
NotOnlyLog: Mining Patch-Log Associations from Software Evolution History to
Enhance Failure Diagnosis Capability

Shuqi Chi∗, Shanshan Li∗, Yong Guo∗, Wei Dong∗, Zhouyang Jia∗, Haochen He∗ and Qing Liao†
∗Department of Computer Science, National University of Defense Technology, Changsha, China

Email: {chishuqi16,shanshanli,yguo,wdong,jiazhouyang,hehaochen13} @nudt.edu.cn
†Department of Computer Science and Technology,Harbin Institute of Technology(Shenzhen), Shenzhen, China

Email: liaoqing@hit.edu.cn

Abstract—Log messages are widely used in the diagnosis of
software failures. Existing studies of failure diagnosis based
on log messages tend to use rule-based methods or execution-
path-based methods. Rule-based methods generate bug-fixing
rules using either human expertise, which is time consuming,
or machine learning methods, which may lack the precision
of failure diagnosis. To remedy these problems, researchers
propose execution-path-based methods that reconstruct execu-
tion paths by analyzing source code and run-time logs. These
methods, however, may lead to path explosion. To fill this gap,
our work focuses on solving the path explosion problem in
execution-path-based methods. We assume that run-time logs
may have a relationship with their corresponding patches in
real-world bug reports. We conduct empirical studies on seven
open-source software packages and obtain two findings: 1) 80%
of similar bugs have similar patches, and 2) 70% of faulty code
is found to lie near the code where the first failure message is
printed.

Based on these two observations, we design and implement
a practical tool NotOnlyLog for bug diagnosis. NotOnlyLog is
able to mine the relationships between failure logs and their
corresponding patches, in order to reduce both the number
and length of uncertain execution paths in bug diagnosis. We
evaluate the performance of NotOnlyLog on nine real-world
bugs from three large open-source projects. Our experimental
results show that, compared with SherLog, NotOnlyLog can
achieve a reduction of 86.9% in the number of execution paths.

Keywords-Bug Diagnosis,Software Evolution, Log

I. INTRODUCTION

As the complexity and scale of software increases, the

quantity of software bugs is growing at a startling rate.

System run-time logs [1] are very important sources of

information for software failure diagnosis. Run-time logs

often contain vital information for use in troubleshooting

run-time failures, and are often the sole data source available

to software developers in order to understand and diagnose

these failures.

Many studies have been conducted to help system main-

tainers with failure diagnosis. Existing studies in this area

tends to be based on either rule-based methods [2]–[6] or

execution-path-based methods [7]–[9]. Rule-based methods

concentrates on generating rules or patterns, using either

human expertise or machine learning methods. For example,

Logsurfer [5] uses rules formulated by people with strong

domain knowledge to diagnose software failures. However,

the frequent changing nature of the source code requires

too expensive expertise cost to keep generating new rules

in time [7]. Distalyzer [3] uses machine learning tech-

niques to generate rules, which are extracted from run-time

logs,to compare system behaviors, in order to reveal which

component of the software is broken. However, developers

still need a long time to determine the root cause of

these failures. Execution-path-based methods [7], [8] usually

target at reconstructing the execution paths when system

failures occur. These methods can always provide the system

maintainers with more detailed information on how the

failures happened and thus give maintainers a deeper insight

into what went wrong. As a representative work, SherLog [7]

performs a static, context-sensitive approach to reconstruct

the failure execution paths by analyzing both run-time logs

and source code. However, execution-path-based methods

are not able to infer every choice at branch instructions in

failed execution, and this could result in path explosion. And

the possibility of path explosion grows while the scale and

complexity of software increase. To remedy this problem,

Pensieve [8] uses event chains instead of execution paths

to profile system traces, while it sacrifices accuracy, and

can lead to some infeasible or inaccurate result.To solve

path explosion of execution-path-based methods and keep its

accuracy, we conduct empirical studies on software evolution

and bug fixing history to figure out the ways to prune

execution paths.

Bugs often have corresponding run-time logs and patches.

We believe that there may be some relationships between

these logs and the fixing patches. As Figure 1 shows, the run-

time failure messages of MDEV-13591 and MDEV-8195,

two bugs in MariaDB [10], contain similar information, and

both of their corresponding patches have the same variable

“crypt data”. This indicates that similar bugs may have

similar root causes. In order to understand the relationships

between logs and patches, we perform a study on seven

popular open-source software packages, including MariaDB,

Squid, CUBRID, Httpd, OpenStack, OpenSSH and Nginx.

We obtained two key findings:1) 80% of similar bugs have

similar patches, and 2) 70% of patches is found to have

189

2018 25th Asia-Pacific Software Engineering Conference (APSEC)

978-1-7281-1970-0/18/$31.00 ©2018 IEEE
DOI 10.1109/APSEC.2018.00033

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:03 UTC from IEEE Xplore. Restrictions apply.

Figure 1. A representative example of bugs (MDEV-13591 and MDEV-
8195) and patches

a distance of less than 2 to the first failure message,

where distance denotes the number of functions between the

statements in patches to the statements which print first error

messages in system execution paths. Based on these findings,

we leverage the relationships extracted from patches and logs

from historical bugs and combine this with the execution-

path-based method to prune the execution paths for more

precise bug diagnosis.

Extracting and using the relationships contained in histor-

ical bugs and patches to help the process of bug diagnosis

has many challenges. Firstly, given two bugs, it is non-

trivial to determine the similarity of their logs that report

errors. This is because that the failure messages are often,

if not all the time, hidden in massive normal messages.

Secondly, given two bugs with similar failure logs, it is hard

to determine the similarity of their patches. On one hand, we

need to choose proper features that can effectively determine

patch similarity. On the other hand, the patches are code

snippets without complete semantic information, making it

more difficult to extract the features, e.g., we do not know

the types of the variables used in the patches. Thirdly, we do

not have sufficient run-time logs and corresponding patches

for each bug for relationship mining, since run-time logs are

not required by many software.

To address the challenges outlined above, we studied the

log messages together with their producing mechanism, the

features of patches, and the feasibility of reproducing logs

from patches. To distinguish failure messages from normal

ones, we manually studied the subject software about how

messages are printed. We found that most failure messages

were printed in special patterns, which was different from

normal messages. Based on this observation, we develop

a keyword-based method to generate rules to separate the

failure messages from normal messages. To choose proper

features of patches to determine patch similarity for similar

logs, we studied the patches of similar logs manually. We

found that patches of many similar logs underwent similar

modifications to same variables or functions. Hence, we take

features of patches from these modifications. In order to

facilitate extracting features, we study the source code where

the patches located to complete the semantic information of

patches, in order to extract features efficiently. To obtain

sufficient run-time logs for our study, we leverage a control-

flow analysis on patches to identify the likely messages, in

order to reproduce run-time logs. Solving those problems

enables us to mine relationships and use them to facilitate

failure diagnosis. We design and implement NotOnlyLog,

a practical tool that mines the relationships between failure

logs and fixing patches in order to reduce the number and

length of uncertain execution paths, which we reconstruct

based on SherLog [7].

In summary, our work makes the following contributions:

• Empirical studies on the relationships between the fixed

bugs of several open-source software and the patches

used to fix them . Our results show that the likelihood of

similar bugs having similar patches is around 80%. This

proves that our work can help to fix newly discovered

bugs by identifying a similar bug that has been fixed

already. We also find that 70% of faulty code is found

to lie near the code where the first failure message is

printed. This helps us locate bugs in a smaller range in

code.

• A proactive tool to assist with failure diagnosis. We

design and implement NotOnlyLog to extract the rela-

tionships between fixed bugs and the patches used to fix

them, then use this relationship to help diagnose sub-

sequent unfixed bugs. NotOnlyLog can also reproduce

sufficient run-time logs from patches for each bug for

relationship mining.

• Validation of the effectiveness of NotOnlyLog. NotOn-

lyLog can outperform the state-of-the-art work in many

aspects. For example, it can achieve a reduction of

86.9% in the number of execution paths.

The rest of this paper is organized as follows. Section II

summarizes the findings of the empirical studies. Section III

presents the design overview and implementation details of

NotOnlyLog. Section IV evaluates the tool’s effectiveness

and precision. Section V discusses the limitation of our

method. Section VI discusses the threats to validity. Section

VII presents the related work. Finally, we conclude this

paper in Section VIII.

II. MOTIVATION

Considering that specific bugs are often found to have

corresponding run-time logs and patches, we believe that

there may be some relationships between these logs and the

patches used to fix the issues. To verify this assumption and

to determine the relationships between run-time logs and

their corresponding patches, we conduct empirical studies

on software evolution histories in an attempt to answer the

following Research Questions (RQ):

190

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:03 UTC from IEEE Xplore. Restrictions apply.

Table I
SUBJECT SOFTWARE.“BUGS” MEANS THE TOTAL BUGS WE COLLECTED.

“PATCHES” MEANS TOTAL PATCHES FOR BUGS.“VERSIONS” MEANS

HOW MANY VERSIONS OF SOFTWARE INVOLVED.

Software Patches Bugs Versions Logs
Squid 1803 1803 176 6006

MariaDB 4450 4450 140 1466
CUBRID 600 600 77 420

Httpd 2540 2600 18 103
OpenStack 78000 80003 18 103
OpenSSH 540 2586 78 161

Nginx 367 1028 80 200

• RQ1: How pervasive do bugs with similar logs have

similar patches? It is common that bugs are fixed during

software evolution. During the process of bug fixing, it

is unavoidable that bugs with similar logs may appear

at different periods. This research aims to gain a general

insight into the relationships between patches for bugs

with similar logs.

• RQ2: Where are these patches located in code? In

bug diagnosis, reconstructing the execution paths from

the whole log results in extra time overhead and a

proliferation of useless information, which will finally

lead to an explosion in the number of execution paths.

In this question, we aim to study the distribution of

patches in code so that we can reconstruct fewer and

shorter execution paths.

• RQ3: Do we have sufficient run-time logs to mine

relationships? To facilitate our process of bug diagnosis,

we need run-time logs and corresponding patches for

each bug. In this question, we need to study if we can

collect sufficient run-time logs for each bug from bug

tracking systems.

A. Experimental Setup

This empirical study is conducted on seven popular

open-source software packages written in C/C++: namely,

Squid , Httpd, OpenStack, OpenSSH, nginx, MariaDB and

CUBRID. Each of these has a long history of development

to ensure the system remains multifunctional and robust.

Through use of these software packages, we can collect

many bugs together with their patches.

We collect software release information, bugs and their

corresponding patches from their bug-tracing systems, e.g.,

Bugzilla, Trac and JIRA, using a crawler based on Web-

Magic [11], a popular crawler frame written in the Java

language. The Versions column, below, shows the number of

versions involved in this study. Naturally, the failure logs are

submitted mixed with descriptions provided by customers;

we need to extract these logs for our study. More detailed

information is presented in Table I.

Table II
PERVASIVENESS OF SIMILAR MODIFICATIONS AMONG BUGS WITH

SIMILAR LOGS

Software Same variable Same function Different total
Squid 17(85%) 0(0%) 3(15%) 20

MariaDB 28(61%) 12(26%) 6(13%) 46
CUBRID 21(67%) 6(19%) 4(14%) 31

B. RQ1:How Pervasive do Bugs with Similar Logs have
Similar Patches?

To determine the pervasiveness of the phenomenon in

which similar bugs have similar patches, we evaluate the

proportion of bugs with similar logs and similar patches to

bugs with similar logs.

What are the metrics for measuring similarity between two

logs? According to previous works [12],1) Error messages

need to be similar if two logs are similar. 2) The possibility

is quite low that messages in one log are exact copies to

that of another log without modifications. These observations

indicate that error messages are critical for a log, since they

address the potential error path, concrete values of identifiers

and timestamps in messages might be different since they

are in different executions.

According to the points above, we define similar logs

as: Given two logs A and B, if the content of their error

messages are same except for concrete values of identifiers,

timestamps, which are different in different executions, log

A and log B are similar. In this RQ, we select those messages

contains keywords like “error” , “fail”, “exception” and their

synonyms from WordNet [13], which are usually used by

developer to indicate system error, as error messages for

logs.

For research purposes, we manually study 97 pairs of

bugs with similar logs from three open-source projects.

Table II presents more detailed data. On average, more

than 80% of bugs with similar logs are found to have

modifications to same variables or functions in their patches.

For convenience, we say that these two patches are similar

and give the definition as: Given two patches A and B, if the

modified lines of A shares the same variable or functions to

that of B, two patches are similar.

That is to say, if we know that same modifications have

occurred in two bugs with similar logs, we may need to

modify same variables or functions for bugs with similar

logs in future. This result shows the potential effectiveness

of mining for relationships between bugs with similar logs

and their corresponding patches.

C. RQ2:Where are Patches Located in Code?

Considering that log messages can be treated as points in

code, we may be able to identify a software execution path

if those points are connected. In order to identify the general

distribution of where these patches are located in code, we

evaluate the distance between the patch and the point at

191

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:03 UTC from IEEE Xplore. Restrictions apply.

Figure 2. The distribution of patches.

which the first failure message emerges. Since patches are

not only used to fix the corresponding bugs only, they may

include adding new functions, modifications to code related

to the bug-fixing code, we take the smallest distance to

represent the whole patch.

For research purposes, we manually study 95 patches

randomly selected from three large open-source projects.

Results are presented in Figure 2. On average, for each

project, more than 70% of patches are found to have a

distance of less than two messages from the first failure

message. And the closer to the first failure message, the

higher the possibility of containing patches. That is to say,

it is likely that we do not need to reconstruct execution

paths from all messages, since the probability that the faulty

code lies within a distance of two messages from the first

failure message is high. This result indicates that we may

only need to take several messages into consideration during

the process of reconstructing execution paths.

D. RQ3: Do we have sufficient run-time logs to mine
relationships?

To know whether we have sufficient run-time logs from

bug tracking systems to mine relationships, we collected data

from several open-source projects. As Table I shows, more

than half of these software provide less than 200 run-time

logs. Considering the variety of bugs in software [14], these

run-time logs are insufficient for us to mine relationships.

We can also see from Table I that MariaDB provides 7

times more run-time logs than Nginx. To understand the

reason of this phenomenon, we studied the bug submission

instructions of these two software. As we can see in Table

III, MairaDB provides several detailed instructions on what

to submit when customers find a bug, including the failure

log files, while Nginx only give one instruction without

requiring log files. This may be the reason why Nginx has

received less run-time logs than MariaDB.

III. DESIGN AND IMPLEMENTATION

A. Overview

In order to help bug diagnosis, we design and implement

NotOnlyLog, a practical tool that mines the relationships

Table III
INSTRUCTIONS FOR BUG SUBMISSION

MariaDB 1.The environment (Operating system, hardware
and MariaDB version) where the bug happened.

2.Any related errors or warnings from the server
error log file. Normally it is hostname.err file

3.The content of your my.cnf file or alternatively
the output from mysqld –print-defaults.

......
Nginx Please describe the bug in full detail including all

of the conditions that make it happen and include
the relevant part of configuration as well. It would
substantially reduce time and effort to understand
and resolve the bug.

Figure 3. The architecture of NotOnlyLog

between failure logs and fixing patches to reduce the number

of uncertain execution paths. These paths are reconstructed

using a static context-sensitive analysis approach based on

SherLog [7].

NotOnlyLog requires three inputs: (1) historical bugs

and logs, which are used to mine relationships; (2) run-

times logs of new bugs, which are used to match the

relationships, in order to find culprits; (3) software source

code. Consequently, NotOnlyLog outputs execution paths

(pruned) which contain software faults.

As illustrated in Figure 3, NotOnlyLog consists of three

modules:

• Mining relationships. This module analyzes run-time

logs and corresponding patches for bugs to mine the

relationships between them. In Section III-B, we

will explain the relationships and further introduce the

design and implementation details of this module.

• Reconstructing execution paths. This module recon-

structs the execution paths from run-time logs. Detailed

design and implementation will be provided in Section

III-C.

• Pruning useless paths. This module applies the re-

lationships mined in the first module to prune the

execution paths reconstructed in the previous module.

More details are provided in Section III-D.

NotOnlyLog mines the relationships between run-time

logs and their corresponding patches in software evolution.

When a new bug appears, NotOnlyLog reconstructs its likely

execution paths and prunes them by applying the mined

192

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:03 UTC from IEEE Xplore. Restrictions apply.

relationships. In short, NotOnlyLog works as tool to help

developers understand and locate bugs.

B. Mining Relationship

As noted in Section II-B, bugs with similar logs often

have similar patches to source code. These patches may

modify the same variables or functions. The objective of

this section is to mine the relationship between run-time

logs and their corresponding patches in software evolution.

To achieve this goal, we need to solve two problem:

identifying similar logs (see Section III-B2) and extracting

the fixing patterns of patches (see Section III-B3). After

that, we mine relationships by extracting the similar patterns

of patches for similar logs.

In addition, considering that bug-tracking systems do not

always require users to submit run-time logs, we may be not

able to mine enough relationships from insufficient run-time

logs and patches. To remedy this situation, we use a control

flow analysis to reproduce logs from patches (see Section

III-B1).

1) Log Reproduction: To overcome this problem that

we cannot get sufficient run-time logs from bug-tracking

systems, this section aims to investigate the generation of

logs using patches. As explained in Section II-C, once

we treat the messages as points in code and connect these

points to build an execution path, patches are often found

to lie near the first failure message in code. Inspired by this

phenomenon, we reproduce logs from the context of the

patches in the following steps:

(1) For a given patch, we first locate its position in source

code.

(2) Starting from the located position, we perform a

control flow analysis, and we get the control flow tree.

According to RQ2 that patches is found to have a distance

of less than 2 to the first failure message, we limited the

length of call-site to 2 while analyze the control flow.

(3) We operate a preorder traversal to the control flow tree

of the patched code to find the potential logging functions

in the tree that could be executed if the patched code was

executed.

(4) We extract all functions with parameters that are literal

strings as candidates of logging functions, since logging

function have various definitions, especially wrapped func-

tion, and we do not always know which function prints the

logs.

(5) We put strings of one function into a sentence in the

order of their number of parameter. After that, we order

those sentences in the order which they are extracted to get

logs.

2) Similar Logs Identification: The objective of this sec-

tion is to identify similar logs. Naturally, since the run-time

log is only a testimony of the system execution, we use logs

that consist of several lines of messages as an alternative to

bugs. In order to verify that two logs are similar, we need

to solve one problem at first. Normal messages in logs may

interfere with the measurement of similar bugs, since normal

messages appear in almost every logs.

To address the problem above, since hundreds of messages

could be printed during a system run, it is necessary to

pick out several representative messages for this bug. It is

common that a large number of messages will be printed in

both successful executions and failure execution conditions;

therefore, this kind of message is useless while the two

logs are being compared. Consequently, we require only the

messages that are printed under failure execution conditions.

Accordingly, we manually studied the logging functions in

MariaDB and Squid, finding that these software printed

the messages of interest in a different way from common

messages (MariaDB uses functions with “error” or “failed”

in their names to print uncommon log messages, while

Squid uses different log levels). Based on this observation,

we can identify the uncommon messages heuristically by

recognizing their corresponding logging functions. Given the

above, we only need to compare the uncommon messages

in the two logs to judge whether or not they are similar.

In order to calculate whether two logs are similar, we

need to: (1) extracting the error messages, which is explained

above, (2) processing the extracted messages, (3) calculating

whether two logs are similar.

Processing the extracted messages: (1) text normalizing,

splitting camel cases in text and removing special symbols,

(2) stop words removing, removing the stop words in English

for Google stop-words list, (3) port stemming, reducing

inflected words to their root words(i.e. transform “goes” into

“go”).

Calculating whether two logs are similar: (1) use Term

Frequency–Inverse Document Frequency(TF–IDF) to weigh

all the words in vectors, (2) calculate the cosine similarity

between every two logs. In order to get the threshold for

cosine similarity, we manually select 20 pairs of logs that

error messages of each pair are exact same(except for the

values of identifiers and timestamps). We calculate their

cosine similarity and pick 0.5 as the threshold to judge

similarity of logs.

That is to say, two logs are similar if their cosine similarity

is bigger than 0.5.

3) Patch Extraction: To mine the similarity of patches,

as detailed in our empirical study in RQ2, we extract

the functions and variables appearing in patches in this

section. Bug patches are usually code snippets that are often

inadequate and confusing in the absence of enough context

to infer all the types of variables involved. As Figure 1

shows, we cannot directly obtain the type of “crypt data”

from the patch of “MDEV-13591”. A patch also contains the

filename and the line numbers, which indicate its location

in the source code. We can thus use a heuristic method to

extract the information that indicates the location of a patch.

After that, we can perform a static analysis on the context

193

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:03 UTC from IEEE Xplore. Restrictions apply.

Figure 4. The source code of bug MDEV-8143 in buf0buf.cc

of the patch code to infer the types of its code entities.

In more detail, we firstly employ a fuzzy analysis tool

called srcML to build an AST (abstract syntax tree) for the

patch and collect the code entities. Secondly, since patches

are written in a standardized format, we can manually set a

rule to extract the patch’s location information, i.e., filename

and line numbers. After that, we search the context of the

lines in source code to fill in the type information missed

in the first step. For the convenience of calculation, since

variables and functions both have types and names, we

record them in the following unified form:

<< Type1, Name1 >,< Type2, Name2 > . . . > (1)

If the extracting results of all the patches of similar logs

have same items, we extract these items. We then express

the relationship of the similar logs and the similar patches

in the following form:

{< message1,message2, ... >,

< Type1, Name1 >,< Type2, Name2 > . . . }
C. Reconstructing Execution Paths

In this section, we aim to reconstruct execution paths from

the run-time log based on SherLog’s method [7]. SherLog

performs well for small programs (e.g. rm), but not for

large systems, because it constructs hundreds of paths, and

sometimes even has the problem of path explosion. It is still

a tedious and tricky problem for maintainers to analyze these

paths.

To solve this problem, we propose a method to effectively

reduce the number of execution paths required to be recon-

structed by restricting the search range. As noted in Section

II-C, the faulty code usually lies near the code where

the first failure message (i.e. the first message in the log

printed by the failure message logging functions) is printed.

Inspired by this, we propose a context-sensitive method

based on that employed by SherLog in order to reconstruct

fewer execution paths using reduced number of messages.

Figure 5. Reconstructed paths

Compared to SherLog, which uses all the messages in a log

to reconstruct the execution paths, NotOnlyLog considers

only three messages (the first failure message, along with

a message before it and a message after according to the

findings in Section II-C, since the closer to the first failure

message, the higher the possibility of the existence of faulty

code.) However, there are still some exceptional cases that

we cannot get paths through 3 messages, we design a loop

process to address them; this loop process will be explained

in the next section.

As an example, we infer the paths in Figure 4 and present

the results in Figure 5. Starting from the failure message and

the message before, we conducted a bottom-up analysis and

obtain two paths (the integer after “@” indicates the line

number, “bfm” means the message “before failure message”,

and “fm” means “failure message” in Figure 5):

(1)Bug page io complete@1 → bfm@2 → if@3

→ corrupt@18 → fm@19

(2)Bug page io complete@1 → bfm@2

→ if@8 → if@10 → corrupt@18 → fm@19

D. Pruning Useless Paths

In this section, we propose a method to reduce the

number of execution paths reconstructed in Section III-C.

The path-pruning process is accomplished by applying the

relationships we have mined through the comparison of

the run-time logs and patches from the software evolution

history and obtain the code entities that has been modified

to fix them. We first look for the similar bugs in the software

evolution history. We believe that the bug to be fixed may

also need to modify similar code entities. Thus, we perform

a control analysis on each function in a path and scan the

control flow to look for the relevant code entities. If these

code entities cannot be found in the context of a path, this

path is likely not to be the path containing the software bug,

and we prune it. Finally, the paths left are more suspicious

to contain faulty code.

However, we may find no path containing the code entities

and we remove all the execution paths. To address this prob-

lem, we design a loop process that we add a message before

194

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:03 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Pruned paths

the three messages and a message after and then reconstruct

paths again. Once the paths containing the desired code

entities are identified, the strategy stops, and the pruned

paths are the final output of NotOnlyLog.

As shown in Figure 6, two paths have been reconstructed.

To prune the constructed paths, we search the mined re-

lationships for relationships with similar messages to bug

“MDEV-8143”. Consequently, we find a relationship, which

is mined from “MDEV-13591” and “MDEV-8195” (the fail-

ure logs and patches of them is shown in Figure 1) contains

the similar messages to the run-time log of bug “MDEV-

8143”. This relationship provides a variable “crypt data”

whose type is “fil space crypt t” to help pruning the paths

for bug “MDEV-8143”.

As Figure 4 shows, the function

“buf page decrypt after read” in the source code of

MariaDB’s bug “MDEV-8143” is called at line 3, while

the function named “fil space decrypt” is called by

“buf page decrypt after read” at line 28. Obviously, we

can find the variable “crypt data” in the body of function

“fil space decrypt”, and we cannot find “crypt data” in

another path. Naturally, we then select the path containing

“crypt data” as the suspicious path. At this point, we

have completed the path pruning process and there is one

possible path left:

Bug page io complete@1 → bfm@2 → if@4

→ corrupt@18 → fm@19

IV. EVALUATION

In this section, we evaluate the performance of NotOnly-

Log. Section IV-A evaluates the correctness of mined patch-

log relationships. Section IV-B measures its effectiveness

at pruning execution paths. Section IV-C evaluates the

precision and effectiveness of its log reproduction work.

A. The Correctness of Mined Patch-Log Relationships

The correctness of mined patch-log relationships is es-

sential to the precision of NotOnlyLog. In order to evaluate

the correctness of mined patch-log relationships, we divide

the collect data into two sets by their versions. We use

the former versions as training set and the latter as test

Table IV
THE CORRECTNESS OF THE MINED PATCH-LOG RELATIONSHIPS.
“UNCERTAIN” DEPICTS THE NUMBER AND PROPORTION OF THE

RELATIONSHIPS WHICH WE CANNOT VALIDATE.

Software Relationships Correct Incorrect Uncertain
MariaDB 73 39(53.4%) 5(6.8%) 29(39.8%)

Squid 36 16(44.4%) 2(5.5%) 18(50.1%)
CUBRID 30 10(33.3%) 2(6.7%) 18(60%)

set. We mine relationships from one set (training set) and

validity the mined relationships in the other set (test set).

For each relationship mined from the training set, if all the

bugs have similar messages to this relationship and contain

the variables or functions in it, this relationship is correct.

If there exists a bug, which has similar messages to this

relationship, and contains no variable or function in it, this

relationship is not correct. If no bug in the test set has

similar messages to this mined relationship, the correctness

is uncertain.

Table IV displays the correctness of mined patch-log

relationships. Because of the variety of bugs [14], we cannot

find every similar bug in the test set, and thus cannot

validate the correctness of every relationship. As for the

relationships that we can validate, more than 80% of them

are correct. To understand why 20% of these relationships

are not correct, we manually study all of the incorrect

relationships and the corresponding bugs. In many cases,

the bugs from which we mined rules are fixed by modifying

source files, while the bugs used to validity the correctness

are fixed by modifying script files. We guess that the bugs

may not be fixed thoroughly at the first time, and they need

to fix the left problem later.

B. The Effectiveness of Path Pruning

The evaluation of NotOnlyLog and SherLog is on 150

real-world bugs from three real-world open-source projects

(including two database systems and one proxy server). Our

experiments are conducted on a Linux machine with eight

Intel Xeon 2.33GHz CPUs, and 8GB of memory. In order

to evaluate the effectiveness of NotOnlyLog, we conduct an

experimental comparison between NotOnlyLog and SherLog

on the number of reconstructed paths and time overhead.

As the key technology, we evaluate the execution paths

reconstructed by NotOnlyLog. We mine relationships from

6853 bugs(1803 from Squid, 4450 from MariaDB, 600 from

CUBRID), and we get 378 relationships(98 for Squid, 198

for MariaDB, 82 for CUBRID).

There are 125 bugs of 150 bugs which have similar logs

to the mined relationships. After we reconstruct paths and

prune them, we manually examine whether the real patches

are contained in those paths and the result is shown in

TableVI. 85.6% of the patches could be found in paths.

This result shows that we could prune the paths of SherLog

and keep its function in bug diagnosis for most bugs. We

195

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:03 UTC from IEEE Xplore. Restrictions apply.

Table V
COMPARISON ON PERFORMANCE OF SHERLOG AND NOTONLYLOG. “MUST-PATH” INDICATES THE NUMBER OF EXECUTION PATHS WHICH MUST BE

EXECUTED. “MAY-PATH” INDICATES THE NUMBER OF PATHS WHICH MAY BE EXECUTED. “AVG#LENGTH” INDICATES THE AVERAGE LENGTH OF

PATHS (CALL SITE DEPTH) PRODUCED. “PATH-MID” INDICATES THE NUMBER OF PATHS RECONSTRUCTED DIRECTLY FROM LOG MESSAGES.
“PATH-FINAL” INDICATES THE NUMBER OF PATHS AFTER PRUNING.“M” MEANS MINUTES.

Version Bugid MSG
SherLog NotOnlyLog

Must-path May-path Time AVG#Length Path-mid Path-final Time Avg#Length
MariaDB-10.1.4 MDEV-8143 11 1 50 56.6m 13.5 4 2 31.2m 3

MariaDB-10.1.13 MDEV-9793 17 1 20 53.4m 10 2 2 25.6m 5
MariaDB-10.1.3 MDEV-7878 50 2 68 59.8m 9.5 2 2 23.6m 6

CUBRID-10.1.0.0026 CBRD-20300 3 1 2 40.2m 6 1 1 15.6m 3
CUBRID-10.1.0.0025 CBRD-20239 2 1 48 45.4m 11.8 1 1 13.4m 3
CUBRID-10.1.0.7545 CBRD-21203 3 1 134 48.6m 12.6 11 5 28.4m 4

Squid-3.5.23 Squid-4004 48 2 88 32.2m 18.7 15 15 28.2m 10.5
Squid-3.0.PRE5 Squid-1940 7 2 176 26.8m 19.3 10 10 20.6m 10
Squid-3.2.0.11 Squid-3329 28 2 253 35.4m 17.9 72 72 42.2m 13.7

Table VI
THE CORRECTNESS OF NOTONLYLOG. “PATCH IN PATHS” MEANS

NUMBER OF BUGS WHOSE REAL PATCHES ARE CONTAINED IN THE

PATHS PRODUCED BY NOTONLYLOG, “PATCH NOT IN PATHS” MEANS

NUMBER OF BUGS WHOSE REAL PATCHES ARE NOT CONTAINED IN THE

PATHS PRODUCED BY NOTONLYLOG

Patch in paths Patch not in paths total
Number 107(85.6%) 18(14.4%) 125

manually study why 14.4% of patches are not contained in

the pruned paths. 10 of them are not contained in paths

because of the long distance between their patches and their

first error messages. We will discuss how to fix this problem

in V. Besides, another 4 of them are not contained in

paths, because the paths which contains patches are pruned

by NotOnlyLog. And this will be discussed in Section V.

The left 6 patches are not contained in paths because their

patches are not modifications to source code (i.e. script files),

which SherLog is not able to fix either.

Limited by the space, we select 9 bugs from the 107 bugs

above to perform a deeper analysis. Table V displays the

performance comparison of SherLog and NotOnlyLog on

execution path reconstruction of 9 bugs. Overall, NotOn-

lyLog produces fewer and shorter paths than SherLog. On

average, NotOnlyLog can decrease the number of execution

paths produced by SherLog by 86.9%.

Moreover, the average length of the reconstructed exe-

cution paths generated by NotOnlyLog are basically half

of that generated by SherLog. Since developers may need

to scan every path suggested to complete diagnosis, the

shorter execution path created by NotOnlyLog can reduce

the diagnosing effort.

C. Evalution on Log Reproduction in NotOnlyLog

This section evaluates the precision and effectiveness of

NotOnlyLog’s log reproduction work.

1) The Precision of Log Reproduction: We randomly

select 120 bugs with logs submitted by customers from

Squid, MariaDB, and CUBRID. We then manually identify

the precision of the reproduced logs. Table VII presents

Table VII
THE PRECISION OF LOG REPRODUCTION

Software Bugs(message found) Bugs(total) Precision
Squid 29 40 72.5%

MariaDB 27 40 67.5%
CUBRID 31 40 77.5%

Table VIII
THE EFFECTIVENESS OF LOG REPRODUCTION. “BUGS+” MEANS

NUMBER OF BUGS FOR WHICH WE REPRODUCE LOGS, “RULES+”
MEANS THE NUMBER OF NEW RULES MINED AFTER WE REPRODUCE

LOGS

Software Bugs Rules Bugs+ Rules+ EF
MariaDB 1466 198 100 9 4.5%

Squid 600 98 100 13 13.3%
CUBRID 420 82 100 15 18.3%

that failure messages can be reproduced for more than 65%

of these bugs. This result indicates that we can reproduce

log messages for a majority of fixed bugs with patches

and that we can mine more relationships if we reproduce

log messages for some of the bugs with no log messages

submitted in bug tracking systems.
2) The Effectiveness of Log Reproduction: We first mine

rules from the bugs with run-time logs submitted by cus-

tomers. Then, we reproduce logs for 100 random bugs with-

out submitted logs for each software. After that, we mine

rules from all the bugs. We use Effectiveness(EF) to evaluate

the effectiveness of log reproduction of NotOnlyLog.

EF =
new rules mined after log reproduction

rules mined before log reproduction

Table VIII displays the EF of NotOnlyLog’s log reproduc-

tion work on three software. For each software, the number

of rules increases after log reproduction. We also find that

the effectiveness of log reproduction is more significant on

the software with smaller number of bugs with run-time logs.

V. DISSCUSION

In Section IV-B, we analyzed the result of NotOnlyLog

find three problems that cause the imprecision of NotOn-

lyLog. They are: 1) The distance between patches of some

196

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:03 UTC from IEEE Xplore. Restrictions apply.

bugs and their first error message is longer than 2, and No-

tOnlyLog missed the real patches while reconstructing paths.

2) The bugs with similar logs to the mined relationships does

not contain the corresponding variables or functions, and the

paths, which real patches lie, are pruned by NotOnlyLog. 3)

The patches of some bugs are modifications to files that are

not source files (may be script files).
To fix the first problem, we need to expand the messages,

which are used to reconstruct paths. In addition, this will in-

evitably increase the length and number of the reconstructed

paths. Fortunately, average number of paths reconstructed

by NotOnlyLog is 20, and that is not too much work for

developers to check. We add an interface in NotOnlyLog

for developers to expand the messages used to reconstruct

paths, once they could not find the root causes of the bugs.

This problem is solved after we expand the messages used

to reconstructed paths in our experiment.
To fix the second problem, we provide the developers

with both the paths before and after pruning. Since the paths

before pruning are the reconstructed by NotOnlyLog already.

There is no extra time overhead. And this problem is fixed

after we provide both the paths before and after pruning.
As for the last problem, we are not able to fix it at present,

since NotOnlyNot is not able to analysis script files. We will

continue to figure out how to fix this in the future.

VI. THREATS TO VALIDITY

In this section, we will discuss the threats to the validity

of NotOnlyLog.
The Variety of Bugs. NotOnlyLog is based on the

relationships between similar bugs and their corresponding

patches, which are extracted from historical data. From our

empirical study, we find that 20% of bugs are similar, which

means NotOnlyLog cannot prune execution paths for every

bug. The performance of NotOnlyLog may degrade when

fixing bugs without similar bugs detected previously, com-

pared with the bugs whose similar bugs have been recorded.

However, as we reported in Section IV-B, the length of

execution paths generated by NotOnlyLog is shorter than

SherLog, the overall performance of NotOnlyLog can be

still better than the state-of-the-art work.
Limitation of Subject Software. Both our empirical

studies and evaluation experiments have been conducted on

three open-source systems. Each of them has a long period of

development in its corresponding application field. However,

as we were limited by the complicity of implementation of

NotOnlyLog, we have analyzed only C/C++-based systems,

causing uncertainty regarding the effectiveness of our tool

for other programming languages (e.g. Python and Java).

We plan to implement our tool on more extensive types of

systems to overcome this limitation in the future.

VII. RELATED WORKS

Log-based Bug Diagnosis. Most log-based studies are

based on rules or execution paths. Rule-based works [2],

[4], [5] usually aim at generating heuristic rules and use

them to help with bug diagnosis. Logsurfer [5] uses human-

formulated rules with strong domain knowledge to diagnose

software failures. Distalyzer [3] uses machine learning tech-

niques to generate rules extracted from run-time logs to

compare system behaviors, in order to reveal which compo-

nent of the software is broken. Execution-path-based work

[7], [8] uses a variety of algorithms to construct execution

paths. As a representative study, SherLog [7] performs a

static, context-sensitive approach to reconstruct the failure

execution paths by analyzing both run-time logs and source

code. NotOnlyLog is a execution-path-based method that can

improve the efficiency of bug diagnosis.

Fault Localization. Fault localization work typically

takes a faulty program as input and then produces a list of

code locations ranked by the possibility of the occurrence

of faults. A fault localization tool may use spectrum-based

or mutation-based techniques. Spectrum-based techniques

usually use test cases to locate faulty statements [15]–[19].

Op2 [19] runs test cases on the target program and ranks

these statements by the ratio of failed test cases to passed

ones. However, it may be unrealistic to build those test cases

as the scale of systems is growing rapidly. Mutation-based

techniques use “mutants” to locate faults [20], [21]. MUSE

[21], on a given test case, mutates statements and select the

mutants that change the state of the testing results. However,

mutation-based fault localization also relies on test cases

that may lead to uncertain performance. NotOnlyLog does

not rely on test cases and provides a deeper insight into

failures.

Log Analysis and Enhancement. Due to the trade-

off between logging mechanism and run-time overhead, it

is impossible for developers to print all system states at

every moment. Many research studies have been proposed

to improve the expressiveness of logs. Some of them con-

centrate on how to enrich log content [22], [23], and some

focus on improving the effectiveness of logs by ensuring

that log statements are properly placed [24]–[26]. SmartLog

[24] performs an intention-ware study and learns from the

advanced logging experiences to guide its placement of

log statements. And LogEnhancer [23] identifies important

variables and uses them to update existing log statements.

NotOnlyLog analyzes run-time logs, so its performance will

improve with the enhancement of logging mechanisms.

VIII. CONCLUSION

Previous studies that reconstruct execution paths to assist

in bug diagnosis may lead to path explosion. Inspired by

the finding that 80% of bugs with similar logs have similar

patches and that 70% of faulty code is found to lie near the

code where the first failure message is printed, we design and

implement a tool called NotOnlyLog. It is a practical tool

that mines the relationships between failure logs and their

patches to reduce the number of uncertain execution paths,

197

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:03 UTC from IEEE Xplore. Restrictions apply.

which are reconstructed by a static context-sensitive analytic

approach. NotOnlyLog can achieve a 86.9% reduction in the

number of execution paths compared with SherLog.

ACKNOWLEDGMENT

The work described in this paper was supported by

National Natural Science Foundation of China (Project

No.61872373, 61690203, U1711261 and 61872375).

REFERENCES

[1] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging prac-
tices in open-source software,” in International Conference
on Software Engineering, 2012, pp. 102–112.

[2] J. L. Hellerstein, S. Ma, and C.-S. Perng, “Discovering
actionable patterns in event data,” IBM Systems Journal,
vol. 41, no. 3, pp. 475–493, 2002.

[3] K. Nagaraj, J. Neville, and C. Killian, “Structured com-
parative analysis of systems logs to diagnose performance
problems,” 2011.

[4] S. Ma and J. L. Hellerstein, “Mining partially periodic event
patterns with unknown periods,” in International Conference
on Data Engineering, 2001. Proceedings, 2001, pp. 205–214.

[5] J. E. Prewett, “Analyzing cluster log files using logsurfer,”
Proc.annual Conf.on Linux Clusters, 2003.

[6] J. G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants
from console logs for system problem detection,” Proc of
Usenix Atc, pp. 231–244, 2010.

[7] D. Yuan, H. Mai, W. Xiong, L. Tan, S. Pasupathy, and S. Pasu-
pathy, “Sherlog: error diagnosis by connecting clues from run-
time logs,” in Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems,
2010, pp. 143–154.

[8] Y. Zhang, S. Makarov, X. Ren, D. Lion, and D. Yuan,
“Pensieve: Non-intrusive failure reproduction for distributed
systems using the event chaining approach,” in The Sympo-
sium, 2017, pp. 19–33.

[9] Q. Fu, J. G. Lou, Q. Lin, R. Ding, D. Zhang, and T. Xie,
“Contextual analysis of program logs for understanding sys-
tem behaviors,” in Working Conference on Mining Software
Repositories, 2013, pp. 397–400.

[10] MariaDB, “Mariadb. retrieved may 16 from
http://mariadb.org/about/,” 2018.

[11] WebMagic, “Webmagic in action. retrieved may 16 from
https://trac.edgewall.org/,” 2018.

[12] X. W. Foyzul Hassan, “Hirebuild: an automatic approach to
history-driven repair of build scripts,” in International Con-
ference on Software Engineering, 2018. Proceedings, 2018,
pp. 1078–1089.

[13] WordNet, “Wordnet. retrieved may 16 from
http://wordnetweb.princeton.edu/,” 2018.

[14] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
S. Lu, “A study of linux file system evolution,” Acm Trans-
actions on Storage, vol. 10, no. 1, pp. págs. 10–17, 2013.

[15] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in Ieee/acm
International Conference on Automated Software Engineer-
ing, 2005, pp. 273–282.

[16] A. Rui, P. Zoeteweij, and A. J. C. V. Gemund, “On the
accuracy of spectrum-based fault localization,” in Testing:
Academic and Industrial Conference Practice and Research
Techniques - Mutation, 2007, pp. 89–98.

[17] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method
for effective software fault localization,” IEEE Transactions
on Reliability, vol. 63, no. 1, pp. 290–308, 2014.

[18] A. Rui, P. Zoeteweij, and A. J. C. V. Gemund, “Spectrum-
based multiple fault localization,” in Ieee/acm International
Conference on Automated Software Engineering, 2010, pp.
88–99.

[19] L. Naish, J. L. Hua, and K. Ramamohanarao, “A model
for spectra-based software diagnosis,” Acm Transactions on
Software Engineering Methodology, vol. 20, no. 3, pp. 1–32,
2011.

[20] M. Papadakis and Y. L. Traon, Metallaxis-FL: mutation-based
fault localization. John Wiley and Sons Ltd., 2015.

[21] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants:
Mutating faulty programs for fault localization,” in IEEE
Seventh International Conference on Software Testing, Ver-
ification and Validation, 2014, pp. 153–162.

[22] B. Chen, “Characterizing and improving logging practices in
java-based open source software projects - a large-scale case
study in apache software foundation,” 2018.

[23] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Im-
proving software diagnosability via log enhancement,” in
Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2011,
pp. 3–14.

[24] Z. Jia, S. Li, X. Liu, X. Liao, and Y. Liu, “Smartlog: Place
error log statement by deep understanding of log intention,”
in IEEE International Conference on Software Analysis, Evo-
lution and Reengineering, 2018, pp. 61–71.

[25] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang,
Y. Zhou, and S. Savage, “Be conservative: enhancing failure
diagnosis with proactive logging,” in Usenix Conference on
Operating Systems Design and Implementation, 2012, pp.
293–306.

[26] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang,
“Learning to log: helping developers make informed logging
decisions,” in Ieee/acm IEEE International Conference on
Software Engineering, 2015, pp. 415–425.

198

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:03 UTC from IEEE Xplore. Restrictions apply.

