
Relax: Automatic Contention Detection and Resolution for Configuration related
Performance Tuning

Zhimin Feng

National University of Defense
Technology

Changsha, China
fengzhimin16@nudt.edu.cn

Shanshan Li

National University of Defense
Technology

Changsha, China
shanshanli@nudt.edu.cn

Xiangke Liao

National University of Defense
Technology

Changsha, China
xkliao@nudt.edu.cn

Xiaodong Liu

National University of Defense
Technology

Changsha, China
liuxiaodong@nudt.edu.cn

Yunfeng Li

National University of Defense
Technology

Changsha, China
liyunfeng12@nudt.edu.cn

Shulin Zhou

National University of Defense
Technology

Changsha, China
zhoushulin@nudt.edu.cn

Abstract—As the scale and complexity of software expands,
the issue of software performance is attracting increasing
attention. The causes of performance problems mainly fall
into two categories: software bugs and the resource contention
among multiple software programs. Software bugs are usually
caused by inefficient or unnecessary computation in source
code. However, the performance problems caused by resource
contention among multiple software programs are usually
ignored by most researchers. Unlike software bugs, resource
contention is not a bug; as a result, it is difficult to identify
the concrete reason for a performance problem given that
they share the same symptoms, such as long response time
or low system throughput. In this paper, we investigate the
performance problems caused by resource contention from
a configuration perspective. By studying the response time
distribution of software as the workload changes, we find
that there is an inflection point of response time with the
change of workload. Based on our observations, we design and
implement a tool, Relax, to automatically detect and resolve
resource contention. Relax combines resource request delay
at the inflection point and the system resource usage rate to
identify the performance problems caused by resource con-
tention. Moreover, inspired by the congestion control algorithm
in computer networks, Relax uses the square-increase and
multiplicative-decrease method to adjust the resource-related
configurations so as to resolve the contention. Our experiments
show that Relax can effectively detect and resolve resource
contention, and shorten the total software response time by
15.8% ∼ 22.8%.

Keywords-resource contention; performance problem;
resource-related configurations; resource dependence analysis;

I. INTRODUCTION

In recent years, given the increase in large-scale software

designed to solve complex problems, performance issues

stand out as elements that prevent applications from meeting

their performance requirements. Some of these issues are

caused by software bugs [1-6], which are themselves usually

Figure 1. The program crash caused by resource contention

caused by inefficient or unnecessary computation in source

code [7]. However, there is another situation that may

also cause serious performance problems: namely, resource

contention among multiple software programs. Moreover,

as the development of cloud computing and big data tech-

nology has progressed, performance problems caused by

resource contention increase rapidly when multiple programs

request the same, limited resources. Resource contention

may cause significant performance degradation and even

program crashes. For example, Figure 1 shows a program

crash caused by resource contention in StackOverflow ques-

tion 41192896 [8]. The cause of the issue is that MySQL
cannot allocate memory for the buffer pool. Tuning Apache
configurations, which are related to memory, is one of the

solutions for this issue.

Previous studies find that more than half of the per-

formance problems are related to configurations [9][28].

Additional surveys show about a third of Hadoop’s mis-

configuration problems result in OutOfMemoryErrors [29].

And setting proper configurations is challenging because the

workload and system interaction are often too complicated

or change too quickly for users to maintain a proper setting

239

2018 25th Asia-Pacific Software Engineering Conference (APSEC)

978-1-7281-1970-0/18/$31.00 ©2018 IEEE
DOI 10.1109/APSEC.2018.00038

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:21:18 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Response time distribution

[29]. In many cases, there is simply no satisfactory static

setting [30]. In fact, the reason for resource contention is

that the configuration of software cannot adapt the current

running environment.

In this paper, we investigate the performance problems

caused by resource contention from a configuration perspec-

tive. The process of solving these performance problems can

be divided into two steps, detecting contention and resolving

contention. First, we judge whether resource contention

is occurring in the running environment. Second, when

resource contention occurs, we reallocate the software’s

resource usage by iteratively adjusting the resource-related

configurations until the contention is resolved.

The study of performance problems caused by resource

contention faces many challenges. Firstly, it is difficult to

identify the cause of performance problems because the

problems caused by software bugs or resource contention

exhibit the same symptoms (e.g. long response time or low

system throughput). Secondly, since each piece of software

takes up system resources, it is difficult to identify which

program is the root cause that leads to resource contention in

the complex running environment. Thirdly, it is still difficult

to effectively resolve the contention, as we cannot determine

the extent to which the software resources are adjusted so

that the current contention can be resolved.

By studying the response time distribution of software as

the workload changes, we find that there exists an inflection

point of response time. Based on our observations, we

first identify the resource request delay at the inflection

point and use delay-threshold to denote it. The performance

problems caused by resource contention are then identified

by judging whether the resource request delay exceeds the

delay-threshold and the usage rate of system resources

exceeds the upper limit. Subsequently, the software that

leads to resource contention is identified based on the

changes in the resources required by the software before and

after the contention. Furthermore, inspired by the square-

increase and multiplicative-decrease (SIMD) [10] method

in network congestion avoidance, we adjust the resource-

related configuration options dynamically to resolve resource

contention.

In this paper, we design and implement a tool, Relax,

to detect and resolve the performance problems caused

by resource contention from a configuration perspective.

Relax can automatically detect resource contention and

dynamically adjust resource-related configurations in order

to resolve it. The main contributions of this paper are as

follows.

• First, we study the response time of software as the

workload changes and observe an inflection point of

response time. Based on our observations, we identify

the performance problems caused by resource con-

tention according to the resource request delay at the

inflection point and the usage rate of system resources.

This approach can effectively identify the performance

problems caused by resource contention.

• Second, we resolve resource contention from a software

configuration perspective. Inspired by the congestion

control algorithm in computer networks, we design

a SIMD method to dynamically adjust the resource-

related configuration options.

• Third, we evaluate Relax under different workload and

configuration settings. Our experiments show that Relax
can effectively detect and resolve resource contention,

and also shorten the total response time of software by

15.8% ∼ 22.8%.

The rest of the paper is organized as follows. Section

II summarizes the findings of the empirical study. Section

III illustrates the architecture of Relax. Section IV explain

the implementation details of Relax. Section V evaluates the

effectiveness and overhead of Relax. Section VI discusses

the limitations of Relax. Section VII presents the related

work. Lastly, we conclude our work in section VIII.

II. RESPONSE TIME ANALYSIS IN RESOURCE LIMITATION

We know that multiple software programs may compete

for limited resources as the workload changes, resulting

in significant performance degradation. Different software

workloads have different effects on software response time.

In order to study the response time distribution of software

as the workload changes, we designed and carried out the

following experiments.

A. Experimental Setting

Our experiments are based on three projects: namely

Httpd [11], MySQL [12] and Redis [13]. All experiments

are performed on a machine with two Intel i5-4590 3.3Ghz

processors, 2GB memory, and one 20GB disk. The running

240

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:21:18 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Automatic Contention Detection and Resolution

operating system is Ubuntu 16.04(X86 64) with Linux ker-

nel 3.16.40.

The steps of the specific experiments are as follows.

First, we use the different benchmark tools to test the

three software programs (Httpd, MySQL and Redis). For

Httpd, we use the popular ab [11] benchmark which has 10

requests for each client; for MySQL, we use the mysqlslap
[12] benchmark tool and set 10 queries for each client;

for Redis, we use a common benchmark (redis-benchmark)

[13] set 10000 SET requests for each client. We simulate

the different numbers of users accessing the three programs

concurrently. We then measure the average response time

per request for each software program under the different

workload settings.

B. Observation

Figure 2 illustrates the response time of the three software

programs under the different workloads. For Httpd, when the

number of concurrent requests is less than 1700, the response

time increases almost linearly as the workload increases;

however, when the number of concurrent requests exceeds

1700, the response time grows radically due to the network

bandwidth contention. MySQL and Redis exhibit the same

feature as Httpd, in that the reason behind the significant

increase in response time is CPU and memory contention.

Based on the above experiments, we find that an inflection

point exists where the software response time changes from

linear growth to rapid growth as the workload changes.

This inflection point is an important condition for detecting

resource contention.

III. Relax OVERVIEW

In order to resolve the performance problems caused by

resource contention, we design and implement a tool, Relax,

to automatically detect and resolve resource contention.

As shown in Figure 3, Relax contains two principal

modules, namely the resource contention detection and

resource contention resolution module. First, Relax deter-

mines whether resource contention exists in the running

environment. Then, if resource contention is found to occur,

Relax resolves the issue by reallocating the software resource

usage.

A. Resource contention detection

Based on our observation in Section II, Relax detects

resource contention according to the resource request delay

at the flexion point and the usage rate of system resources

in the operating system kernel. Then, Relax infers the

competitive software and the competitive resource types

based on both the software resource usage and the resource

usage of the whole system. In Section IV-A, we illustrate

the design and implementation details of this module.

B. Resource contention resolution

There is simply no satisfactory static configuration setting

in many cases [30]. In fact, setting improper configurations

is the root cause of resource contention. Thus we resolve

resource contention from the perspective of software config-

urations. The specific process is divided into the following

steps: first, Relax gets the configuration options that are

related to the resources using a slicing method; second,

Relax iteratively adjusts the configuration options that have

a high impact on resources to resolve the current contention.

More details are provided in Section IV-B.

IV. Relax DESIGN AND IMPLEMENTATION

In this section, we present the detailed design and imple-

mentation of Relax. Our goal is to resolve the performance

problems caused by resource contention; accordingly, we

first detect resource contention, then resolve it.

A. Resource contention detection

We divide the system resources into two major categories:

(1) shared resources, (2) non-shared resources. Table I

presents the classification of resources. Here, the term shared

241

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:21:18 UTC from IEEE Xplore. Restrictions apply.

Table I
RESOURCE CLASSIFICATION

Classification Resource

Non-shared Network port, Device serial port,etc
Shared CPU, MEM, IO, NET,etc

resources refers to resources that allow use by multiple

programs simultaneously, such as CPU resources, memory

resources, etc. Non-shared resources are resources that can

only be used by one program at a time, such as network

ports, etc.

Non-shared resources It is easier to detect non-shared re-

source contention in the running environment. Once the non-

shared resources is occupied, other programs cannot occupy

it again. Therefore, we only need to insert a small amount of

code into the system function tasked with requesting these

resources that detects whether the request is successful. If

the request fails, we can determine which program occupies

the resource.

Shared resources We know that software cannot get enough

resources in a timely fashion when resource contention

occurs, resulting in resource request delays. Therefore, we

use delays in resource requests as an important condition for

detecting shared resource contention.

There are three main reasons behind software delay: (1)

ready queue waiting delay (2) IO request delay (3) the

number of page replacement. We call the time between

process states from the ready state to the running state the

ready queue waiting delay. We know that the operating

system divides the process states into Created, Running,

Ready, Blocked, and Terminated. When the process is in

the ready state, and if the current CPU resource is idle,

then the process is scheduled to execute; if the current CPU

resource is short, the process will remain in the ready state

until the scheduler selects it to be scheduled for execution.

Thus, the ready queue waiting delay is the time between

process states from the ready state to running state. The IO

request delay is the time between the process of initiating

an IO request to the completion of the request. The number

of page replacement is the replacement number of between

physical memory and virtual memory (SWAP). Table II

shows the relationship between software delay factors and

system resources.

We use delay-threshold to denote the resource request

Table II
RELATIONSHIP BETWEEN SYSTEM RESOURCES AND SOFTWARE DELAY

FACTORS

System resources Software delay factors

CPU Ready queue waiting delay
MEM The number of page replacement

IO IO request delay
NET IO request delay

Algorithm 1 Resource contention detection algorithm

Result: γ, η
1: γ ← Ø

2: η ← Ø

3: delay-threshold = getDelayThreshold()

4: while True do
5: softwareDelay = getSoftwareDelay()

6: if softwareDelay > delay-threshold then
7: candidateSet = getCandidateSet()

8: delayRes = getSoftwareDelayResource()

9: γ = candidateSet
⋂

delayRes

10: if γ �= Ø then
11: value = getSoftwareChange()

12: η = getCompetitiveSoftware(value)

13: end if
14: return (γ, η)
15: end if
16: end while

delay at the inflection point, as discussed in Section II.

We cannot use delay-threshold as the sole condition for

contention detection because the inflection point of response

time may occur when a single software has performance

problems, for example, a performance bug can cause signifi-

cant performance degradation [28]. Through the observation

of resource contention among multiple software, we find

that system resources are gradually exhausted by competitive

software, which leads that the usage rate of system re-

sources exceeds the upper limit. Thus, the main idea behind

contention detection involves judging whether the resource

request delay exceeds the delay-threshold and the system

resource usage rate exceeds the upper limit.

Algorithm 1 outlines the specific process of shared re-

source contention detection. First, we get the delay-threshold
(Line 3). Then, Relax determines whether resource con-

tention is occurring (Line 6). Next, Relax identifies the

competitive resource types and the software that leads to

resource contention (Line 7-13). More specifically, Relax
first gets the competitive resource set by judging whether the

usage rate of system resources exceeds the preset threshold

(Line 7). Second, Relax gets the set of resources that may

lead to software delays (Line 8). Third, Relax gets the

intersection of candidateSet and delayRes (Line 9); here,

we use γ to denote the set of the competitive resource

types. For example, if the usage rate of system CPU and

MEM exceeds the preset threshold and there is frequent page

replacement in the running environment, Relax can infer that

there is contention for MEM resources. Finally, Relax only

needs to calculate the differences between the competitive

resource usage of each software program before and after

the contention. With reference to these differences, Relax
identifies the program that exceeds the preset maximum

differences as the competitive software program (Line 11-

242

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:21:18 UTC from IEEE Xplore. Restrictions apply.

1 //ha_init_key_cache(sql/handler.cc)
2 i n t h a i n i t k e y c a c h e(c o n s t c h a r *name, KEY CACHE *

key cache)
3 {
4 · · · · · ·
5 s i z e t tm p buf f s i ze= (s i z e t) key cache ->

param buff s ize;
6 · · · · · ·
7 DBUG RETURN(! i n i t k e y c a c h e(key cache ,

tmp block s ize , tmp buff s ize ,d i v i s i o n l i m i t ,
a g e t h r e s h o l d));

8 }
9 //init_key_cache(mysys/mf_keycache.c)

10 i n t i n i t k e y c a c h e(KEY CACHE *keycache , u i n t
key cache b lock s i ze , s i z e t use mem, u i n t
d i v i s i o n l i m i t , u i n t a g e t h r e s h o l d)

11 {
12 · · · · · ·
13 b l o c k s= (u long) (use mem / (s i z e o f(BLOCK LINK) + 2

* s i z e o f(HASH LINK) + s i z e o f(HASH LINK*) *
5/4 + k e y c a c h e b l o c k s i z e));

14 · · · · · ·
15 my large malloc((s i z e t) b l o c k s * keycache ->

key cache b lock s i ze , MYF(0)))
16 · · · · · ·
17 }
18 //my_large_malloc(mysys/my_largepage.c)
19 uchar* my large malloc(s i z e t s i z e , myf my flags)
20 {
21 · · · · · ·
22 ptr = my large mal loc in t(s i z e , my flags)
23 · · · · · ·
24 }
25 //my_large_malloc_int(mysys/my_largepage.c)
26 uchar* my large mal loc in t(s i z e t s i z e , myf my flags

)
27 {
28 · · · · · ·
29 shmid = shmget(IPC PRIVATE, s i z e , SHM HUGETLB |

SHM R | SHM W);
30 · · · · · ·
31 }

Figure 4. The configuration options indirectly affect the usage of resources

12). We use η to denote it.

B. Resource contention resolution

Recall that more than half of the performance problems

are caused by configurations, and these configurations com-

monly affect memory, disk usage, etc [9][28]. Accordingly,

we resolve resource contention from a software configura-

tion perspective. We use different methods to resolve the

contention caused by non-shared and shared resources. It

is easier to resolve non-shared resource contention in the

running environment. In this case, Relax only informs the

administrator of the conflict information, after which the

administrator can adjust the resources to resolve the conflict.

For shared resource contention, Relax adjusts the resource-

related configuration options dynamically. The main idea

behind this resolution is that Relax adjusts the triggered con-

figuration options that have a greater impact on resources.

1) Configurations Filter: Given that we resolve resource

contention by adjusting the resource-related configuration

options, we should therefore know which configuration

options are related to resources. Specifically, we first apply

Figure 5. Configurations Filter

program slicing technique to get the library functions af-

fected by configuration options. Then we determine whether

the library functions affected by configuration options are

related to the usage of resources. Through the above method,

we can determine whether configuration option is related to

resources. For example, Figure 4 shows the analysis process

of the key buffer size configuration option in MySQL. We

find that the key buffer size variable finally affects the first

parameter of the shmget function. We know that the shmget
function is a library function used to request shared memory,

and the first parameter is used to control the size of the

requested memory; therefore, we can speculate that the

key buffer size configuration option is strongly related to

memory resources.

Figure 5 outlines the resource-related configuration op-

tions filtering process. The input is a software source code

and a configuration file, while the output is a set of resource-

related configuration options. The implementation is shown

in more detail below.

As existing C/C++ program slicing tools, such as srcSlice
[15], cannot slice the whole project, while our goal is to

slice the configuration variables in the whole project, we

implemented a tool for slicing C/C++ programs based on

the srcml [14].

We know that a precompiled macro is ordinarily used to

control different implementations of the same function under

different configuration settings. For instance, Figure 6 shows

that the hp hashnr function in MySQL is implemented dif-

ferently under different configuration settings, if the MySQL
source code is not preprocessed, some ambiguities may arise

1 # i f n d e f NEW_HASH_FUNCTION
2 /* Calc hashvalue for a key */
3 u long hp hashnr(r e g i s t e r HP KEYDEF *keydef , r e g i s t e r

c o n s t uchar *key)
4 {
5 · · · · · ·
6 }
7 # e l s e
8 u long hp hashnr(r e g i s t e r HP KEYDEF *keydef , r e g i s t e r

c o n s t uchar *key)
9 {

10 · · · · · ·
11 }
12 # e n d i f

Figure 6. Different implementations of the same function

243

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:21:18 UTC from IEEE Xplore. Restrictions apply.

Figure 7. Resource Contention Resolution

when we parse the hp hashnr function, which increases the

program analysis error rate. In order to improve the accuracy

of program analysis, we first precompile the program source

code to expand the macro and eliminate ambiguous function

declarations. We then use the srcml tool to convert the

precompiled code to XML format. We obtain the call graph

of the whole project by parsing the XML file, then use the

ConfMapper [18] to obtain the corresponding variables of

the configuration options in the source code. We next slice

the configuration options in order to obtain the affected

library functions based on both data flow analysis and

control flow analysis. Finally, we determine whether the

configuration option is related to resources by analyzing

whether the affected library function belongs to the resource-

related library function.

2) Configurations Ranking: To effectively resolve the

contention, Relax first adjusts the configuration options that

have a greater impact on resources. Although we can get

the resource-related configuration options via static analysis,

Relax cannot know which configurations have a greater

impact on resources. Accordingly, we implement an auto-

matic tool to analyze the relationship between the resource-

related configuration options and resources usage based on

the existing work SPL Conqueror [16][17]. Based on this

relationship, we can get the relative influence coefficient

of each configuration options. Detailed implementation is

shown below.

First, we get the resource-related configuration options

by program slicing technique, and the resource-related con-

figuration options are sampled to generate multiple sets

of configurations. Then each set of configuration options

is tested offline, we can get software’s resource usage

under the different configuration settings. Finally, based on

these test datas, we use stepwise linear regression to learn

Table III
TOP 10 MEMORY-RELATED CONFIGURATIONS OF MYSQL

Memory-related configurations Ranks

sort buffer size 1
join buffer size 2
key buffer size 3
read buffer size 4

bulk insert buffer size 5

the relationship between the resource-related configuration

options and the resources usage of software.

As shown in Table III, we get the top 5 memory-related

configuration options of MySQL. From this table, we can

see that sort buffer size has the greatest impact on mem-

ory resource. Accordingly, Relax first adjust the value of

sort buffer size when memory resources are constrained.

3) Triggered Configurations Detection: Because not all

resource-related configuration options are triggered when the

software is running, we use program instrumentation for

the resource-related configuration options in order to obtain

the triggered configuration options. We insert the marker

code into the path affected by resource-related configuration

options. This marker code is used to write a different string

to the specified file. Relax then identifies the triggered

configuration options by establishing whether the string

exists in the specified file. In this way, Relax can accurately

determine whether a configuration option is triggered when

the software is running. Therefore, when resource contention

occurs, Relax only needs to adjust the triggered configuration

options related to the competitive resources.

4) Configuration tuning based on SIMD: When re-

source contention occurs, Relax first adjusts the configura-

tion options with a more significant impact on resources.

Inspired by the congestion control algorithm in computer

networks, Relax uses the SIMD method to dynamically ad-

just the resource-related configuration options. This helps to

ensure that resource contention can be resolved effectively.

The control rules of SIMD as following:

Increase : ωt+R ← ωt + α
√
ωt − ω0, α > 0. (1)

Decrease : ωt+δ ← ωt − βωt, 0 < β < 1.(2)

where ωt is the value of configuration option at time t, R
is the round-trip time, and δ is the time to detect resource

contention.

Figure 7 outlines the specific process of shared resources

contention resolution. Relax first analyzes the configuration

options of the competitive software using program instru-

mentation and dynamic testing methods, thus identifying the

effective configuration options that are triggered and have a

greater impact on resources. Relax then uses SIMD method

to get the configuration tuning strategy.

244

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:21:18 UTC from IEEE Xplore. Restrictions apply.

Table IV
OVERVIEW OF SAMPLE PROGRAMS USED IN THE EVALUATION

Project Domain Lang. LOC Configuration options

MySQL Database C/C++ 2239K 461
Redis Database C 112K 94
Httpd Web Server C 230K 550+

Table V
BENCHMARKS

Software Benchmark Tools Release

MySQL SysBench 0.4.12
Redis redis-benchmark 4.0.1
Httpd ab 2.3

V. EVALUATION

In this section, we conduct the experiments to evaluate

the effectiveness and overhead of Relax. We construct a

resource contention scenario centered around building a

personal website. To do so, we select three existing real-

world programs (see Table IV). Here we assume that Httpd
has the highest priority, followed by Redis and then MySQL.

When resource contention occurs, we prefer to adjust the

resource usage of software that has the lower priority.

A. Experimental Setting

In order to simulate the actual resource contention sce-

nario, we use several benchmarks to conduct all evaluations;

these are listed in Table V.

Machines Our experiments are performed on a machine

with two Intel i5-4590 3.3Ghz processors, 2GB physical

memory, 2GB virtual memory, and one 40GB disk. The

running operating system is Ubuntu 16.04(X86 64) with

Linux kernel 3.16.40.

B. Can Relax correctly detect and resolve resource con-
tention?

We next evaluate whether Relax can correctly detect and

resolve resource contention under the different workload

and configuration settings. We first select high, medium and

low workloads to test Relax under the same configuration

Figure 8. The selection of workload

settings. Then, we select three different configurations to

test Relax under the same workload settings. The design is

explained in more detail below.

1) Different workload settings: We construct a mem-

ory contention scenario under the high, medium and low

workload settings. As shown in Figure 8, we determine the

maximum usage of the system memory with the change of

workload of the software (MySQL, Redis and Httpd). We find

that the total workload of these software programs is equal

to 1100, resulting in an operating system crash. The system

also experiences a significant delay when the workload ex-

ceeds 500. Accordingly, we choose three different workloads

between 500 and 1000. More specifically, for MySQL,we

simulate 500, 800 and 1000 users respectively to add, delete,

update and select different tables concurrently (these tables

contain 100000 pieces of data); for Redis, we use the redis-

benchmark benchmark, which has 100000 requests, and set

the number of parallel connections at 500, 800 and 1000

respectively; for Httpd, we use ab benchmark1), which has

1000 requests for each client, and simulate 500, 800 and

1000 users respectively to concurrently request a Web page.

As shown in Figure 9, we get the mean execution time

for each program under different workload settings. Figure

(a), (b) and (c) show the trend of total memory usage when

the three software programs (MySQL, Redis and Httpd) are

running under static configurations. Figures (d), (e) and (f)

show the trend of total memory usage when the software

is running under the Relax-adjusted resource-related con-

figuration options. The blue refers to the physical memory

usage trend, while the orange refers to the virtual memory

usage trend. From these figures, we can see an obvious

performance improvement after the resource-related config-

uration options are adjusted by Relax. Table VI presents the

mean execution time of the three software programs before

and after contention resolution under the different workload

settings. We find that the total response time of the three

programs is shortened by 16.3%, 15.8% and 22.8% under

the low, medium and high workload settings respectively.

2) Different configuration settings: We construct a mem-

ory contention scenario under three different configuration

settings. First, we keep the workload settings for these

programs static while varying the configuration settings. For

MySQL, we simulate 500 users to add, delete, update and

select the different tables concurrently, where these tables

have 100 thousand pieces of data; for Redis, we use the

redis-benchmark benchmark, which has 100000 requests,

and set the number of parallel connections at 500; for Httpd,

we use ab benchmark, which has 1000 requests for each

client, and simulate 500 users concurrently requesting a

Web page. Second, we set three configurations for MySQL:

key buffer size, sort buffer size, join buffer size are set to

32M, 128M and 512M.

As shown in Figure 10, we get the mean execution time

for the software under the different configuration settings.

245

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:21:18 UTC from IEEE Xplore. Restrictions apply.

(a) Static configuration(Low workload) (b) Static configuration(Medium workload) (c) Static configuration(High workload)

(d) Relax(Low workload) (e) Relax(Medium workload) (f) Relax(High workload)

Figure 9. Relax vs. static configuration under the different workload settings

Table VI
THE MEAN EXECUTION TIME OF SOFTWARE UNDER THE DIFFERENT WORKLOAD SETTINGS

Software
Mean execution time(s)

Low workload Medium workload High workload
Static optional Relax Static optional Relax Static optional Relax

MySQL 84.112 80.385 96.172 84.238 135.329 101.606
Redis 106.363 81.996 115.965 91.126 141.814 103.133
Httpd 109.761 88.934 124.827 108.242 178.482 147.191
Total 300.236 251.288 336.964 283.606 455.625 351.93

Figures (a), (b) and (c) show the trend of total memory usage

with the software (MySQL, Redis running under the static

configurations. Figures (d), (e) and (f) show the trend of

total memory usage with the software running under Relax-

adjusted resource-related configuration options. From these

figures, we can see an obvious performance improvement

after the resource-related configuration options are adjusted

by Relax. Table VII shows the mean execution time of the

three software programs before and after the contention

resolution under the different configuration settings. We

find that the total response time for the three software

programs is shortened by 16.3% ∼ 19.9% under the different

configuration settings.

C. The convergence analysis of Relax

We initialize the value of β to 1/2 in Equation (2). We

use Conf to denote the configuration options that need to

be adjusted. We assume that the default value of Conf is

b, the minimum value of Conf is a (a ≤ b), and Conf
is positively related to the resource usage. When resource

contention occurs, we need to adjust the value of Conf less

than or equal to a specific value (we use c to denote this

value; i.e. a ≤ c ≤ b) to resolve current contention. Since

we initialize the value of β to 1/2, the range of iteration

adjustment is 1 to log2(b−a). When c is greater than or equal

to b+a
2 , we only need to adjust the configuration options

once.

D. Overhead

In order to determine whether a configuration option is

triggered when the software is running, we use program

instrumentation for the resource-related configuration op-

tions; the instrumentation affects the software performance.

We use the same benchmark as outlined in Section II to

calculate the overhead caused by program instrumentation.

Figure 11 illustrates the software performance before and

after instrumentation under the different workload settings.

The red refers to the source code after instrumentation, while

the blue refers to the original source code. From this figure,

we can see that the instrumentation overhead is low.

To illustrate the overhead of Relax, we monitor the

resources usage of Relax in the running environment. We

found that Relax’s resource usage is 2%(CPU), 3%(MEM),

0%(IO) and 0%(NETWORK), we can ignore the overhead

of Relax.

VI. DISCUSSION

We have several assumptions in design and implement

Relax. Firstly, we assume that the contention for a type of

system resource only affects one type of factor that leads

246

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:21:18 UTC from IEEE Xplore. Restrictions apply.

(a) Static configuration(Configuration: 32M) (b) Static configuration(Configuration: 128M) (c) Static configuration(Configuration: 512M)

(d) Relax(Configuration: 32M) (e) Relax(Configuration: 128M) (f) Relax(Configuration: 512M)

Figure 10. Relax vs. static configuration under the different configuration settings

Table VII
THE MEAN EXECUTION TIME OF SOFTWARE UNDER THE DIFFERENT CONFIGURATION SETTINGS

Software
Mean execution time(s)

Configuration: 32M Configuration: 128M Configuration: 512M
Static optional Relax Static optional Relax Static optional Relax

MySQL 84.112 80.385 101.53 84.49 83.88 85.23
Redis 106.363 81.996 117.85 89.92 133.584 103.465
Httpd 109.761 88.934 119.09 96.78 139.39 106.98
Total 300.236 251.288 338.47 271.19 356.854 295.675

Figure 11. The overhead of instrumentation

to software delay. However, due to the complex relation-

ships among the different types of system resources, the

contention for a particular type of system resource may

affect many types of factors that lead to software delay.

Furthermore, we assume that the software program that

causes resource contention supports online configuration

adjustment. If the application can only apply configurations

by restarting the server, Relax will be unable to resolve

the contention effectively. Moreover, when the minimum

resource usage sum of all software programs is greater than

the total amount of resources that the system can provide,

Relax will also be unable to resolve the contention.

VII. RELATED WORK

Misconfiguration Many empirical studies have looked at

misconfigurations [6-8], but did not focus on the per-

formance problems caused by resource contention. Much

previous work has proposed using static program analysis

[19][20] or statistical analysis [21][22] to identify and fix

wrong or abnormal configurations. These techniques mainly

target functionality-related misconfigurations, and do not

work for the performance problems caused by resource

contention, as the proper setting of performance problems

caused by resource contention highly depends on the dy-

namic workload and environment, and can hardly be statis-

tically decided based on common/default settings.

Performance-Bug Detection There are many dynamic and

static analysis tools to detect different types of performance

bugs, such as run-time bloat [23][24], low-utility data struc-

tures [25], cacheable data [26], inefficient loops [2], loops

with unnecessary iterations [3], input-dependent loops [27].

247

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:21:18 UTC from IEEE Xplore. Restrictions apply.

These techniques mainly target code bugs, and do not work

for the performance problems caused by resource contention,

as the performance problems caused by resource contention

is not a bug.

VIII. CONCLUSION

The resource contention among multiple software pro-

grams may cause performance problems in the complex run-

ning environment. Unlike the performance problems caused

by software bugs, resource contention is not a bug. In this

paper, we make an exploration on studying the performance

problems caused by resource contention from a configuration

perspective. And we design and implement a tool, Relax,

to automatically detect and resolve resource contention.

Our experiments show that Relax can effectively detect and

resolve resource contention, and shorten the total software

response time by 15.8% ∼ 22.8%.

ACKNOWLEDGMENT

The work described in this paper was substantially sup-

ported by National Key R&D Program of China (Project

No.2017YFB1001802); National Natural Science Foun-

dation of China (Project No.61872373, 61872375 and

U1711261).

REFERENCES

[1] J. Burnim, S. Juvekar, and K. Sen, Wise: Automated test
generation for worst-case complexity, In ICSE, 2009.

[2] A. Nistor, L. Song, D. Marinov, and S. Lu, Toddler: Detecting
performance problems via similar memory-access patterns, In
ICSE, 2013.

[3] O. Olivo, I. Dillig, and C. Lin, Static detection of asymptotic
performance bugs in collection traversals, In PLDI, 2015.

[4] L. Zheng, X. Liao, B. He, S. Wu, and H. Jin, On performance
debugging of unnecessary lock contentions on multicore pro-
cessors: A replay-based approach, In CGO, 2015.

[5] S. Lu, S. Lu, Performance Diagnosis for Inefficient Loops, In
ICSE, 2017.

[6] Z. Yin, X. Ma, J. Zheng, Y. Zhou, LN. Bairavasundaram, An
empirical study on configuration errors in commercial and open
source systems, In SOSP, 2011.

[7] J. Yang, C. Yan, P. Subramaniam, A. Cheung and S. Lu, How
not to structure your database-backed web applications: a study
of performance bugs in the wild, In ICSE, 2018.

[8] https://stackoverflow.com/questions/12384464/ec2-mysql-
crashing-continuously/41192896#41192896.

[9] S. Wang, C. Li, H. Hoffmann, and S. Lu, Understanding
and AutoAdjusting Performance-Sensitive Configurations, In
ASPLOS, 2018.

[10] S. Jin, L. Guo, I. Matta, and A. Bestavros, TCP-friendly
SIMD congestion control and its convergence behavior, In
ICNP, 2001.

[11] Httpd, https://httpd.apache.org, 2018.

[12] MySQL, https://www.mysql.com, 2018.

[13] Redis, https://redis.io, 2018.

[14] srcml, https://www.srcml.org/, 2018.

[15] CD. Newman, T. Sage, ML. Collard, HW. Alomari, and JI.
Maletic, srcSlice: A tool for efficient static forward slicing, In
ICSE-C, 2016.

[16] N. Siegmund, S. Kolesnikov, C. Kstner, S. Apel,D. Batory,
M. Rosenmller, and G. Saake, Predicting performance via
automated feature-interaction detection, In ICSE, 2012.

[17] N. Siegmund, A. Grebhahn, S. Apel, and C. Kstner,
Performance-influence models for highly configurable systems,
In FSE, 2015.

[18] S. Zhou, X. Liu, S. Li, W. Dong, X. Liao, and Y. Xiong,
Confmapper: automated variable finding for configuration
items in source code, In QRS, 2016.

[19] A. Rabkin and R. Katz, Precomputing possible configuration
error diagnoses, In ASE, 2011.

[20] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, Early detection
of configuration errors to reduce failure damage, In OSDI,
2017.

[21] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and
A. Kumar, Context-based online configuration-error detection,
In USENIX ATC, 2011.

[22] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala,
T. Xu, and Y. Zhou, Encore: Exploiting system environment
and correlation information for misconfiguration detection, In
ASPLOS, 2014.

[23] G. Xu and A. Rountev, Detecting inefficiently-used containers
to avoid bloat, In PLDI, 2010.

[24] G. Xu, M. Arnold, N. Mitchell, A. Rountev, and G. Sevitsky,
Go with the flow: profiling copies to find runtime bloat, In
PLDI, 2009.

[25] G. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg,
and G. Sevitsky, Finding low-utility data structures, In PLDI,
2010.

[26] K Nguyen and G Xu. Cachetor: Detecting cacheable data to
remove bloat. In FSE, 2013.

[27] X. Xiao, S. Han, T. Xie, and D. Zhang, Context-sensitive delta
inference for identifying workload-dependent performance bot-
tlenecks, In ISSTA, 2013.

[28] X. Han and T. Yu, An empirical study on performance bugs
for highly configurable software systems, In ESEM, 2016.

[29] A Rabkin and RH Katz. How hadoop clusters break. IEEE
software, 2013.

[30] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu, Interrupt-
ible tasks: Treating memory pressure as interrupts for highly
scalable data-parallel programs, In SOSP, 2015.

248

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:21:18 UTC from IEEE Xplore. Restrictions apply.

