. PubMed 200k RCT:
a Dataset for Sequential Sentence Classification in Medical
Abstracts. In IJCNLP 2017, 308–313.
Elezi, I.; Yu, Z.; Anandkumar, A.; Leal-Taixé, L.; and
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Grill, J.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P. H.;
Buchatskaya, E.; Doersch, C.; Pires, B. Á.; Guo, Z.; Azar,
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