
CP-Detector: Using Configuration-related Performance
Properties to Expose Performance Bugs

Haochen He
National University of Defense

Technology, China
hehaochen13@nudt.edu.cn

Zhouyang Jia∗

National University of Defense
Technology, China

jiazhouyang@nudt.edu.cn

Shanshan Li
National University of Defense

Technology, China
shanshanli@nudt.edu.cn

Erci Xu
National University of Defense

Technology, China
xuerci@nudt.edu.cn

Tingting Yu
University of Kentucky
Lexington, KY, USA
tyu@cs.uky.edu

Yue Yu
National University of Defense

Technology, China
yuyue@nudt.edu.cn

Ji Wang
National University of Defense

Technology, China
wj@nudt.edu.cn

Xiangke Liao
National University of Defense

Technology, China
xkliao@nudt.edu.cn

ABSTRACT

Performance bugs are often hard to detect due to their non fail-

stop symptoms. Existing debugging techniques can only detect

performance bugs with known patterns (e.g., inefficient loops). The

key reason behind this incapability is the lack of a general test oracle.

Here, we argue that the performance (e.g., throughput, latency,

execution time) expectation of configuration can serve as a strong

oracle candidate for performance bug detection. First, prior work

shows that most performance bugs are related to configurations.

Second, the configuration change reflects common expectation on

performance changes. If the actual performance is contrary to the

expectation, the related code snippet is likely to be problematic.

In this paper, we first conducted a comprehensive study on

173 real-world configuration-related performance bugs (CPBugs)

from 12 representative software systems. We then derived seven

configuration-related performance properties, which can serve as

the test oracle in performance testing. Guided by the study, we

designed and evaluated an automated performance testing frame-

work, CP-Detector, for detecting real-world configuration-related

performance bugs. CP-Detector was evaluated on 12 open-source

projects. The results showed that it detected 43 out of 61 existing

bugs and reported 13 new bugs.

CCS CONCEPTS

· Software and its engineering → Software performance.

∗Co-first author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21ś25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416531

KEYWORDS

Performance bug detection, Software configuration, Performance

property

ACM Reference Format:

Haochen He, Zhouyang Jia, Shanshan Li, Erci Xu, Tingting Yu, Yue Yu, Ji

Wang, and Xiangke Liao. 2020. CP-Detector: Using Configuration-related

Performance Properties to Expose Performance Bugs. In 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE ’20), Sep-

tember 21ś25, 2020, Virtual Event, Australia. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3324884.3416531

1 INTRODUCTION

Modern software systems are increasingly configurable and thus

becoming more adaptive to various scenarios. However, as config-

uration can (in)directly affect performance (e.g., altering resource

allocation), performance bugs’ occurrences are also surging. A re-

cent study suggests more than half (59%) of performance bugs

are due to incorrect handling of configurations [33]. In this pa-

per, we term these performance bugs as Configuration-handling

Performance Bugs (CPBug). Note that a CPBug is different from

a misconfiguration where the former focuses on incorrect config-

uration handling in source code and the latter revolves around

user-induced configuration errors.

Figure 1 illustrates a real-world CPBug [17] related to the config-

uration option sort_buffer_size in MySQL, as well as the failure

symptom, root cause, and fixmethod. This option is used to alter the

buffer size for sorted results (triggered by GROUP BY z DESC). Ide-

ally, a larger buffer should improve the sorting performance, since

MySQL can cache more results. However, for the SQL query in the

upper-right corner of Figure 1, users actually suffer from up to 4.2×

slowdown instead of benefiting from larger buffers (i.e., increase

from 2M to 8M). The root cause is redundant memory allocation.

Specifically, the buffer is allocated before each sub-query (Line 1),

and freed immediately at the end of the sub-query (Line 5). The fix

method is to allocate the buffer at the first sub-query (Line 2-3) and

reuse it at all subsequent sub-queries (Line 6-7). This bug serves as

623

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

MySQL Bug #21727

 Reduced patch in sql/filesort.cc

// This code snippet is executed in each sub-

SELECT and the first ‘if’ statement only

get satisfied in the first sub-SELECT
1 - sort_keys = my_malloc

(sort_buffer_size, …);

2 + if(!table_sort.sort_keys)

3 + sort_keys = my_malloc

(sort_buffer_size, …);

4 ...

5 - x_free(sort_keys);

6 + if(!subselect)

7 + x_free(sort_keys);

Description:

“SELECT a, b, (SELECT

x FROM t2 WHERE y=b

ORDER BY z DESC LIMIT

1) c FROM t1”

will get 4.2x slower as

increasing sort_buffer_size

from 2M to 8M.

How to fix:

reuse the sort buffer for each

sub-SELECT.

Figure 1: Redundant memory allocation in MySQL. This bug

happens because MySQL allocates memory in each sub-SELECT.

a representative example of performance bugs caused by incorrect

configuration handling. This is different from a user misconfigura-

tion, where users may suffer from performance degradations when

setting up a buffer size larger than the memory limitation.

There has been much research on detecting performance bugs.

Some research has proposed profiling-based techniques, which aims

to detect performance bottlenecks that can cause significant slow-

downs [28, 55, 67]. However, such slowdowns can be self-induced

due to necessarily intensive computation. The lack of test oracles

makes it difficult to decide if a slowdown indicates a performance

bug [46]. Alternatively, some research has proposed to use ineffi-

cient code patterns [46, 59, 61, 65, 66] as test oracles. For example,

Toddler [46] identifies loops with inefficiency memory-access pat-

terns which imply potential performance bugs. These works are

hard to detect CPBugs, which may or may not contain the patterns.

There has also been some research focuses on the relationship

between configuration and performance, including configuration-

performance modeling [35, 56], and configuration-based perfor-

mance tuning [43, 47]. The former aims to predict performance

for given configurations, while the latter studies the tendency of

performance changes when tuning configurations, and finds the

optimal configurations with regard to the performance. The perfor-

mance tendency can be obtained by sampling configuration values

and fitting corresponding performances. This is different from a

performance bug, which may be triggered by a certain value.

In this paper, we propose CP-Detector1, an automated testing

framework to detect CPBugs. The key insight of CP-Detector is

that when tuning a configuration option, a mismatch between

the expected and actual performance changes usually indicates a

CPBug. For instance, users would expect performance improvement

when allocating a larger buffer. If, however, the actual performance

drops, the mismatch between the expected and actual performance

changes may indicate a CPBug. This kind of performance properties

can be used as test oracles to expose CPBugs. For example, the

property in Figure 1 can be described as "increasing resource-related

configuration options should improve the performance".

To understand CPBugs and guide the design of CP-Detector,

we first conducted an empirical study on 173 real-world CPBugs

from 12 software systems. We found that 150 (86.7%) CPBugs can

1The annotated bug data set and tool can be found in our publicly available repository:
https://github.com/TimHe95/CP-Detector

be exposed by detecting mismatches between the expected and

actual performance changes when tuning configuration options.

We further studied the configuration options involved in the 150

CPBugs, and summarized seven performance properties from these

options. Each property can be formalized as a three-tuple: <Type,

Direction, Expectation>, indicating when tuning configuration

options of a given Type (e.g., resource) according to the Direction

(e.g., increasing), the software should have the Expectation (e.g.,

improving) performance change.

CP-Detector contains two major steps to automate the process

of exposing CPBugs. Given a configuration option: 1) CP-Detector

suggests the performance properties that the option should hold

by learning configuration documentation. The challenge is to un-

derstand the natural languages and build relationships between

the languages and the properties. To address this, CP-Detector

applies natural language processing (NLP) and association rule

mining (ARM) techniques to automatically derive the properties

from the documentation. 2) CP-Detector samples value pairs of

the option and test if one value pair can expose a CPBug. This is

challenging when the option is numeric, since the value range may

be extremely large; thus, it is hard to test all pairs. In this regard,

we conduct an empirical study on numeric options to investigate

the value ranges that can trigger CPBugs, and propose a heuristic

sampling strategy to reduce the sampling space.

To evaluate the effectiveness of CP-Detector in detecting CP-

Bugs, we reproduced 38 known CPBugs from the 173 CPBugs in

our study, and to avoid over-fitting, we also reproduced 23 known

CPBugs not included in our study (61 CPBugs in total so-far all we

can reproduce), and evaluated CP-Detector on all 61 bugs. The

results show that CP-Detector can successfully expose 43 bugs

using the suggested performance properties. The rest cases escape

mainly because the information provided by configuration manuals

is limited, so CP-Detector can not make the right suggestion on

the performance properties. On the other hand, Toddler [46], one

of the most effective bug detection tools among existing works,

detected 6 out of the 61 CPBugs. In the meantime, CP-Detector

detected 13 unknown CPBugs on the same set of software projects.

We have reported the 13 bugs to developers, and nine of them have

already been confirmed or fixed at the time of writing.

In summary, this paper makes the following contributions:

• We conducted an empirical study on 173 real-world CPBugs

from 12 software systems. The findings are used to guide the

design of test inputs and test oracles.

• We designed and implemented CP-Detector, an automated

framework to detect CPBugs. CP-Detector can automati-

cally suggest performance properties for configuration op-

tions and generate configuration values to expose CPBugs.

• We evaluated CP-Detector on 12 software systems. The

results show that CP-Detector detected 43 out of 61 known

CPBugs and 13 unknown bugs. Ten of the unknown bugs

have been confirmed or fixed by developers.

2 UNDERSTANDING CPBUGS

In this section, we take an in-depth look into the CPBugs through

an empirical study. We manually collected real-world CPBugs from

bug tracking systems, mailing lists, and fix commits of 12 software

624

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

Table 1: Software systems and CPBugs used in the studies.

Software # KW† # CPBugs Software # KW # CPBugs

MySQL 398 35 Httpd 291 16

MariaDB 451 25 H2 17 1

MongoDB 425 26 Squid 4 1

PostgreSQL 14 5 Tomcat 25 3

RocksDB 16 3 GCC 618 39

Derby 18 3 Clang 192 16

† KW: The CPBug candidates identified using performance-related keywords.

systems. In these CPBugs, we found a majority of configuration

options have expected performance changes when being tuned. We

also studied the performance properties of the configuration options

involved in these CPBugs, and how the option values triggered the

CPBugs. Our findings are used to guide the design of CP-Detector.

Studied Subjects. Table 1 shows the 12 software systems used

in our study. These projects cover a variety of domains, including

database, web server, and compiler. These projects are performance-

critical, highly-configurable (e.g., Httpd has more than 1,100 con-

figuration options), and widely deployed in the field. Therefore,

CPBugs from these projects are likely to be rich in numbers and

severe in consequences [36]. Also, these projects are open-source

and well maintained by the community. This allows us to not only

check the buggy code snippets but also gather related details based

on the developers’ discussions.

CPBug Collection. We collected CPBugs from three sources:

bug tracking systems (e.g., JIRA, Bugzilla), mailing lists, and fix

commits. We started by searching the above sources using heuristic

keywords (e.g., "slow", "long time", "performance"). This process

identified 2,469 candidates. We manually analyzed these candidates,

each of which is deemed as a CPBug if tuning a configuration option

would cause a performance bug. This process yielded 173 (columns

3 and 6 in Table 1) CPBugs.

2.1 Prevalence of Unexpected Performance
Changes in CPBugs

Each CPBug has one or multiple triggering configuration option(s).

For each option, we use expected performance changes of two

values of the configuration option as performance properties, and

expose CPBugs by detecting violations of the properties. To evaluate

to what extent the property-based approach can expose CPBugs,

we study the prevalence of unexpected performance changes when

tuning configuration options of the CPBugs.

To achieve this, wemanually studied all the 173 CPBugs collected

above, and found 150 (86.7%) of them have unexpected performance

changes when tuning configuration options. This result indicates

the performance expectation can serve as an effective oracle for

exposing CPBugs. The remaining 23 (13.3%) CPBugs cannot be ex-

posed mainly because the configuration options have inconsistent

expectations. For example, innodb_fill_factor defines the per-

centage of space that is filled during a sorted index build, with the

remaining space reserved for future index growth. In production,

it should be carefully tuned according to the workloads and hard-

ware. While in MySQL-74325 [19], when setting it to 100, indexed

UPDATEs get 3.8× slower because page split has to be performed

for every UPDATE due to no empty space for the changed index.

Developer fixes this by preserving 1/16 of the space for any of

its value. Increasing or decreasing innodb_fill_factor does not

necessarily have common expected performance change.

Finding 1: Amajority (87.6%) of the CPBugs have unexpected

performance changes when tuning configuration options.

This result indicates the performance expectation can serve

as an effective oracle for exposing CPBugs.

2.2 Performance Properties in CPBugs

We studied the 150 CPBugs to understand the performance prop-

erties of the bug-introducing configuration options. The findings

can be used to guide the design of CP-Detector for automatically

extracting the properties to detect CPBugs for any target software.

We manually studied the semantics of the configuration options

involved in the CPBugs and summarized five semantic types, i.e.,

optimization on-off, non-functional tradeoff, resource allocation, func-

tionality on-off, and non-influence option. Each configuration type

has two tuning directions, e.g., turning on and turning off, or in-

creasing and decreasing. Then, we analyzed the CPBugs and found

both non-functional tradeoff and functionality on-off options trig-

gered CPBugs in two directions, while other types only triggered

CPBugs in one direction. After that, we analyzed the expected and

actual performance changes from the bug descriptions for each

direction of each type.

The result is shown in Table 2, each performance property is

associated with its configuration type (Column 2), tuning direc-

tion (Column 3-4), and expected performance change (Column 5).

These three parts correspond to the factors of the three-tuple <Type,

Direction, Expectation> defined in ğ 1. Besides the properties,

Column 6 shows the actual performance change of CPBugs, and

Column 7 shows the numbers of CPBugs that break each prop-

erty. For example, the first configuration type is optimization on-off,

when tuning an optimization option from OFF to ON, it means

turning on an optimization strategy, and the performance is ex-

pected to be enhanced. If, however, the actual performance drops,

there is a potential CPBug. In our dataset, 18 CPBugs violate this

property. Below, we provide details of the properties in each type

of configuration options.

Optimization on-off. In this category, a configuration option

is used to control an optimization strategy. Specifically, when the

optimization is turned on, the application’s performance is expected

to be improved. Consider a CPBug example, MySQL-67432 [18]. For

SQL queries like "SELECT * FROM t WHERE c1<100 AND (c2<100

OR c3<100)", MySQL can speed up at least 10% by enabling the

optimization strategy index_merge=ON, which can merge the in-

dexes of different columns. However, when the queries end with

"ORDER BY c1 LIMIT 10", the performance degrades by 10× with

the optimization turned on. This is because the whole indexes of

the columns are merged (i.e., two index range scans, a merge, and

a łjoinž), whereas only the top 10 rows are required. Developers fix

this bug by changing the triggering conditions of the optimization

strategy controlled by index_merge.

625

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

Table 2: Performance Properties in CPBugs.

PP-ID

Performance Properties (PP) CPBugs

Configuration

Option Type

Tuning Direction Expected

Performance Change

Actual

Performance Change

CPBugs

(Pct.)Source Value Target Value

PP-1 Optimization on-off OFF ON Rise (↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑) Drop (↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓) 18 (12.0%)

PP-2 Non-functional tradeoff Anti-performance† Pro-performance‡ Rise (↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑) Drop (↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓) 35 (23.3%)

PP-3 Non-functional tradeoff Pro-performance Anti-performance Drop (↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓) More-than-expected drop (↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓) 31 (20.7%)

PP-4 Resource allocation Small Large Rise (↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑) Drop (↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓) 24 (16.0%)

PP-5 Functionality on-off ON OFF Rise (↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑) Drop (↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓) 6 (4%)

PP-6 Functionality on-off OFF ON Drop (↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓) More-than-expected drop (↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓) 24 (16.0%)

PP-7 Non-influence option Random Random Keep (śśśśśśśśśśśśśśśśś) Drop (↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓) 12 (8.0%)

‡ A value that implies better performance at the cost of lower security, consistency, integrity, and etc. † Opposite to Pro-performance.

Non-functional tradeoff. In this category, a configuration op-

tion is used to achieve the balance between performance and other

non-functional requirements of the program. We found two prop-

erties regarding this configuration type. In PP-2, tuning the config-

uration option value to relax a requirement is expected to achieve a

performance gain. For example, a database can achieve higher per-

formance by relaxing the ACID properties (a set of properties to en-

sure correctness and consistency). In the CPBug MySQL-77094 [20],

innodb_flush_log_at_trx_commit controls the ACID property.

When setting to 2 (relaxed ACID), however, the performance of the

OLTP update benchmark is 10% lower than the performance when

setting to 1 (full ACID). The root cause is that two logging func-

tions (i.e., commit and log_write) both use the log_sys->mutex

lock to write to the same buffer. This, in return, causes extra lock

contentions that hurt the performance. The fix is simply to use

two independent buffers and remove this lock. In this case, switch-

ing an anti-perf value (i.e., 1) to a pro-perf value (i.e., 2) leads to

performance drops, causing a CPBug.

As for PP-3, tuning the configuration option value to enable a

requirement is expected to have a performance loss. If, however,

the actual loss is more-than-expected, it still indicates a CPBug. For

example, GCC uses O0, O1, O2, O3 options to control the balance

between compilation time and binary execution efficiency. A higher

O level indicates more compilation time. But in GCC-17520 [11],

switching from O0 to O2 increases the compilation time from less

than 1 second to 1 minute. The cost is more-than-expected. (we

describe the thresholds to measure łmore-than-expectedž in ğ 3.2.3)

This is caused by a sub-optimal algorithm induced by a process

called "branch prediction" in the O2 level. This bug is fixed by adding

an early drop condition in the algorithm. It makes the compilation

time reduce to less than 1 second with O2.

Resource allocation. In this category, a configuration option is

used to control resource usages (e.g., RAM, CPU cores). Allocating

more resources generally results in better performance. Take the

bug in Figure 1 as an example, increasing the memory allocation

to the sort buffer is expected to speed up the "SELECT ORDER BY"

operations. However, the performance of MySQL degrades by 4×,

causing user’s complaints2.

2"This is pretty much the opposite of any other case I have seen. In fact, to make the
query perform faster, you need to set it to the smallest value" ś The user of MySQL who
reported this bug.

Functionality on-off. In this category, a configuration option

is used to control a non-performance functionality but indirectly in-

fluences the system’s performance. We have two properties in this

category. PP-5 suggests that when an option disables a functionality,

the system’s performance usually increases. For example, in Mari-

aDB, turning on log_slave_updates logs the updates of a slave

received from a master during replication. However, as described in

MariaDB-5802 [13], disabling this functionality increases the time

for the slave to catch up during replication by 50%. This happens be-

cause the handling code of log_slave_updates=on gets optimized

as the software evolves, while that of log_slave_updates=off es-

capes. Developers fixed this bug by applying the same optimization

to both situations.

While PP-6 suggests that when a configuration option enables

a functionality, the induced performance overhead is allowed but

should be within a limit. For example, in web servers, VirtualHost

is used to enable multiple virtual hosts in the server. It is reasonable

that setting more virtual hosts causes longer start up time. However,

as described in Httpd-50002 [9], the single server startup time grows

super-linearly as the number of virtual hosts increases, and it would

take 50× more time with 10,000 virtual hosts than with the default

setting. The root cause of this bug is Httpd uses a sub-optimal

way to parse the VirtualHost directives in the configuration file.

Developers fixed the bug by optimizing the data structure, which

decreases the startup time from several minutes to merely 6 seconds.

Non-influence option. In this category, a configuration option

is not supposed to influence the system’s performance, i.e., the

performance is expected to remain the same after tuning the option.

For example, users can choose proxy_http (default) or ajp (set

mod_jk) as the connector between Httpd and Tomcat. The two

connectors are expected to have similar file transfer speeds. But in

Httpd-33605 [7], in the AIX operating system, the file transfer speed

degrades from ∼8MB/s to only 2KB/s when switching from default

proxy_http connector to ajp connector under the same network

condition. This is because the implementation of AIX socket buffer

is conflicted with the encapsulation of the socket implemented by

the ajp13 connector. Hence, simply removing the encapsulation of

the socket solved the bug.

2.3 Triggering Conditions of CPBugs

To test the software against a property of a configuration option,

we need to sample at least two values (referred to as Vsrc and Vtar)

626

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

MySQL-21727 32K 48M 4G MySQL-44723 8K 2G

MySQL-80784 5M 16G 264-1 MySQL-78262 64K 64M

MySQL-62478 1M 16G 256G MySQL-47529* 0 4M 16G

MySQL-51325 5M 16G MySQL-38551* 0 2M 16G

Apache-54852 1 2 64 Apache-58037 0 1 103

Apache-48215 0 1 103 Apache-50002 0 103 104

MariaDB-13328 5M 16G MariaDB-16283* 5M 128M 16G

MariaDB-8696 64K 2M 64M MariaDB-1212* -1 1 102.5 106

MariaDB-12556 0 1 103 MariaDB-145 0 3M 16G

MariaDB-15016 1 64 MongoDB-17907* 256M 8G 16G

MongoDB-20306 256M 12G 16G MongoDB-24139* 256M 1G 16G

RocksDB-122 256M 2G 16G PostgreSQL-13750 1 2 64

PostgreSQL-15585 1 2 64 Squid-3189*
4K 6G 16G

4K 1G 16G

* This bug requires specific workload.

Figure 2: Value ranges that can trigger CPBugs (dark gray).

from that configuration option, as shown in the Column 3-4 of

Table 2. For numerical options (e.g., resource allocation options), it is

difficult to enumerate all value pairs, since the value ranges can be

extremely large. In this regard, we conducted a study to investigate

the value ranges of numeric options that can trigger CPBugs.

In our study, 24.7% (37/150) of the CPBugs are exposed by nu-

merical configuration options. We successfully obtained the value

ranges of 26 CPBugs (including 27 configuration options) out of

the 37 CPBugs by exhaustively and manually reproducing the bugs

with different option values. Note that some upper bounds can be

264, which is too large and may cause the performance "falls the

cliff" [27] due to resource limitations. This behavior is difficult to

be distinguished from actual CPBugs. Therefore, we limited the

upper bounds to our experimental resource limitations (e.g., CPU

cores, RAM).

As illustrated in Figure 2, the dark gray areas show the value

ranges where CPBugs can be exposed. Among 26 (96.3%) out of the

27 numeric options, the ranges contain the minimum or maximum

value of the option. For example, the CPBug MySQL-21727 can

be triggered when the configuration option sort_buffer_size is

between 32K and 48M. This triggering range contains the minimum

value (i.e., 32K) of the overall acceptable range of the option (i.e.,

[32K, 4G]). The reason behind this is that numerical options usually

affect the program control flow much less than data flow. As a

result, changing numerical options tends to exaggerate or alleviate

an existing bug (if any) in the current program path, instead of

triggering a new bug in a different program path.

Finding 2: 96.3% of numeric configuration options can trigger

CPBugs when being set to the minimum or maximum values.

The sampling numbers can be significantly reduced by fixing

Vsrc to the min values or fixing Vtar to the max values.

3 CP-DETECTOR DESIGN

Figure 3 shows the overview of CP-Detector, which takes configu-

ration documentation and the Software Under Test (SUT) as inputs

and outputs CPBugs. CP-Detector contains two major steps.

First, CP-Detector infers performance properties for each con-

figuration option, i.e., <Type, Direction, Expectation>. Specifi-

cally, CP-Detector trains the configuration documentation into a

set of rules by natural language processing (NLP) and association

rule mining (ARM). These rules are used to distinguish different

CPBugs
Detection

Suggesting Configuration-related
Performance Properties

NLP
Preprocessing

Association
Rule Mining

Suggesting
Type

Type

T
u

n
in

g
D

irectio
n

s

Tuning
Directions Analysis

Target
Option

Test
Scenarios

SUT

Sampling

Result
Analysis

Run

Potential
CPBug

Conf.

Docum.

Property

Perf.

Figure 3: Overview of CP-Detector.

configuration types. Therefore, given a new configuration option,

CP-Detector can label it with a particular configuration type. Next,

CP-Detector infers the tuning direction for each labeled config-

uration option from the property specification (Table 2) and the

configuration documentation. As a result, given a value pair of

the new configuration option, CP-Detector can determine their

tuning direction. The expected performance change is obtained

according to the configuration type and the tuning direction.

Second, CP-Detector detects CPBugs by checking whether the

outputs of a pair of test executions break the performance prop-

erties of the participating configuration option. To achieve this,

CP-Detector samples a value pair of the option, serving as two

test inputs of the pair of test executions. Besides the participating

configuration option, CPBugs may also require other triggering con-

ditions, i.e., workloads, other configuration options, or the running

stage of the software (e.g., start, service, shutdown). CP-Detector

combines these conditions as test scenarios, and checks the outputs

of the execution pair under each scenario. Finally, CP-Detector

tests each execution pair under each scenario multiple times, and

determines if there is a CPBug based on hypothesis testing [4].

3.1 Suggesting Performance Properties

Since the configuration documentation of an application often de-

scribes the names, functions, and usages of configuration options,

it is widely-exist, easy to get [63], and a good source to derive

configuration-related performance properties. We next describe

how to identify the type and the tuning direction for each configu-

ration option.

3.1.1 Identifying Configuration Types. Given a configuration op-

tion, CP-Detector can automatically label it with a configuration

type. To achieve this, CP-Detector leverages natural language

processing and association rule mining to derive a set of classifi-

cation rules from existing configuration documents. Specifically,

we manually analyzed a total of 500 configuration options from

12 applications and assigned each configuration option to one of

the five types (Table 2). Next, a set of classification rules are au-

tomatically derived from the configuration documents associated

with the 500 options, following three steps: 1) pre-processing the

documents to normalize words with both syntactic and semantic

similarities; 2) mining association rules between word sequences

and configuration types, and 3) selecting optimal rules used for

labeling new configuration options.

627

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

Table 3: Domain specific synonym tags (partial†)

Tag Name Words in base forms

Resource memory, buffer, thread, worker, cleaner

Volumn size, amount, number

PerfPositive performance, speed, throughput

PerfNegative latency, CPU time, responses time

OpposePerf integrity, compression, security, reliability

Self this option, this directive, <Config Name>

† The complete tag and word lists can be found in our public repository.

Normalizing Words. In this step, CP-Detector identifies both

syntactic and semantic similarities of different words, and simi-

lar words will be regarded as the same one in the following min-

ing process. Each configuration of the dataset is in the form of

{S1,S2,...}→TYPE, where S1 and S2 stand for the first and the sec-

ond sentences in the configuration description, and TYPE refers to

the configuration type. CP-Detector first split the description into

sentences sharing the same type: S1→TYPE, S2→TYPE, etc. After

that, CP-Detector normalizes the words in each sentence from

both syntactic and semantic aspects. In specific, for each word,

CP-Detector infers the part-of-speech (POS) tag (e.g., noun, verb)

by using spaCy [3]. On the other hand, we manually studied the

descriptions of the 500 options, and defined domain-specific syn-

onym tags as shown in Table 3 (traditional methods of identifying

synonyms may be hard to deal with words in computer science). We

also referenced online resources about domain-specific terminology

during the classification [1, 5, 23]. The words will be normalized ac-

cording to the syntactic and semantic tags. For example, both "size

of buffer" and "number of threads" describe resource-related con-

figuration options. CP-Detector normalizes both phrases into the

same form: {(NN,Volume), (IN), (NN,Resource)}, where NN and

IN are part-of-speech tags, meaning "Noun, singular or mass" and

"Preposition or subordinating conjunction"3. Volume and Resource

are synonym tags in the first column of Table 3.

Mining Association Rules. The goal of this step is to find the

word sequences that appear exclusively and frequently in the de-

scriptions of a specific configuration type. We use the design princi-

ple of FeatureMine [40], a typical ARM algorithm for classification

on sequential data, and implement it by ourselves to achieve our

goal. The output of FeatureMine is a set of Class Association

Rules (CARs), which are in the form of {W1,W2, ...}→TYPE in our

case (Wi is the ith word in the sequence). Meanwhile, the algorithm

outputs the confidence for each CAR. The confidence is defined as

the conditional probability of occurrence of TYPE given {W1,W2, ...}

appears. One important parameter in the algorithm is min_support.

We assignmin_support = 3, as used in existing software engineering

studies [42, 68], which means {W1,W2, ...} should appear at least in

3 configurations of type TYPE. Another important parameter is the

length limitations of CARs. A short CAR (e.g., 1 or 2) will be less

informative; thus we restrict 3 ≤ len(CAR) ≤ Len, where Len is a

predefined threshold. We will evaluate how to choose Len in ğ 4.4.

3The complete part-of-speech tag list and corresponding meanings are available in
https://spacy.io/api/annotation#pos-universal

Selecting Optimal Rules. The above mining approach may

generate millions of CARs with many of them are repetitive. When

a CAR is a sub-sequence of another CAR and the two CARs have

the same support, CP-Detector rules out the short one, since these

two CARs always appear at the same time and the longer one is

more informative. This process still leaves tens of thousands of

CARs. In this regard, CP-Detector selects a subset of CARs as

optimal rules, which are measured by Fscore ś the harmonic mean

of 1) the averaged confidences of CARs in the subset, and 2) the

proportion of configuration types that can be classified by using the

subset of CARs. The CARs are ranked by confidence. Simply choos-

ing the top-n CARs may get a high averaged confidence, but not

necessarily have high coverage of configuration options. Instead,

CP-Detector randomly samples Num CARs for each configura-

tion type. The CARs are weighed by confidences during sampling,

therefore, CARs with higher confidences are more likely to be

sampled. CP-Detector then calculates the Fscore of the sampled

CARs. The above process will be exhaustively repeated until the

current highest Fscore is the theoretical highest Fscore with above

99.9% probability, according to the cumulative distribution function

(CDF) [2]. Then, CP-Detector selects the subset of CARs with

the highest Fscore . The exhaustive sampling process is a one-time

effort; users can directly use the optimal rules. Num is a predefined

threshold, and we will evaluate how to choose Num in ğ 4.4.

Assigning Configuration Types. With the optimal rules avail-

able, CP-Detector defines a voting classifier. Given a configuration

description, all rules that match the description will vote for their

corresponding TYPE, and the weights are confidences of the rules.

CP-Detector suggests the TYPEwith the highest weight as the con-

figuration type (when no rules match the description, CP-Detector

can not suggest any type). For example, in MySQL, the description

of the option innodb_sort_buffer_size is "Specifies the size of

sort buffers used to sort data during creation of an InnoDB index".

CP-Detector can match the word sub-sequence {size, of, buffers,

to, data} using the rule {(NN,Amount), (IN), (NN,Resource), (IN),

(NN)}→ Resource. The complete rules can be found in our public

repository.

3.1.2 Identifying Tuning Directions. The tuning direction for a con-

figuration option involves a pair of values (referred to as Vsrc and

Vtar). For most of the properties (i.e., PP-1, PP-4, PP-5, PP-6, and

PP-7), obtaining the value pairs is straightforward as long as the

configuration type is known. For example, once a configuration

option is labeled with the Optimization type, its tuning direction

clearly becomes (OFF→ON).

The exceptions are PP-2 and PP-3 of the Tradeoff type, because

one needs to know tuning Vsrc to Vtar is from Anti-performance

to Pro-performance (PP-2) or vice versa (PP-3). To address this, CP-

Detector infers the direction of value tuning by analyzing the

configuration documentation associated with each configuration

option labeled as Tradeoff. Specifically, given a configuration option,

CP-Detector ranks its values according to their influences on the

application’s performance. A value is ranked higher if it results

in performance improvement. Therefore, for an arbitrary pair of

configuration option values, the higher ranked one indicates Pro-

performance and the lower ranked one is Anti-performance.

628

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

To do this, similar to ğ 3.1, CP-Detector extracts performance-

related information from documentation. CP-Detector first locates

the description of each value by matching its first appearance sen-

tence. Based on the synonym tags in Table 3, CP-Detector then

quantifies the degrees to which a configuration option value influ-

ences the performance. Specifically, a value will be scored +1 if one

of the following sequences in the left side appears in its description:

Increase → PerfPositive Decrease → PerfPositive

Decrease → PerfNegative Increase → PerfNegative

Decrease → OpposePerf Increase → OpposePerf

These sequences explicitly indicate the value can increase the per-

formance. On the contrary, a value will be scored -1 if one of the

sequences in the right side appears. For example, in MongoDB, the

tradeoff option compressors has three values: snappy (balanced

computation and compression rates), zlib (higher compression

rates at the cost of more CPU consumption, compared to snappy.),

zstd (higher compression rates and CPU consumption when com-

pared to zlib). CP-Detector will rank the values as {snappy, zlib,

zstd}, since snappy has the best performance, while zstd has the

worse one.

3.2 Exposing CPBugs

CP-Detector generates value pairs <Vsrc ,Vtar> associated with the

tuning direction for the target configuration options (i.e., options

labeled by the five configuration types). The performance change

(after tuning the target configuration optionOt fromVsrc toVtar) is

used to determine if a CPBug is exposed. In addition toOt , a CPBug

may need specific values of other configurations or workloads to be

exposed. Therefore, CP-Detector also samples the values of other

configuration options and environment parameters (e.g., workloads,

stage of program execution) to test Ot under different scenarios.

We next describe the process of samplingOt to generate value pairs,

the process sampling test scenarios to testOt , and results checking.

3.2.1 Sampling Target Configurations Options. Once a configura-

tion option Ot is assigned with one or more specific properties,

CP-Detector will generate value pairs, <Vsrc , Vtar>, for the tuning

direction of each property. According to Table 2, the tuning direc-

tions of PP-1, PP-5, and PP-6 involve binary options, so the value

pair contains only ON and OFF. The tuning direction of PP-7 is also

straightforward so a pair of random values is generated.

The tuning direction of PP-2 and PP-3 exhaustively samples

the pairs of enumerated values in terms of their ranking positions,

where the higher ranked value is assigned to Anti-performance and

the lower ranked value is assigned to Pro-performance. Suppose Ot

has three enumerated values ranked as {V1, V2, V3}, the value pairs

for PP-2 are <V2, V1>, <V3, V1>, <V3, V2>. The value pairs for PP-3

are <V1, V2>, <V1, V3>, <V2, V3>.

One challenge is that for numeric options, it is hard to test all

combinations of two values because the value ranges may be ex-

tremely large. To address this, guided by Finding 2, the sampling

numbers can be significantly reduced by fixingVsrc to the minimum

configuration values or fixing Vtar to the maximum configuration

values. During the sampling process, a small step length between

Vsrc and Vtar may lead to limited performance change, and cannot

expose CPBugs. While a large step length may lead to one ofVsrc or

Vtar located outside the value range which can trigger CPBugs. In

this regard, CP-Detector first assigns Vsrc to the minimum value,

and increases Vtar exponentially (e.g, <1, 2>, <1, 4>, <1, 8> ...) until

the maximum value. Then, CP-Detector assigns Vtar to the max-

imum value, and decreases Vsrc exponentially until the minimum

value. This sampling strategy helps CP-Detector find the proper

Vsrc and Vtar within limited samples.

3.2.2 Sampling Test Scenarios. Given a target configuration option

Ot , CP-Detector now has two values (i.e., Vsrc and Vtar) of Ot ,

and the expected performance change when tuning Ot from Vsrc

to Vtar . Besides Ot , a CPBug may need other triggering conditions,

including workloads, other configurations, or the running stages of

the software (e.g., start, service, shutdown). In this regard, we define

test scenarios S=<Workload, Configuration, Stage>. CP-Detector

will generate different scenarios, then testVsrc andVtar ofOt under

each scenario.

Workloads: CP-Detector uses both performance benchmark

tools and official performance test suite as workloads. Benchmark

tools provide a variety of parameters with wide ranges. To generate

representativeworkload commands, CP-Detector applies the state-

of-art distance-based sampling method [39] which supports flexible

sample size and is more representative [39, 60] than traditional

n-wise sampling. After that, the official test suite is integrated with

those commands to get the complete set of workload commands. CP-

Detector also provides interfaces to accept customized workloads.

Configurations: In ğ 2, there are 150 CPBugs that show expec-

tation mismatches. We manually analyzed the CPBugs and found

94.0% of them can be triggered by testing the combinations of two

options. This result indicates that CP-Detector can expose 94.0%

CPBugs by sampling one other option besides Ot . To do this, CP-

Detector uses the one-hot sampling strategy, i.e., changing one

option at one time while other options remain default values. As

for the constraints between configurations, CP-Detector needs to

filter out combinations that violate configuration constraints. To

achieve this, CP-Detector leverages SPEX [64], which uses the

data-flow of program variables corresponding to the configuration

options to extract constraints. CP-Detector also allows users to

provide customized constraints.

Running stages: CPBugsmay only be triggered at specific running

stages of software. For example, the CPBug Httpd-50002 shown in

ğ 2.2 happened at the start stage. In this regard, we predefine run-

ning stages for each software domain, including {"start", "restart",

"service", "shutdown"} for servers and {"binary compilation", "bi-

nary execution"} for compilers. Then, CP-Detector tries to expose

CPBugs under each stage. For configuration options of the Resource

type, CP-Detector only uses the service stage in servers, since

other stages do not use the resources.

3.2.3 Results Checking. CP-Detector finally checks if the actual

performance change of Vsrc and Vtar indicates a CPBug according

to Column 6 in Table 2. For PP-1, PP-2, PP-4, PP-5, and PP-7, it

is easy to check if the actual performance drops, i.e., P(Vsrc) >

P(Vtar), where P(Vsrc) and P(Vtar) are performances ofVsrc andVtar ,

respectively. For PP-3 and PP-6, CP-Detector uses the following

rules to determine if the drops are more-than-expected:

P(Vsrc)/P(Vtar) > Tr1; P(Vsrc) − P(Vtar) > Tr2.

629

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

whereTr1 andTr2 are predefined thresholds. It means P(Vsrc) is bet-

ter than P(Vsrc) more than Tr1 times. while the absolute drop from

P(Vsrc) to P(Vtar) is large than Tr2. We will evaluate the thresholds

in ğ 4.4.

Since performance can be influenced by many environment fac-

tors, such as network delay and system warm-up, an application

running repeatedly on the same machine can produce performance

results that differ with each execution. CP-Detector employs a

strategy to eliminate the performance bias. CP-Detector tests

each case 20 times repeatedly and uses hypothesis testing [4] to

eliminate the performance bias. Specifically, CP-Detector assumes

the performances of Vsrc and Vtar as two random variables, then

uses the t-test (α = 0.05) to check if the ">" relations hold in the

above rules. We set the null hypothesis that the relations do not

hold. When the null hypothesis is rejected, a CPBug is alarmed.

4 EVALUATION

To evaluate CP-Detector, we consider four research questions:

RQ1: How accurate is CP-Detector at suggesting performance

properties?

RQ2: How effective and efficient is CP-Detector at exposing both

known and unknown CPBugs?

RQ3: How does CP-Detector compare with the state-of-the-art

performance bug detection tool?

RQ4:How do CP-Detector parameters influence its effectiveness?

4.1 RQ1: Accuracy of Suggesting Performance
Properties

To answer RQ1, we evaluated the accuracy of CP-Detector in

suggesting performance properties of configuration options. Given

a configuration option, this process contains two components: pre-

dicting the type of configuration option and identifying the tuning

direction. We evaluated the accuracy for each component. We ran-

domly sampled 500 configuration options from the 12 software

systems we studied. Three authors manually labeled the types of

the options by analyzing the configuration documents. Each label

was cross-checked and discussed until there was no disagreement.

This process took 70 working hours. The options were split into 10

sets to conduct a stratified 10-fold cross validation. We did not use

the configuration options included in our empirical studies, since

the options involved in the CPBugs have an unbalanced distribu-

tion. By default, we set the parameters during mining CARs with

Len=7 and Num=100, and introduce how to set these parameters in

ğ 4.4.

Predicting Configuration Types. We evaluated the precision

and recall of predicting each configuration type. We also calcu-

lated the weighted averages [57], which is defined as the averaged

precision/recall of each type weighted by the option number of

the type. We also compared our approach with a baseline method,

i.e., keyword searching. We used the same CAR mining algorithm

and restricted len(CAR) = 1 to generate keywords for each type.

We set Num = 25, which has been tested to be able to achieve the

best result. A larger Num (e.g., 100) may improve the recall, but

significantly decreases the precision at the same time.

Table 4: Precision and recall on inferring types of configu-

ration options (average result with stratified 10-fold cross

validation).

Type # Option
Precision Recall

CPD† Base.‡ CPD Base.

Resource 143 93.9% 69.4% 92.4% 93.2%

Tradeoff 84 70.7% 61.3% 66.9% 21.4%

Optimization 73 69.4% 27.3% 65.8% 18.8%

Functionality 100 82.2% 56.2% 55.6% 39.1%

Non-influence 100 90.1% 35.0% 67.1% 70.0%

Weighted Average 83.3% 52.4% 71.8% 54.8%

† CP-Detector. ‡ The keyword-based baseline method.

Table 4 shows the precision and recall of CP-Detector in pre-

dicting configuration types. CP-Detector is most effective in pre-

dicting the Resource type. This is because their option descriptions

often contain similar semantics, e.g., memory, buffer, CPU, etc.

While for Functionality options, CP-Detector has a good preci-

sion but the lowest recall. This is because the functionalities are

highly diverse and only limited common features (e.g., profiling,

monitoring) are identified by CP-Detector. Compared to the base-

line method, when considering the precision and recall together

(i.e., the harmonic mean of the precision and recall), CP-Detector

outperforms the baseline method in every type. This result suggests

that CP-Detector is effective (83.3% precision and 71.8% recall) in

predicting configuration types.

Identifying Tuning Directions. The second task is to deter-

mine the tuning direction for each value pair of a given option. This

task is challenging for Tradeoff configuration options, while the

tuning directions of other options are straightforward. Among 84

Tradeoff options, we need to check 162 pairs of tuning directions

(an option with 3 values, say A,B,C, implies 3 pairs: AB, AC, BC).

CP-Detector successfully predicted 139/162 (85.8%) of them. Mean-

while, CP-Detector failed to identify 23 cases. This is because the

configuration documents do not always contain the relationship

among the values of a tradeoff option. For example, a common

tradeoff option for database is storage_engine. Different engines

produce different levels of performance, concurrency, consistency,

integrity, etc. But these properties are not described in the docu-

ments. The accuracy of other types are: 100% for both Resource and

Non-Influence, 94.4% for Functionality, 97.8% for Optimization (e.g.,

some Functionality options are not Boolean; thus, CP-Detector

can not handle). This result indicates CP-Detector is effective (96.9%

accuracy in average) in identifying tuning directions.

4.2 RQ2: Effectiveness of Efficiency of
Detecting CPBugs

To evaluate CP-Detector in exposing CPBugs, we first applied CP-

Detector to a set of existing CPBugs. We then used CP-Detector

to find previously unknown CPBugs.

4.2.1 Detecting Existing CPBugs. We evaluate the effectiveness

and efficiency of CP-Detector in exposing CPBugs studied in ğ 2.

We tried to reproduce all the 173 studied CPBugs with our best

effort.We successfully reproduced 38 bugs. To avoid over-fitting, we

630

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

Table 5: The effectiveness of detecting existing CPBugs.

PP Violated # CPBugs # Exposed # FP

Optimization (PP-1) 7 5† / 6‡ 2

Tradeoff-1 (PP-2) 12 10 / 12 0

Tradeoff-2 (PP-3) 9 7 / 8 0

Resource (PP-4) 12 11 / 12 1

Functionality-1 (PP-5) 2 1 / 2 0

Functionality-2 (PP-6) 9 5 / 8 2

Non-Influence (PP-7) 6 4 / 6 0

N/A 4 0 / 0 2

TOTAL 61 43 / 54 7

† # CPBugs exposed by CP-Detector. ‡ # CPBugs exposed by CP-Detector

given ideal properties.

followed the bug collection steps in ğ 2 and successfully reproduced

23 bugs that are not included in 173 studied bugs. Reproducing these

61 CPBugs took 500 working hours. We evaluate CP-Detector on

these 61 CPBugs. By default, CP-Detector sets Tr1 = 3 and Tr2 =

5. We evaluate how to determine these thresholds in ğ 4.4.

Effectiveness. To evaluate the effectiveness, we assessed both

completeness: how many bugs can be exposed by CP-Detector

from the 61 known bugs, and soundness: how many false positives

CP-Detector produces. To measure the false positive, we applied

CP-Detector to the software versions where bugs have been fixed

by developers, and observed if CP-Detector still reports bugs. The

results are shown in Table 5. CP-Detector successfully exposed

43 out of the 61 bugs. Among the exposed bugs, 19 bugs were

exposed by using the default workloads of CP-Detector, while 24

bugs required specific workloads collected from bug reports. CP-

Detector failed to expose 18 bugs due to the following reasons: 1)

The properties suggested by CP-Detector is not correct (11 cases);

2) The bug is not triggered when testing (3 cases), e.g., MongoDB-

30643 [16] can be exposedwhen 7 different options are set to specific

values; 3) The option does not have any property (4 cases, row

"N/A"), e.g., MySQL-74325 [19] in ğ 2.1.

CP-Detector reported seven false positives. Three cases are

caused by bad application design. For example, in the case of PP-

4, allocating larger caches results in worse performances in both

buggy and fixed versions. This is because the query cache feature

is actually ill-designed: only in rare cases, increasing the cache size

improves the performance. This feature is removed since MySQL is

upgraded to v8.0. Four cases are caused by incorrect properties. For

example, in the "N/A" case, CP-Detector falsely regards -m32/64

as a non-influence option, which can affect performances depend-

ing on CPU architectures. This result indicates CP-Detector can

effectively (43/61) expose existing CPBugs with limited false positives

at the same time.

Efficiency. To measure the efficiency, we used the number of

value pairs of each configuration option required to expose CPBugs.

We mainly evaluate the numbers for numeric configuration options

because the sampling approach for other options is straightforward,

i.e., enumerating all combinations. We evaluated the numbers on

all 17 CPBugs (from the 61 ones) with numeric options and com-

pared CP-Detector with a baseline method, i.e., uniform sampling

Table 6: New CPBugs detected by CP-Detector

Bug ID Slowdown‡ Version(s) Status

Clang #43576(1) 1.19× (E.T.) v7 - latest Confirmed

Clang #43576(2) 1.28× (E.T.) v7 - latest Confirmed

Clang #43084 2.9× (C.T.) v3 Fixing

Clang #44359 1.2× (E.T.) v7 - latest Pending

Clang #44518 2.0× (C.T.) v3 - latest Fixing

GCC #91852 2.8× (C.T.) v6 - latest Pending

GCC #91895 4.4× (C.T.) v4 Confirmed

GCC #91817 44× (C.T.) v4 Confirmed

GCC #91875 1.85× (E.T.) v7 - v8 Confirmed

GCC #93037 1.12× (E.T.) v8 - latest Pending

GCC #93521 2.52× (E.T.) v8 - latest Confirmed

GCC #93535 4.50× (E.T.) v8 - latest Confirmed

GCC #94957 hang (C.T.) v7 - latest Fixing

‡ C.T.: Compiling Time, E.T.: Execution Time.

(the sampled numbers satisfy uniform distribution). The results

showed that CP-Detector exposed 11 out of the 17 bugs. To make

a fair comparison, we tuned the sampling density of the baseline

method until the same number of bugs are exposed. As a result,

CP-Detector generated 106 value pairs (9.6 pairs each bug in aver-

age, stdev=3.1), whereas the baseline method generated 1,320 pairs

(120 pairs each bug in average, stdev=0). CP-Detector required

fewer pairs since fixing one of the two values on the minimum or

maximum value. This result indicates our sampling strategy can sig-

nificantly improve the efficiency (i.e., reduce the sampling numbers)

while remaining the same effectiveness.

4.2.2 Detecting Unknown CPBugs. We applied CP-Detector on

the options sampled in ğ 4.1 to evaluate if CP-Detector can detect

unknown CPBugs. CP-Detector reported 17 CPBugs from Clang

and GCC, including 13 true positives and 4 false positives according

to our manual analysis. We reported 13 true positives to developers

as shown in Table 6. To evaluate the impact of the reported bugs,

we calculated their slowdowns by comparing the performances

between the fixed version (if any) and the buggy version. If the

fixed version is not available, we examined the performance on the

other compiler for comparison. The CPBugs found by CP-Detector

have significant impacts (1.19× ∼ 1.85× execution times, 2.8× ∼

44× compilation times) on user’s experience and many have been

existing for years. Worse still, GCC #94957 [12] hangs for hours to

compile 8 lines of C++ code.

Meanwhile, CP-Detector reported four false positives in GCC

and Clang. When using a higher level of compile-time optimiza-

tion, the binary execution time usually decreases. In the two false

positives, however, the execution time also depends on the hard-

ware. The higher level optimization generates machine code that is

inefficient in the experimental hardware. Adding -march=native

can solve the problem because it makes the generated code suitable

for the compiling machine. These two cases can be eliminated by

adding configuration constraints. The other two false positives are

caused by incorrect properties suggested by CP-Detector. This

result indicates CP-Detector can expose unknown CPBugs with high

impacts (up to 44× slowdowns and existing for years).

631

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

3 4 5 6 7 8 9
0

2

4

6

8
·105

Len

Per-Irrelevant

Tradeoff
Function

Optimization
Resource

0

20

40

60

80

100

ti
m
e
in

m
in
u
te

time

(a) Number of CARs and overheadwith dif-

ferent Len

5 100 200 300 400 500
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Num (each type)

Precision (Rand-n)

Recall (Rand-n)

Precision (Top-n)

Recall (Top-n)

(b) Precisions and recall of two CAR selec-

tion strategies with different Num.

2 4 6 8 10 12 14 16 18
0.5

0.6

0.7

0.8

0.9

1

Threshold (Tr1)

Tr2=0 Tr2=5

Tr2=10 Tr2=15

Tr2=20 Tr2=30

(c) F-score of different Tr1, Tr2

Figure 4: The Influence of CP-Detector Parameters.

4.3 RQ3: Comparison with the State-of-the-art

We compare CP-Detector with Toddler [46], which is one of the

most effective bug detection tools among existing works. Toddler

uses redundant memory access patterns to detect performance bugs

that are caused by inefficient loops. We evaluate the effectiveness

of Toddler in exposing the same CPBugs. The evaluation shows

that Toddler can detect 6 of the 61 existing CPBugs. This is be-

cause the CPBugs are caused by a variety of reasons, while Toddler

only focuses on the inefficient variable accesses in loops, which

account for a small proportion in our dataset. This result indicates

CP-Detector can detect more types of performance bugs than Tod-

dler. CP-Detector can serve as a complementary tool with Toddler

in detecting general performance bugs.

4.4 RQ4: The Influence of Model Parameters

The effectiveness of CP-Detector can be affected by the selection

of four parameters: the length Len and number Num of CARs,

and two thresholds (i.e., Tr1 and Tr2) to check PP-3 and PP-6. We

evaluate how these parameters impact CP-Detector.

The max length (Len) of CARs affects the CAR candidates gen-

erated by association rule mining process. With longer Len, we

can get more CAR candidates, but the time spent for mining grows

exponentially. To choose a reasonable value, we use the 500 option

descriptions in ğ 4.1 to evaluate the CAR number and overhead

with different Len. As shown in Figure 4a, when Len is larger than

7, the numbers of CAR candidates for all types of options start to

converge. This is intuitive because longer sequences are less likely

to appear more thanmin_support times to become a CAR candidate.

The number (Num) of CARs selected for each type of options

can affect the accuracy of the option type classifier. To evaluate

this, we use the same options in ğ 4.1 and split it by 10 to con-

duct stratified 10-fold cross validation on precision and recall of

the classifier with different Num. Also, we compare our sampling

approach with a baseline method, i.e., using Top-Num CARs from

each type. Figure 4b shows the averaged precision and recall of the

option type classifier. As Num grows, the precisions and recalls of

both strategies converge. When Num is small (i.e., less than 300),

our sampling strategy outperforms the Top-Num strategy, since

the recall of the Top-Num strategy is limited. When Num is larger

than 100, the recall of our approach converges, while the precision

remains the same. Thus, we use 100 as the default value.

To choose the best combination of Tr1 and Tr2, we evaluated

all CPBugs breaking PP-3 and PP-6. For each bug, we collected the

performance pairs (i.e., P(Vsrc) and P(Vtar)) in both buggy and fixed

versions. Given a combination ofTr1 andTr2, a true positive means

the combination suggests the performance pair in the buggy version

is a bug; a false positive means the combination suggests the pair in

the fixed version is a bug; a false negative means the combination

suggests the pair in the buggy version is not a bug. We successfully

collected data from 41 bugs, and split the data by 10 to do the 10-fold

cross validation. Then we calculate the precision, recall and F-score

with different Tr1 and Tr2. As shown in Figure 4c, larger Tr1 or

Tr2 implies stricter conditions, thereby reducing false positives but

increasing false negatives (and vice versa). The optimal Tr1 and

Tr2 combination is 3 and 5 (blue line, with best F-score=90.6%). The

average precision and recall are 94.1% and 87.3%, respectively. Thus,

we use 3 and 5 as default values.

5 DISCUSSION

Impact of Workloads. Software workloads can affect the effec-

tiveness of CP-Detector in exposing new CPBugs. It is hard to

automatically predict real-world workloads that can trigger CPBugs.

Instead, CP-Detector provides interfaces to accept customized

workloads. For example, when the software end users reported a

performance issue, CP-Detector can leverage the workload con-

tained in the report and help developers confirm if the issue is

caused by a CPBug.

Quality of Performance Properties. We summarized seven

properties from 150 CPBugs. These properties may be limited in

two aspects: 1) We may miss a property that does not happen in our

studied CPBugs; 2) The properties may be affected by other factors

and not always hold. For example, in ğ 4.2.2, CP-Detector reported

two false positives which break our properties but are not bugs. In

this regard, we will investigate more bugs in the further work to

improve the completeness of properties. CP-Detector provides

user interfaces to accept customized property constraints, e.g., for

the false positives of ğ 4.2.2, the property of the optimization-level

option holds when setting -march=native.

Value Bounds of Numeric Options. When sampling numeric

options, CP-Detector needs to determine the lower and upper

bounds. Simply using the maximum value of an integer variable

632

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

(e.g., 264 for unsigned long) as the upper bound may result in a

misconfiguration [27]. For example, when a buffer value is larger

than thememory size, the systemwill use the swapmemory, and the

performance drops. This performance loss is not caused by a CPBug.

Directly using the memory size may still be problematic, since one

software project may have multiple buffers. To avoid this problem,

CP-Detector first extracts the lower and upper bounds from user

manuals (if any). Otherwise, we empirically set the lower and upper

bounds to 0 and 1/4 of the system resource, respectively. And we

monitor the resource usage by top to avoid resource overloading.

Reproducing Bugs. We successfully reproduced 61 out of 173

CPBugs. Note that reproducing performance bugs following the

bug reports are not trivial [32]. The main reasons why we failed

to reproduce many of them are missing of important steps and too

complicated workload. For instance, httpd #58037 [10] and Mon-

goDB #27753 [15] only show the symptom but miss bug-inducing

workload. MongoDB #27700 [14] requires distributed cluster and

complicated workload (vaguely described). Few CPBugs need spe-

cific environment to trigger (e.g., httpd #42065 [8] require Windows

2003 Server), which, by construction, CP-Detector can not expose.

In this paper, only 11.5% (lowest) of MongoDB’s CPBug are repro-

ducible, and 56.3% (highest) for Clang.

Future Work. CP-Detector is far from perfect. First, trigger-

ing CPBugs sometimes require specific workload, environment or

timing [30, 32]. One of our future work will lie in designing auto-

matic workload generation techniques to expose CPBugs for those

software systems that have limited or no test suite or benchmark

tools. Second, CP-Detector can report unexpected performance

drop by tuning options, but can not locate them, still leaving di-

agnose efforts of developers. So we will explore how to locate the

bug-inducing code of CPBugs to help developer fix them.

6 RELATEDWORK

Performance Bug Detection. Some works focus on detecting

different types of performance problems: inefficient loops [29, 45,

46], redundant roads [61], redundant collection traversals [48],

reusable data [44, 62], false sharing in multi-thread programs [41],

inefficient synchronization [49, 66], user-interface performance

problems [50], architectural impacts among methods [26], perfor-

mance anti-patterns [65] and tradeoffs [21] in ORM applications.

These works are effective in detecting certain types of performance

problems, which are different to the configuration-handling per-

formance bugs detected by CP-Detector. Recent short position

papers [37, 53, 54] have proposed a proof concept that using meta-

morphic testing to expose performance bug. While they did not

proposed an automatic approach or evaluate on large scale software

systems. The difference between our work and metamorphic testing

is that they typically use multiple test executions to infer metamor-

phic relations, and verify those relations on follow-up tests. While

we conclude performance properties from bug study and generate

them from expert knowledge (e.g., user manuals).

Hotspots Detection. Some works focus on pinpointing hotspots

in programs via profiling: Perf [6], YourKit [31]. Similarly, several

following works address on generating the most time-consuming

workloads via profilers to help expose performance bottlenecks [28,

55, 67]. The limitation of profiling-basedmethods is that the hotspots

are not necessarily caused by performance bugs.While CP-Detector

can use performance properties summarized from real-world bugs

to confirm if a hotspot if caused by a CPBug.

Performance Modeling and Tuning. Many works [25, 35, 38,

43, 47, 51, 52] aim to predict performance for given configurations,

or study the tendency of performance changes to improve perfor-

mance when tuning configurations. These works focus on building

the relationship between performance and configuration, and find-

ing the fastest configuration of a software system. This is different to

find performance bugs caused by incorrect configuration handling.

Understanding of Performance Bugs. Previous studies of per-

formance bugs have covered a wide range of characteristics in-

cluding root causes, fixing complexity, how they are introduced

and found [36, 58]. Recently, some empirical studies [33, 34] em-

phasize the importance of configuration-aware testing techniques

and provide insights on reducing the searching space of config-

urations. Some works help comprehend performance, including

performance distributions generation [24], and performance speci-

fications extracting via in-field data [22]. These works help under-

stand performance issues, while CP-Detector can expose CPBugs

automatically.

7 CONCLUSIONS

Performance bugs are hard to detect due to their non fail-stop

symptom. In this paper, we argue that the performance expectation

of configuration tuning can be leveraged to expose CPBugs. We

studied 173 real-world CPBugs from 12 software systems and found

most (86.7%) of CPBugs can be exposed by using the expectations.

Our findings also guide the inferring of performance expectations

and sampling of test inputs to trigger CPBugs. We design and im-

plement CP-Detector to detect real-world CPBugs. The result

shows that CP-Detector is effective in exposing both known and

unknown CPBugs. CP-Detector can be integrated into an IDE as

a regression test tool w.r.t. performance, or used as an assistant tool

to confirm performance-related bugs in bug tracking systems.

ACKNOWLEDGMENTS

This research was supported by National Key R&D Program of

China (Project No.2017YFB1001802); National Natural Science Foun-

dation of China (Project No.61872373, 61702534 and 61872375).

REFERENCES
[1] Categories and subcategories in computer science. https://en.wikipedia.org/wiki/

Category:Computing.
[2] Fit CDF for normal distribution. https://en.wikipedia.org/wiki/Cumulative_

distribution_function.
[3] spaCy. https://spacy.io.
[4] Statistical hypothesis testing. https://en.wikipedia.org/wiki/Statistical\

_hypothesis_testing.
[5] IEEE standard glossary of software engineering terminology. IEEE Std 610.12

(1990).
[6] Linux perf tool. https://perf.wiki.kernel.org/index.php/Main_Page, 2015.
[7] httpd 33605, Acc.: 2020. https://bz.apache.org/bugzilla/show_bug.cgi?id=33605.
[8] httpd 42065, Acc.: 2020. https://bz.apache.org/bugzilla/show_bug.cgi?id=42065.
[9] httpd 50002, Acc.: 2020. https://bz.apache.org/bugzilla/show_bug.cgi?id=50002.
[10] httpd 58037, Acc.: 2020. https://bz.apache.org/bugzilla/show_bug.cgi?id=58037.
[11] GCC 17520, Accessed: 2020. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17520.
[12] GCC 94957, Accessed: 2020. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94957.
[13] MariaDB 5802, Accessed: 2020. https://jira.mariadb.org/browse/MDEV-5802.

633

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

[14] MongoDB 27700, Accessed: 2020. https://jira.mongodb.org/browse/server-27700.
[15] MongoDB 27753, Accessed: 2020. https://jira.mongodb.org/browse/server-27753.
[16] MongoDB 30643, Accessed: 2020. https://jira.mongodb.org/browse/server-30643.
[17] MySQL 21727, Accessed: 2020. https://bugs.mysql.com/bug.php?id=21727.
[18] MySQL 67432, Accessed: 2020. https://bugs.mysql.com/bug.php?id=67432.
[19] MySQL 74325, Accessed: 2020. https://bugs.mysql.com/bug.php?id=74325.
[20] MySQL 77094, Accessed: 2020. https://bugs.mysql.com/bug.php?id=77094.
[21] Atlee, J. M., Bultan, T., andWhittle, J. View-centric performance optimization

for database-backed web applications. In International Conference on Software
Engineering (ICSE) (2019).

[22] Brünink, M., and Rosenblum., D. S. Mining performance specifications. In
European Software Engineering Conference and the International Symposium on
the Foundations of Software Engineering (ESEC/FSE) (2016).

[23] Butterfield, A., Ngondi, G. E., and Kerr, A. A Dictionary of Computer Science.
Oxford University Press, 2016.

[24] Chen, B., Liu, Y., and Le., W. Generating performance distributions via proba-
bilistic symbolic execution. In International Conference on Software Engineering
(ICSE) (2016).

[25] Chen, T.-H., Shang, W., Hassan, A. E., Nasser, M., and Flora, P. Cacheopti-
mizer: Helping developers configure caching frameworks for hibernate-based
database-centric web applications. In European Software Engineering Confer-
ence and the International Symposium on the Foundations of Software Engineering
(ESEC/FSE) (2016).

[26] Chen, Z., Chen, B., Xiao, L., Wang, X., and Xu, B. Speedoo: prioritizing per-
formance optimization opportunities. In International Conference on Software
Engineering (ICSE) (2018).

[27] Coady, Y., Cox, R., DeTreville, J., Druschel, P., Hellerstein, J., Hume, A.,
Keeton, K., Nguyen, T., Small, C., Stein, L., and Warfield, A. Falling off the
cliff: When systems go nonlinear. InWorkshop on Hot Topics in Operating Systems
(HotOS) (2005).

[28] Coppa, E., Demetrescu, C., and Finocchi., I. Input-sensitive profiling. In
Conference on Programming Language Design and Implementation (PLDI) (2012).

[29] Dhok, M., and Ramanathan, M. K. Directed test generation to detect loop
inefficiencies. In European Software Engineering Conference and the International
Symposium on the Foundations of Software Engineering (ESEC/FSE) (2016).

[30] Ding, Z., Chen, J., and Shang, W. Towards the use of the readily available tests
from the release pipeline as performance tests. are we there yet? In International
Conference on Software Engineering (ICSE) (2020).

[31] GmbH, Y. The industry leader in .NET & Java profiling. https://www.yourkit.com.
[32] Han, X., Carroll, D., and Yu, T. Reproducing performance bug reports in server

applications: The researchers’ experiences. Journal of Systems and Software 156
(2019), 268ś282.

[33] Han, X., and Yu, T. An empirical study on performance bugs for highly con-
figurable software systems. In International Symposium on Empirical Software
Engineering and Measurement (ESEM) (2016).

[34] Han, X., Yu, T., and Lo, D. Perflearner: Learning from bug reports to understand
and generate performance test frames. In International Conference on Automated
Software Engineering (ASE) (2018).

[35] Jamshidi, P., Siegmund, N., Velez, M., Kästner, C., Patel, A., and Agarwal,
Y. Transfer learning for performance modeling of configurable systems: An ex-
ploratory analysis. In International Conference on Automated Software Engineering
(ASE) (2017).

[36] Jin, G., Song, L., Shi, X., Scherpelz, J., and Lu, S. Understanding and detecting
real-world performance bugs. In Conference on Programming Language Design
and Implementation (PLDI) (2012).

[37] Johnston, O., Jarman, D., Berry, J., Zhou, Z. Q., and Chen, T. Y. Metamorphic
relations for detection of performance anomalies. In International Workshop on
Metamorphic Testing (MET) (2019).

[38] Juliana, A. P., Mathieu, A., Hugo, M., and Jean-Marc, J. Sampling effect on
performance prediction of configurable systems: A case study. In International
Conference on Performance Engineering (ICPE) (2020).

[39] Kaltenecker, C., Grebhahn, A., Siegmund, N., Guo, J., and Apel, S. Distance-
based sampling of software configuration spaces. In International Conference on
Software Engineering (ICSE) (2019).

[40] Leshl, N., Zaki, M. J., and Ogihara3, M. Mining features for sequence classifi-
cation. In ACM Knowledge Discovery and Data Mining (SIGKDD) (1999).

[41] Liu, T., and Berger., E. D. Sheriff: Precise detection and automatic mitigation of
false sharing. In Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA) (2011).

[42] Michail, A. Data mining library reuse patterns in user-selected applications. In
International Conference on Automated Software Engineering (ASE) (1999).

[43] Nair, V., Menzies, T., Siegmund, N., and Apel., S. Using bad learners to find good
configurations. In European Software Engineering Conference and the International
Symposium on the Foundations of Software Engineering (ESEC/FSE) (2017).

[44] Nguyen, K., and Xu, G. Cachetor: Detecting cacheable data to remove bloat. In
European Software Engineering Conference and the International Symposium on
the Foundations of Software Engineering (ESEC/FSE) (2013).

[45] Nistor, A., Chang, P.-C., Radoi, C., and Lu, S. Caramel: Detecting and fixing
performance problems that have non-intrusive fixes. In International Conference
on Software Engineering (ICSE) (2015).

[46] Nistor, A., Song, L., Marinov, D., and Lu, S. Toddler: Detecting performance
problems via similar memory-access patterns. In International Conference on
Software Engineering (ICSE) (2013).

[47] Oh, J., Batory, D., Myers, M., and Siegmund, N. Finding near-optimal configu-
rations in product lines by random sampling. In European Software Engineering
Conference and the International Symposium on the Foundations of Software Engi-
neering (ESEC/FSE) (2017).

[48] Olivo, O., Dillig, I., and Lin, C. Static detection of asymptotic performance
bugs in collection traversals. In Conference on Programming Language Design
and Implementation (PLDI) (2015).

[49] Pradel, M., Huggler, M., and Gross, T. R. Performance regression testing of
concurrent classes. In International Symposium on Software Testing & Analysis
(ISSTA) (2014).

[50] Pradel, M., Schuh, P., Necula, G., and Sen, K. Eventbreak: Analyzing the
responsiveness of user interfaces through performance-guided test generation. In
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) (2014).

[51] Ravjot, S., Cor-Paul, B., Weiyi, S., and E., H. A. Optimizing the performance-
related configurations of object-relational mapping frameworks using a multi-
objective genetic algorithm. In International Conference on Performance Engineer-
ing (ICPE) (2016).

[52] Sarkar, A., Guo, J., Siegmund, N., Apel, S., and Czarnecki, K. Cost-efficient
sampling for performance prediction of configurable systems. In International
Conference on Automated Software Engineering (ASE) (2015).

[53] Segura, S., Troya, J., Durán, A., and Cortés, A. R. Performance metamorphic
testing: A proof of concept. Information & Software Technology 98 (2018), 1ś4.

[54] Segura, S., Troya, J., Durán, A., and Ruiz-Cortés, A. Performancemetamorphic
testing: Motivation and challenges. In International Conference on Software
Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER),
(2017).

[55] Shen, D., Luo, Q., Poshyvanyk, D., and Grechanik., M. Automating perfor-
mance bottleneck detection using search-based application profiling. In Interna-
tional Symposium on Software Testing & Analysis (ISSTA) (2015).

[56] Siegmund, N., Grebhahn, A., Apel, S., and Kästner, C. Performance-influence
models for highly configurable systems. In European Software Engineering Confer-
ence and the International Symposium on the Foundations of Software Engineering
(ESEC/FSE) (2015).

[57] Sokolovaa, M., and Lapalmeb, G. A systematic analysis of performance mea-
sures for classification tasks. Information Processing & Management (2009).

[58] Song, L., and Lu, S. Statistical debugging for real-world performance problems. In
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) (2014).

[59] Song, L., and Lu, S. Performance diagnosis for inefficient loops. In International
Conference on Software Engineering (ICSE) (2017).

[60] Souto, S., d’Amorim, M., and Gheyi, R. Balancing soundness and efficiency for
practical testing of configurable systems. In International Conference on Software
Engineering (ICSE) (2017).

[61] Su, P., Wen, S., Yang, H., Chabbi, M., and Liu, X. Redundant loads: A software
inefficiency indicator. In International Conference on Software Engineering (ICSE)
(2019).

[62] Toffola, L. D., Pradel, M., and Gross, T. R. Performance problems you can fix: A
dynamic analysis of memoization opportunities. In Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA) (2015).

[63] Xiang, C., Huang, H., Yoo, A., Zhou, Y., and Pasupathy, S. Pracextractor:
Extracting configuration good practices from manuals to detect server miscon-
figurations. In USENIX Annual Technical Conference (ATC) (2020).

[64] Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou, Y., and
Pasupathy, S. Do not blame users for misconfigurations. In Symposium on
Operating Systems Principles (SOSP) (2013).

[65] Yang, J., Subramaniam, P., Lu, S., Yan, C., and Cheung, A. How not to structure
your database-backed web applications: a study of performance bugs in the wild.
In International Conference on Software Engineering (ICSE) (2018).

[66] Yu, T., and Pradel, M. Syncprof: Detecting, localizing, and optimizing synchro-
nization bottlenecks. In International Symposium on Software Testing & Analysis
(ISSTA) (2016).

[67] Zaparanuks, D., and Hauswirth., M. Algorithmic profiling. In Conference on
Programming Language Design and Implementation (PLDI) (2012).

[68] Zimmermann, T., Weisgerber, P., Diehl, S., and Zeller, A. Mining version
histories to guide software changes. In International Conference on Software
Engineering (ICSE) (2005).

634

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:50:46 UTC from IEEE Xplore. Restrictions apply.

