
ConfTainter: Static Taint Analysis For Configuration
Options

Teng Wang†‡, Haochen He†‡, Xiaodong Liu†∗, Shanshan Li†∗, Zhouyang Jia†, Yu Jiang§, Qing Liao¶, Wang Li†
†National University of Defense Technology, Changsha, China

§Tsinghua University, Beijing, China
¶Harbin Institute of Technology, Shenzhen, China

Email:{wangteng13, hehaochen13, liuxiaodong, shanshanli, jiazhouyang} @nudt.edu.cn,
jy1989@mail.tsinghua.edu.cn, liaoqing@hit.edu.cn, liwang2015@nudt.edu.cn

Abstract—The prevalence and severity of software
configuration-induced issues have driven the design and
development of a number of detection and diagnosis techniques.
Many of these techniques need to perform static taint analysis
on configuration-related variables to analyze the data flow,
control flow, and execution paths given by configuration options.
However, existing taint analysis or static slicer tools are not
suitable for configuration analysis due to the complex effects of
configuration on program behaviors.
In this experience paper, we conducted an empirical study on

the propagation policy of configuration options. We concluded
four rules of how configurations affect program behaviors, among
which implicit data-flow and control-flow propagation are often
ignored by existing tools. We report our experience designing and
implementing a taint analysis infrastructure for configurations,
CONFTAINTER. It can support various kinds of configuration
analysis, e.g., explicit or implicit analysis for data or control
flow. Based on the infrastructure, researchers and developers can
easily implement analysis techniques for different configuration-
related targets, e.g., misconfiguration detection. We evaluated
the effectiveness of CONFTAINTER on 5 popular open-source
systems. The result shows that the accuracy rate of data- and
control-flow analysis is 96.1% and 97.7%, and the recall rate is
94.2% and 95.5%, respectively. We also apply CONFTAINTER
to two types of configuration-related tasks: misconfiguration
detection and configuration-related bug detection. The result
shows that CONFTAINTER is highly applicable for configuration-
related tasks with a few lines of code.
Index Terms—static taint analysis, configuration, data flow,

control flow

I. INTRODUCTION

Modern software systems introduce an increasing num-

ber of configuration options to provide flexibility and cus-

tomizability for users [1]–[3]. At the same time, it also

brings more configuration-induced failures and errors, such

as configuration-related bugs and misconfigurations. For ex-

ample, in one of Google’s main production services, admin-

istrators find misconfigurations are the second largest reason

for service failures [4]. At Facebook, 16% of service-level

incidents are induced by configuration errors [5] and are

considered a key reliability challenge at Facebook scale [6].

The prevalence and severity of software configuration-

induced issues have driven the design and development of a

‡ Teng Wang and Haochen He are co-first authors.∗ Xiaodong Liu and Shanshan Li are the corresponding authors.

Classic taint analysisConfiguration taint analysis

Fig. 1: Example of the difference between configuration taint anal-
ysis and classic taint analysis.

number of detection and diagnosis techniques [7]–[13]. Many

studies use static analysis methods, which analyze the data

flow, control flow, and execution paths given by configuration

options, to detect or diagnose configuration-induced issues.

For example, SPEX [7] infers configuration constraints and

detects misconfigurations by tracking the data and control flow

of configuration options, and identifying summarized code

patterns. ConfDiagnoser [8] diagnoses configuration errors

by using dependence analysis on configuration options and

identifying the execution paths it affects.

These detection and diagnosis studies, to some extent,

utilize taint analysis techniques on configuration variables.

Taint analysis is a common form of information-flow analysis,

which tracks data and control flow to identify vulnerabili-

ties and diagnose bugs. However, existing taint analysis or

static slicer tools [14]–[16] are not specially designed and

suitable for configuration analysis. On one hand, scaling

these existing tools to implement configuration analysis is

challenging because they do not provide interfaces for in-

termediate results of taint analysis. For instance, inferring

configuration constraints involves the utilization of tainted

variables to analyze code context and identify specific code

patterns. On the other hand, these works do not cover certain
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propagation policies of configurations necessary for various

configuration analyses. Figure 1 illustrates the aspects that

should be analyzed in configuration taint analysis, but are

ignored in classic taint analysis. In Figure 1(a), the option

log_queries_not_indexes implicitly affects the variable

specialflag to control whether the software logs slow

queries. However, the existing taint tools typically do not

consider implicit data flows (specialflag) because it often

leads to overtainting in vulnerability detection [17], [18]. In

Figure 1(b), the option CommitDelay implicitly controls the

execution interval and frequency of XLogWrite() by using a

sleep statement. And the implicit control dependency cannot

be recognized by the existing tools.

To address the knowledge gap, we conducted the first empir-

ical study on the propagation policy of configuration options.

We distinguished explicit and implicit propagation in both data
and control flow. Explicit data flows directly propagate values,

whereas implicit data flows affect other variables through

conditional statements (§ III-B). Additionally, explicit control
flows directly determine the execution of basic blocks, while

implicit control flows affect the execution frequency of these

blocks (§ III-C). These four types of propagation are all crucial
for configuration analysis. Our study reveals that 34.2% of

configuration options utilize implicit data flows. We found that

configurations are frequently used in conditional statements to

modify program behavior, and typically affect only a small

number of variables within a single branch. This results in such

propagation being a common occurrence for configuration

options, and presents a favorable opportunity to decrease the

likelihood of false positives. Furthermore, 14.2% of options

exhibit implicit control dependence, indicating the prevalence

of the propagation for configurations. Notably, to the best of

our knowledge, previous studies have not investigated implicit

control flows.

In this paper, we report our experience designing and

implementing a taint analysis infrastructure for configurations,

CONFTAINTER. It can support various kinds of configuration

analysis, e.g., explicit or implicit analysis for data or con-

trol flows. CONFTAINTER is inter-procedural, field sensitive,

and designed for C/C++ programs. To support applicability,

CONFTAINTER also provides many interfaces for interme-

diate results of taint analysis. Based on the infrastructure,

researchers and developers can easily implement analysis tech-

niques for different configuration-related targets. CONFTAIN-

TER conducts both data-flow and control-flow analysis for

configuration options. One challenge is to achieve precise field

and object-sensitive data-flow analysis in C/C++ programs,

because objects are usually passed through pointers multiple

times. To address this, we conduct a study towards the propa-

gation feature of fields storing option values, and leverage the

feature to solve it. Another challenge is to identify implicit

data-flow propagation, particularly as there are usually many

nested branches under configuration-dominated conditional

statements. To achieve it, we utilize the feature of phi nodes
in IR and define rules for identifying implicit data flow.

We evaluated the effectiveness of CONFTAINTER on 5

popular open-source systems. The result shows that the ac-

curacy rate of data-flow analysis is 96.1%, and recall is

94.2%. Moreover, the accuracy of control-flow analysis is

97.7%, and recall is 95.5%. CONFTAINTER has comparable

capabilities to existing tools in analyzing explicit data flows,

and can identify implicit flows that existing tools could not

analyze. For applicability, we apply CONFTAINTER to miscon-

figuration detection and configuration-related bug detection.

The result indicates CONFTAINTER is highly applicable for

configuration-related tasks with a few lines of code.

To summarize, this paper makes the following contributions:

• We conducted an empirical study on the propagation

policy of configuration options. And we concluded four

rules of how configurations affect program behaviors, i.e.,

explicit or implicit propagation of data or control flow.

• We designed and implemented CONFTAINTER, a taint

analysis infrastructure to support various kinds of config-

uration analysis. The source code and data can be found

in the repository:

https://github.com/wangteng13/ConfTainter

• We evaluated the effectiveness of CONFTAINTER on 5

systems. The result shows that the accuracy rate of data-

and control-flow analysis is 96.1% and 97.7%, and the

recall rate is 94.2% and 95.5%, respectively. We also

applied CONFTAINTER to misconfiguration detection and

configuration bug detection, and the result shows CONF-

TAINTER is highly applicable for configuration tasks with

a few lines of code.

II. BACKGROUND

In this section, we give some brief background on static

taint analysis, and then we introduce different types of

configuration-related studies which apply taint analysis.

A. Static Taint Analysis

Taint analysis [16], [17], [19]–[21] is a form of information-

flow analysis, which tracks some selected data of interest as

entry points(i.e., taint seeds), propagates them along program

execution paths according to a customized policy (i.e., taint
propagation policy), and then checks the taint status at certain
critical location (i.e., taint sinks). It is a key technique in soft-
ware security, which has been shown effective in dealing with

software attack prevention [22], and data leak detection [23].

The taint seeds, propagation policy, and sinks are usually

determined by the requirement of the tasks.

Static taint analysis propagates taint values following all

possible paths with no need for concrete execution, and there-

fore it has no impact on runtime performance. Although static

taint analysis may lead to potential imprecision (undertainting

or overtainting), it is widely used in defect detection and fault

diagnosis in various fields, not limited to security. Static taint

analysis is also applied in many configuration-related studies,

i.e., misconfiguration detection, misconfiguration diagnosis,

and configuration-related bug detection. In these works, taint

seeds are usually configuration variables, which load con-

figuration values in the application and are used during the
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program execution. While, taint propagation policy and sinks

are customized respectively.

B. Taint Analysis in Configuration Studies

Misconfiguration Detection. Misconfiguration

detection [7], [10], [13] aims at detecting potential

misconfigurations before deployment. Many studies discover

configuration errors by checking against configuration

constraints, which are inferred from source code using static

program analysis. SPEX [7] infers configuration constraints

by tracking the data and control flow of configuration options,

and identifying predefined code patterns. CDep [10] focuses

on configuration dependencies between multiple options

in Java programs. For data-flow analysis, they propagate

the tainted variables through assignments, arithmetic, and

string operations, until reaching customed sink statements.

For control-flow analysis, they find the conditional branch

which involves configuration options, and take its dominating

statements as the scope of its control-flow propagation.

Misconfiguration Diagnosis. Misconfiguration diagno-

sis [8], [11], [12] refers to locating the root causes of configu-

ration errors that caused failures, performance issues, and in-

correct behaviors. ConfDiagnoser [8] diagnoses configuration

errors by using dependence analysis on configuration options

to identify configuration-affected control flow. Specially, for

each option, ConfDiagnoser statically determines its affected

predicates in conditional statements, and identifies the execu-

tion paths it affects in source code.

Configuration-related Bug Detection. Static taint analysis
is also widely used in bug detection. Toddler [24] identifies

redundant memory access patterns in codes to detect per-

formance bugs. SCIC [9] detects invalid configuration bugs

by statically analyzing the data flow of configuration options

and detecting whether the options are used in the source

code. Moreover, taint analysis can also be applied to fuzzing

techniques to improve test quality and efficiency [25].

III. UNDERSTANDING THE PROPAGATION POLICY OF

CONFIGURATION

In order to learn how configurations affect program behav-

iors, we conduct an empirical study on the propagation policy

of configuration. In this section, we will first describe the study

methodology, then introduce our findings including the data-

flow and control-flow propagation.

A. Study Methodology

The study methodology includes the criteria to choose

study subjects, and the methods to collect and analyze the

propagation policy.

Studied Subjects. Table I describes 6 software systems used
in our study. We chose these projects because: a) they cover

different domains, including database, web and FTP server;

b) they are widely used and studied by the existing works

[7], [8], [13], [26]; c) they are highly configurable and all

have various types of options; d) they are open-source and

well maintained by the community. These criteria ensure that

1 /* vsftpd ftpdataio.c*/
2 static unsigned int get_chunk_size(){

3 ret = tunable_trans_chunk_size * BLCKSZ ;

4 return ret;
5 }
6 void do_file_recv(...){
7 unsigned int chunk_size = get_chunk_size();
8 int retval = ftp_read_data(..., chunk_size);
9 }

Fig. 2: Example of explicit data-flow propagation.

we can learn the propagation policy of various categories of

configuration options in various systems.

Collection and Analysis. For each study system, we ran-
domly select 100 options to learn the propagation policy. We

first use ConfMapper [27] to locate the original configuration
variables. Then, we collect and analyze the data-flow and

control-flow propagation of the variables, both in source code

and LLVM Intermediate Representation (IR). Each option was

inspected by two inspectors. When they diverged, a third

inspector was consulted for additional discussions until a

consensus was reached. It took two months to collect and

analyze the propagation policy. The results of the empirical

study are shown in Table I. We concluded four rules of

how configurations affect program behaviors, i.e., explicit and

implicit propagation of data or control flow.

B. Data-flow Propagation

The data-flow propagation of configuration options can be

divided into explicit and implicit data flow, based on whether

the tainted variable explicitly propagates its value (e.g., by

assignment operations) or not.

1) Explicit Data-flow Propagation: Variables are usually

propagated through operation statements (e.g., assignment or

arithmetic), or parameters and return values of functions in

programs. In LLVM IR, the four forms can be traced back

through the def-use chain [28] of the configuration variable.

We refer to this type of propagation as explicit data-flow
propagation. All options have explicit data-flow propagation.

Figure 2 shows an example of explicit data-flow

propagation in VSFTPD. The configuration variable

tunable_trans_chunk_size performs an arithmetic opera-

tion in Line 2, and the result is assigned to the variable ret. As

a result, variable ret becomes a new taint seed. After that, the

taint is propagated through the return statment (Line 4) to the

variable chunk_size (Line 7). Then the taint is propagated

as the parameter of the function ftp_read_data (Line 8).

2) Implicit Data-flow Propagation: Except for explicit

data-flow propagation, configuration options can also affect

variables implicitly through conditional statements. In this

scenario, configuration options are not explicitly used as

parameters in functions or operation statements. Instead, it

determines which branch of the program would be executed,

thereby implicitly altering the values of other variables and

forming implicit associations. Moreover, this particular form

of propagation cannot be traced through the def-use chain in

LLVM IR. We refer to it as implicit data-flow propagation.
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TABLE I: Studied software systems and the result of empirical study.

Project Desc. LOC # Option Explicit Data. Implicit Data. Explicit Control. Implicit Control.

MySQL SQL database 3714K 981 100 31 39 9
PostgreSQL SQL database 2846K 275 100 21 77 19
HTTPD Web Server 284K 669 100 32 54 13
Nginx Web Server 144K 664 100 21 24 7
Squid Web Server 180K 424 100 60 81 20
VSFTPD FTP Server 16K 125 100 40 79 17

Total - - - 600 (100.0%) 205 (34.2%) 354 (59.0%) 85 (14.2%)

However, this type of propagation is often overlooked by

existing taint analysis tools [14]–[16], [29], as it often leads

to false positives in vulnerability detection [17], [18]. Addi-

tionally, handling implicit flows requires a delicate balance

between undertainting, overtainting, and efficiency [18], as

there might be many affected variables in a single branch.
Nonetheless, this propagation is frequently (34.2%) ob-

served for configuration options. Configurations are often

used in conditional statements to modify program behavior.

We find that configuration variables, on average, only affect

three variables within a single branch. This makes such

propagation a common occurrence for configuration options

and presents a beneficial opportunity to reduce the likeli-

hood of false positives. Figure 1(a) shows an example of

implicit data-flow propagation in MySQL. The configuration

variable log_queries_not_indexes affects the value of

another variable specialflag through the conditional branch

(Line 2-3). Especially, if log_queries_not_indexes is

true, variable specialflag would be initialized with

‘LOG NOT INDEXES’. Thus, specialflag has implicit

data-flow dependency on the option.

Finding 1: Data-flow propagation of configurations can

be realized through explicit operations (e.g., assign-
ments), or through implicit means by conditional state-
ments. The latter (34.2%) is common for configurations,

but often ignored by existing tools.

C. Control-flow Propagation
The control-flow propagation of options can be divided into

explicit and implicit control flow, based on whether the tainted

variable explicitly dominates the branches or not.
1) Definitions: Before we delve into the detailed feature of

control-flow propagation, we first introduce a set of definitions

on control dependence from the previous study [30], [31].
Def 1. A node (basic block) Y post-dominates another node

X (Y pdom X) if and only if all paths from X to an exit node

of the control flow graph (CFG) must go through Y.
Def 2. A node (basic block) Y is control-dependent on

another node X if and only if (a) Y post-dominates a successor

of X; (b) Y does not post-dominate all successors of X.
Def 3. Transitivity of control dependency: If node (basic

block) A is control-dependent on another node B, and B

is control-dependent on another node C, then A is control-

dependent on C.
The above definitions state the control dependency between

basic blocks, which means that the execution of Y depends

1 /* nginx os/unix/ngx_solaris_sendfilev_chain.c */
2 ngx_chain_t * ngx_solaris_sendfilev_chain(...){

3 if (!c-> sendfile )
4 return ngx_writev_chain(c, in, limit);
5 }

Fig. 3: Example of explicit control-flow propagation.

on the control flow decision of X. Based on this, we propose

an extension of the definition to include control dependency

between basic blocks and configurations:

Def 4. A node (basic block) Y is control-dependent on
a configuration option C if and only if (a) the branching

instruction of node X is tainted by C; (b) Y is control-

dependent on X.

2) Explicit Control-flow Propagation: Configuration op-

tions are commonly used as switches in software, enabling

users to adjust various functional features of the system. These

options often appear in conditional statements (e.g., if, switch,
for, and while), and determine which branch of the program
will be executed. As a result, the dominated branches and

blocks are control-dependent on the configuration option. We

refer to this type of control dependency as explicit control-
flow propagation. In LLVM IR, configuration options ex-

plicitly influence the execution of basic blocks in different

paths using branching (br) instructions. We find 59.0% of

configuration options have explicit control-flow propagation

in our study. Figure 3 shows an example of explicit control-

flow propagation in Nginx. The call statement of function

ngx_writev_chain (Line 4) is explicitly control-dependent

on the option sendfile.
3) Implicit Control-flow Propagation: Except for explicit

control-flow propagation, configuration options could also im-

plicitly propagate control dependency and dominate program

blocks, e.g., using delay statements. Although these options do

not determine the execution of basic blocks, they can affect

the execution frequency of these basic blocks. Especially,

when a delay statement (e.g., sleep function) occurs in a

loop and the configuration variable affects the parameter of

the delay statement, the basic blocks in the loop can be

considered as implicit control-flow dependencies. Another

pattern is that inside a loop, the configuration variable con-

trols a conditional statement and explicitly dominates a delay

statement. Similarly, the basic blocks in the loop are implicitly

control-dependent on the option. We refer to this type of

control dependency as implicit control-flow propagation. We

find 14.2% of configuration options have implicit control-flow

propagation. To the best of our knowledge, previous studies

have not investigated implicit control flows.
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Fig. 4: Examples of configuration variable mapping and the IR
instructions.

Fig. 5: Framework of CONFTAINTER.

Figure 1(b) shows an example of implicit control-flow

propagation in PostgreSQL. The option CommitDelay affects

the frequency of loop execution, and thus the frequency of

other statements in the loop, e.g., XLogWrite(). Therefore,

we consider statement XLogWrite() is implicitly control-

dependent on option CommitDelay.

Finding 2: Control-flow propagation of configurations

can be realized by explicitly determining the execution

of basic blocks, or implicitly controlling the execution

frequency. However, the latter (14.2%) could not be

recognized by existing tools.

IV. DESIGN OF CONFTAINTER

In this section, we describe the design of CONFTAINTER, a

taint analysis infrastructure for configurations, which can sup-

port various kinds of configuration analysis. CONFTAINTER is

inter-procedural (tracking values across methods), field sensi-

tive (configuration values could be stored in a field of a class or

structure), and designed for C/C++ programs. Based on the in-

frastructure, researchers and developers can easily implement

analysis techniques for different configuration-related targets.

Figure 5 shows the overview of CONFTAINTER, which takes

the source code and target option as input, and outputs the

taint results. CONFTAINTER first does the mapping between

the target option and the original configuration variable. After

that, CONFTAINTER conducts both data-flow and control-flow

analysis for configuration options. CONFTAINTER can analyze

implicit data flow and control flow or not, according to the

user’s intention.

Algorithm 1: Explicit data-flow analysis

Input: OriginalInst is the set of original instructions
from Configuration Variable Mapping.

Output: TaintSet is a set of tainted data-flow instructions.

1 TaintSet ← ∅;

2 TQueue ← OriginalInst;
3 while TQueue �= ∅ do
4 TaintIR ← TQueue.pop();
5 insert TaintIR into TaintSet;
6 UseChain ← TaintIR.getUsers();
7 for each User ∈ UseChain do
8 if User.Type() = GetElementPtr instruction then
9 Conduct field-sensitive analysis;

10 else if User.Type() = call/return instruction then
11 Conduct inter-procedural analysis;

12 else
13 Conduct intra-procedural analysis;

A. Configuration Variable Mapping

Before conducting taint analysis, CONFTAINTER needs to

select the configuration variables as taint seeds. Therefore, we

first integrate ConfMapper [27] to find the original variable,

which first loads the target option. ConfMapper is suitable

for systems, whose mapping practice from options to program

variables is clustered in specific source files and code snip-

pets [27]. The accuracy of ConfMapper could reach nearly

95% in many C/C++ programs.

With the configuration variables found by ConfMapper,

CONFTAINTER analyzes the LLVM IR to find the original

IR instruction of these variables. There are two types of

configuration variable mapping, i.e., global variables and fields

of object. And CONFTAINTER can support both the two types

of configuration variable mapping.

1) Global Variables: Figure 4a and 4b show an example

of mapping by global variables in PostgreSQL. The global

variable log_duration is the original variable used to load

the option log_duration. Since global variables are prefixed

with the ‘@’ character and the string of variable name in IR,

CONFTAINTER iterates over all global variables and searches

for the string @log_duration to find the IR instruction.

2) Fields of Object: Figure 4c and 4d show an example

of mapping by fields in Squid. Line 1-6 of Figure 4c declare

the class SquidConfig and initialize the variable Config.

Option max_stale is stored in the eighth field of Config,

i.e., maxStale. In LLVM IR, fields of object are loaded by

GetElementPtr instructions (line 7 in Figure 4d). CONF-

TAINTER iterates over all GetElementPtr instructions of the

program, and searches for the specified class type and offset

to find the IR instructions that load the configuration variable.

B. Explicit Data-flow Analysis

CONFTAINTER conducts explicit data-flow analysis first,

and the others are based on explicit data-flow propagation.
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Algorithm 1 shows the main process of explicit data-flow

analysis. The input is the original IR instructions from Con-

figuration Variable Mapping. And the output is the set of

tainted instructions by explicit data-flow propagation of the

target option. CONFTAINTER uses the def-use chain [28] and

call graph in LLVM IR to implement data-flow taint tracking.

In particular, we first initialize the output set, i.e., TaintSet
(Line 1), and save the original IR instructions from input

into TQueue (Line 2). Then, CONFTAINTER fetches each

instruction from the TQueue (Line 4), and inserts the fetched
instructions into TaintSet (Line 5), until the TQueue is empty.
For each fetched instruction, CONFTAINTER traverses its

def-use chains to propagate taints (Line 6-13). A User is an
instruction that uses the def instruction [28]. To simplify, CON-
FTAINTER will deal with different types of Users, respectively.
a) If the User involves GetElementPtr instructions, which is
used to load or store fields of object, CONFTAINTER conducts

field-sensitive analysis to taint a field of object (Line 8-9).

b) If the User involves call or return instructions, which is
used to call some functions with the tainted variable as a

parameter, CONFTAINTER conducts inter-procedural analysis

(Line 10-11). c) In other cases, CONFTAINTER conducts intra-
procedural analysis (Line 12-13), and inserts the newly tainted

variable of the current User into the TQueue. For example, in
Figure 4d, Squid loads the value of Config.maxStale to a

temporary variable ‘%1547’. Thus, CONFTAINTER taints the

temporary variable ‘%1547’, and put it into TQueue.
1) Field-sensitive Analysis: It is challenging to conduct

precise field and object-sensitive data-flow analysis in C/C++

programs, primarily due to the complexity of pointer analysis

when objects are passed through pointers multiple times.

To address this, we investigated how fields, used to store

configuration variables, are propagated in source code. Our

findings indicate that 32.5% (195/600) of configuration options

are propagated to fields of specific structures. Furthermore,

in 92.3% (180/195) of cases where a configuration option is

propagated to a field of a specific structure, that field is only

used to store the value of that option for all objects with

the same structure. To enable CONFTAINTER to track such

taints, we record the struct type and offset when propagat-

ing taints to fields. Then, when CONFTAINTER encounters

GetElementPtr instructions with the same struct type and

offset, it taints the result variable of those instructions and

adds it to TQueue for further analysis.
2) Inter-procedural Taint Tracking: CONFTAINTER uses

the call graph of the program to implement inter-procedural

taint tracking. If taints are propagated to a function parameter,

CONFTAINTER would take CFG of the called function, and

make the relevant parameter as new taint seeds. CONFTAIN-

TER only analyzes the source code of the target system, and

stops tracking taints until entering external functions. On the

other hand, if taints are propagated to return value of the

function, CONFTAINTER would use the call graph to find

all callers of the function, and make the call site as new

taint seeds. Moreover, CONFTAINTER also supports inter-

procedural analysis by references.

Algorithm 2: Explicit control-flow analysis and implicit

taint analysis

Input: TaintSet is set of explicit data-flow instructions.

DelayFuncSet is the set of user-defined delay functions
Output: ExplicitCSet is set of explicit controlled blocks.
ImplicitCSet is a set of implicit controlled blocks.
ImplicitTSet is a set of implicit data-flow instructions.

1 ExplicitCSet, ImplicitCSet, ImplicitTSet ← ∅;

2 for each TaintIR ∈ TaintSet do
3 if TaintIR.Type() = br instruction then
4 insert TaintIR.leftBranch into ExplicitCSet;
5 insert TaintIR.rightBranch into ExplicitCSet;
6 Conduct implicit data-flow analysis;

7 if TaintIR.dominates.contains(DelayFunc) then
8 Conduct implicit control-flow analysis;

9 else if TaintIR.Type() = call instruction ∧
TaintIR.getFunction() ∈ DelayFuncSet then

10 Conduct implicit control-flow analysis;

C. Explicit Control-flow Analysis

CONFTAINTER performs explicit control-flow analysis on

the basis of explicit data-flow propagation. Algorithm 2 shows

the main process of control-flow analysis and implicit taint

analysis. The input is the results of data-flow analysis, i.e., the

set of explicit tainted data-flow instructions. CONFTAINTER

also requires a set of user-defined delay functions as inputs.

And the outputs are the set of explicit, implicit control-flow

blocks, and implicit data-flow instructions. CONFTAINTER

uses the CFG in LLVM IR to implement control-flow taint

tracking. In particular, we first initialize the three output sets

(Line 1). Then, CONFTAINTER traverses the TaintSet and
fetches each instruction from TaintSet to find the branching
instructions, which are dominated by the target option (Line

2-3). When found, CONFTAINTER leverages transitivity of

control dependency to find the controlled blocks, and collects

them with with its branching instructions into ExplicitCSet
(Line 4-5). CONFTAINTER also records the called functions

in the controlled blocks. After that, CONFTAINTER conducts

implicit taint analysis, i.e., implicit data-flow analysis (Line 6)

and implicit control-flow analysis (Line 7-10).

D. Implicit Taint Analysis

CONFTAINTER performs implicit taint analysis according

to the user’s specifications.

1) Implicit data-flow analysis: Implicit data-flow analy-

sis builds upon explicit data-flow and control-flow analy-

sis. According to the definition of implicit data-flow prop-

agation, CONFTAINTER should identify the variables which

are assigned with different values in different configuration-

dominated branches. The most intuitive approach to is to

iterate through all the basic blocks in different branches, and

collect all the variables that appear and are assigned in each

branch. However, this can be difficult and error-prone because
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TABLE II: Effectiveness of CONFTAINTER on data-flow and control-flow analysis.

Project # Option Discovered Accuracy Recall Discovered Accuracy RecallData Flow Control Flow

HTTPD 33 195 185/195 (94.9%) 185/201 (92.0%) 66 64/66 (97.0%) 64/68 (94.1%)
PostgreSQL 18 121 117/121 (96.7%) 117/124 (94.4%) 32 32/32 (100%) 32/32 (100%)
Squid 24 166 158/166 (95.2%) 158/167 (94.6%) 46 44/46 (95.7%) 44/48 (91.7%)
SQLite 12 55 53/55 (96.4%) 53/55 (96.4%) 14 14/14 (100%) 14/14 (100%)
Coreutils 13 72 72/72 (100%) 72/74 (97.3%) 16 16/16 (100%) 16/16 (100%)

Total 100 609 585/609 (96.1%) 585/621 (94.2%) 174 170/174 (97.7%) 170/178 (95.5%)

there may be many nested branches and basic blocks under

configuration-dominated conditional statements.

To this end, CONFTAINTER uses phi nodes and instruc-
tions [32] of IR to implement implicit data-flow analysis.

The phi instructions are used to choose one value based on
a condition, and consist of several predecessor nodes with

corresponding values. When CONFTAINTER identifies a con-

ditional statement (CS) that is dominated by the target option,

CONFTAINTER will check whether there is a phi instruction
after the junction of two branches. Especially, we identify the

specific phi instructions if a) there exists a predecessor node
P1, which post-dominates a successor node of CS; and b) there
exists another predecessor node P2, which is post-dominated

by another successor node of CS. If found, CONFTAINTER

would taint the result variable of the phi instruction as implicit
data-flow propagation, and insert them into ImplicitTSet.

2) Implicit control-flow analysis: CONFTAINTER checks

the pattern of implicit control flow described in § III-C3.

CONFTAINTER first identifies whether the tainted function is a

delay function and inside a loop (Line 9); also, CONFTAINTER

checks whether the dominated blocks of the target option

contain a delay function and inside a loop (Line 7). Then,

CONFTAINTER regards the blocks in the loop as implicit

control-flow propagation, and inserts them into ImplicitC-
Set. For example in Figure 1(b), CONFTAINTER finds the

delay function pg_usleep is tainted by the target option

CommitDelay, and the function is inside the for loop. Thus,

CONFTAINTER collects the blocks of the loop as implicit

control-flow propagation.

E. Implementation

We implement CONFTAINTER using the LLVM com-

piler infrastructure with version 10.0. CONFTAINTER uses

Clang [33] and WLLVM [34] to build the IR of the target

systems. Some parameters are necessary during building IR.

Using ‘-fno-discard-value-names’ ensures that the actual name

of variables is present regardless of the build mode. ‘-g’

ensures the standard debugging information of the target sys-

tems. ‘-O0’ ensures turning off compile-time optimizations to

preserve semantic information of the source code. ‘-mem2reg’

ensures phi nodes for SSA optimization. We tried our best to

make CONFTAINTER support various types of IR instructions,

including terminator, binary, bitwise binary, memory, and other

instructions. For applicability, CONFTAINTER provides many

interfaces for intermediate results of taint analysis, e.g.,

getExplicitDataflow(). To make the output readable,

CONFTAINTER also provides interfaces to output the process

of how taints are propagated from the original variable to any

tainted variables, both in source code and IR level.

V. EVALUATION

All experiments are conducted on a 64-bit Ubuntu 18.04

machine (8 cores, Intel Core i7-9700K, and 32GB RAM).

To evaluate CONFTAINTER, we consider the following three

research questions:

• RQ1: How effective is CONFTAINTER in analyzing data-
flow and control-flow propagation? This question evalu-

ates the accuracy rate and recall rate of CONFTAINTER

in both data-flow and control-flow analysis.

• RQ2: Can CONFTAINTER outperform the existing pop-

ular tools for taint analysis? This question compares

CONFTAINTER with DG [14] and SVF [16].

• RQ3: How applicable is CONFTAINTER to apply to

configuration-related tasks? This question evaluates the

applicability by applying CONFTAINTER to misconfigu-

ration detection and configuration-related bug detection.

A. RQ1: Effectiveness on Analyzing Data-flow and Control-
flow Propagation

1) Experimental Setup: To evaluate the effectiveness of

CONFTAINTER in analyzing data- and control-flow propaga-

tion, we choose 3 large-scale systems (HTTPD, PostgreSQL,

and Squid) as the target systems. To avoid over-fitting, we also

choose SQLite [35] and Coreutils [36], which are not included

in our study. SQLite is a popular embedded database engine,

and widely used in web browsers and operating systems. Core-

utils are the union package of GNU core utilities, and we select

global variables of Coreutils to simulate configuration options.

We use SQLite and Coreutils to evaluate the effectiveness of

CONFTAINTER in medium- and small-scale systems.

We randomly sample 100 options from the five systems as

evaluation targets, based on the proportion of options in each

system. Please note that the selected options do not overlap

with the options we studied in Section III. Then, we manually

analyze and collect the data- and control-flow propagation of

the target options as ground truth. The analysis and collection

were independently done by two authors, and took five days.

When they diverged, a third inspector was consulted for addi-

tional discussions until consensus were reached. The ground

truth is shown in Table II. For data-flow analysis, we check the

accuracy and recall rate on the code statements CONFTAINTER

finds. For control-flow analysis, we check the accuracy and

recall rate on the basic blocks CONFTAINTER finds.
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2) Results and analysis: The evaluation results are shown
in Table II. Overall, CONFTAINTER performs well both in

data-flow and control-flow analysis. The average accuracy rate

of data-flow analysis is 96.1% (585/609), and the average re-

call rate is 94.2% (585/621). The average accuracy of control-

flow analysis is 97.7% (170/174), and the average recall is

95.5% (170/178). And the execution time of CONFTAINTER

for a single option is within 20 minutes.

The false positive of CONFTAINTER is mainly due to inac-

curate pointer analysis and lack of path-sensitive analysis. In

this paper, we find configuration options are usually stored in

some field variables of specific structures, and one field would

only be used to store the corresponding configuration option.

Thus, CONFTAINTER approximates pointer analysis by taint-

ing the fields with the same struct type and offset, which would

lead to false positives. For example, in HTTPD, the option

limit_xml_body is assigned to the field limit_xml_body

of structure core_dir_config. And CONFTAINTER would

taint all the statements where the field limit_xml_body

of structure core_dir_config appears. The false positive

occurs as HTTPD initializes the field during startup. While

there is no data-flow propagation of the option at this time.

The false negative of CONFTAINTER is mainly due to the

non-availability of some functions, e.g., standard library or

external library functions. CONFTAINTER only analyzes the

source code of the target system, which would break potential

data- and control-flow propagation. Moreover, the inaccuracy

of pointer analysis also makes CONFTAINTER misses some

data and control-flow propagation.

Answer to RQ1: This result indicates that CONFTAINTER
is effective in data- and control-flow analysis, with an
accuracy of 96.1% and 97.7%, and a recall of 94.2% and
95.5%, respectively.

B. RQ2: Comparison with the Existing Tools

1) Experimental Setup: Taint analysis is often used for fault
diagnosis. In order to evaluate the effectiveness of CONF-

TAINTER in real-world cases, we picked 20 configuration-

related bugs from 4 popular systems (MySQL, HTTPD, Squid,

and SQLite). We selected the bug-induced options as target

options, and extracted the code statements tainted by target

options from the relevant patches as ground truth. The analysis

and collection were independently performed by two authors

to ensure accuracy.

We compare CONFTAINTER with DG [14] and SVF [16].

DG is also one of the most popular open-source frameworks

and supports both data- and control-flow analysis. SVF is a

static data-flow analysis framework and has more than 1k stars

in Github. We executed the three tools to conduct taint analysis

on the target options on the bug-fixed versions, and examined

how many explicit data flows and implicit flows they could

identify in the ground truth.

2) Results and analysis: The evaluation results in real cases
are shown in Table III. We found that CONFTAINTER has com-

parable capabilities to DG and SVF in analyzing explicit data

flows. Specifically, it was able to identify 96.0% (144/150)

TABLE III: Taint analysis results in real cases compared with

DG [14] and SVF [16].

Bug ID Option LOCE†Ours DG SVF Implicit‡

MySQL #28808 log queries not indexes 4 4 4 4 2
MySQL #29015 tmpdir 9 9 9 9 0
MySQL #51631 general log 10 10 10 10 0
MySQL #45689 interactive timeout 7 7 7 7 2
MySQL #44100 max connections 6 6 6 6 0
HTTPD #43502 CustomLog 4 4 4 4 0
HTTPD #44736 VirtualHost 4 4 4 4 0
HTTPD #56226 KeepAliveTimeout 8 7 7 8 2
HTTPD #35256 AllowEncodedSlashes 12 12 12 12 3
HTTPD #61355 DirectorySlash 11 8 10 10 0
Squid #1703 diskd program 7 7 7 7 0
Squid #579 useragent log 4 4 4 4 2
Squid #918 cache dir 5 5 5 5 0
Squid #4827 netdb filename 7 5 7 7 0
Squid #1931 allow underscore 4 4 4 4 1
SQLite #a1fa journal size limit 10 10 10 10 0
SQLite #c48d count changes 11 11 10 10 0
SQLite #eb94 reverse unordered 7 7 7 7 2
SQLite #3c9e integrity check 10 10 10 10 0
SQLite #a340 case sensitive like 10 10 10 10 2

Total - 150 144 147 148 16

† LOCE is short for Line of Code of Explicit data flows of the options in
the patch of the bug.

‡ Implicit: implicit data and control flows found by CONFTAINTER.

of the explicit data flows in the ground truth, which is

comparable to DG (98.0%) and SVF (98.7%). CONFTAINTER

lacks precise pointer analysis, which leads to fewer discoveries

of some data flows compared to DG and SVF. However,

CONFTAINTER is capable of identifying a significant number

of implicit data and control flows that DG and SVF were

unable to detect. This suggests that classic taint analysis tools

may not be fully equipped for configuration analysis.

Answer to RQ2: This result indicates CONFTAINTER has
comparable capabilities to existing tools in analyzing ex-
plicit data flows. Additionally, CONFTAINTER can identify
implicit flows that existing tools are not able to analyze.

C. RQ3: Applicability of CONFTAINTER in Configuration-
related Tasks

In this section, we evaluate the applicability by applying

CONFTAINTER to two types of configuration-related tasks,

i.e., misconfiguration detection and configuration-related bug

detection.

1) Misconfiguration detection: Some studies of misconfig-
uration detection leverage static analysis to infer configuration

constraints from source code. For example, SPEX [7] infers

constraints (e.g., value relationship and control dependency)

by tracking the data and control flow of configuration options,

and identifying custom code patterns. The code patterns are

as followed: a) If two variables from different options’ data-

flow paths are compared with each other, SPEX infers value

relationship of the two options. b) If the conditional statement

and its dominating statements involve two variables from

different options’ data-flow paths respectively, SPEX infers

control dependency of the two options.
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TABLE IV: Configuration constraints inferred by TInfer and

SPEX. Each number indicates constraints inferred by the

respective tool, and the percentage indicates the accuracy.

Project Value Rel. Control Dep.
TInfer SPEX TInfer SPEX

PostgreSQL 8 (88.9%) 6 (85.7%) 42 (91.3%) 44 (91.7%)
OpenLDAP 3 (75.0%) 2 (50.0%) 2 (66.7%) 0 (N/A)
Squid 9 (100.0%) 9 (100.0%) 15 (83.3%) 14 (77.8%)

Total 20 (90.9%) 17 (85.0%) 59 (88.1%) 58 (87.9%)

In this section, we tried a prototype tool by scaling CON-

FTAINTER to infer constraints, by using the same patterns in

SPEX. Based on CONFTAINTER infrastructure, We implement

the prototype tool, TInfer, with no more than 90 lines of code
in C++ language. We evaluate TInfer and SPEX on three

systems (HTTPD, OpenLDAP and Squid). The results are

manually confirmed by two authors by checking out the official

documentation and source code. As shown in Table IV, the

result indicates TInfer has comparable capabilities in inferring

constraints compared with SPEX. And CONFTAINTER can

infer 4 more constraints than SPEX with higher accuracy.

The prototype experiment indicates CONFTAINTER is highly

applicable for configuration analysis.

2) Configuration Update Bug Detection: Many software

systems support updating the options dynamically to provide

flexibility and persistent services. However, dynamic config-

uration updates may also affect the system reliability at the

same time. Many bug reports [37]–[41] show that, it may lead

to unexpected results like software crashes or functional errors,

even if the new option values are valid. We collected 75 real-

world bugs from 5 widely used systems, and found nearly half

(45%) of bugs fail to assign configuration-related variables

with updated values [42]. Therefore, we designed a method of

metamorphic testing to detect the bugs with the oracle: The

values of program variables related to configuration options

should be the same, no matter whether the options are loaded

since the system startup or updated dynamically.

In this section, we tried a prototype tool, TCub, by scaling

CONFTAINTER to detect configuration update bugs. Specially,

we conduct two executions for each test; the first execution

loads the option at the startup phase, while the second exe-

cution updates the option to the same value at runtime. We

record the values of configuration-related variables during the

two executions, and check whether the same or not to identify

the bugs. Benefiting from the high applicability and program

interface of CONFTAINTER, we implement the submodule of

TCub to find the variables tainted by (explicit and implicit)

data flow of target options and their locations, with no more

than 40 lines of code in C++ language.
We evaluate TCub on 33 reproduced bugs from 5 systems

to detect known bugs, and the latest version of the same

systems to detect unknown bugs. The results are shown in

Table V. TCub successfully detected most (31/33=94%) of

the known bugs. In the 2 cases left, taint analysis fails to

get configuration-related variables due to complicated pointer

TABLE V: Effectiveness of TCub on known and new bugs.

Project Reproduced Bugs Detected by TCub New bugs

MySQL 11 11 1
MariaDB 6 5 1
Redis 13 13 1
PosrgreSQL 1 1 0
Squid 2 1 2

Total 33 31 5

TABLE VI: Coverage of configuration fuzzing.

Coverage TFuzz Baseline

Configuration coverage 26/27 (96.3%) 23/27 (85.2%)
Basic block coverage 113/224 (50.4%) 93/224 (41.5%)
Branch coverage 96/197 (48.7%) 82/197 (41.6%)

analysis. Moreover, TCub found 5 new bugs in 4 systems,

all of which have been confirmed or fixed by developers.

The prototype experiment indicates CONFTAINTER is highly

applicable for configuration bug detection.

3) Fuzzing for configuration bugs: Fuzzing is a promising
approach for vulnerability detection and has been applied to

various software. However, the existing fuzzing technology

usually ignores configuration options as part of fuzzing seeds,

which may miss some configuration-related bugs.

In this section, we tried a prototype experiment and tool,

TFuzz, by applying CONFTAINTER to directed grey-box

fuzzing [43] for configuration-related bug detection. In par-

ticular, we first use CONFTAINTER to find configuration-

related code statements, including the data-flow and explicit

control-flow propagation. And then we instrument the basic

blocks involved, which are used to collect the coverage of

basic blocks related to configurations. After that, we use

Aflgo [43] with Squirrel [44] fuzzing framework to generate

test cases (SQL statements). We also design mutation rules for

configurations to increase coverage, e.g., randomly mutating

the options that dominate conditional statements.

Based on CONFTAINTER infrastructure, we implement the

submodule to record the basic blocks tainted by configurations

with no more than 100 lines of code in C++ language. To eval-
uate the effectiveness, we collect 27 options in SQLite for the

fuzzing test. We set the fuzzing method without configuration-

related code guidance (Aflgo + Squirrel) as the baseline.

The results are shown in Table VI. With configuration-related

code guidance, the coverage of configuration options is in-

creased from 85.2% (23/27) to 96.3% (26/27). And the basic

block coverage of configuration options increased from 41.5%

(93/224) to 50.4% (113/224). Moreover, branch coverage of

configuration options increased from 41.6% (82/197) to 48.7%

(96/197). On the other hand, we also find four hangs and

crashes 1 caused by configurations, which could not be found

by previous works. The prototype experiment indicates CONF-

TAINTER is highly applicable for configuration bug detection.

Answer to RQ3: This result indicates CONFTAINTER is

1The details of the four hangs and crashes are shown in our repository.
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highly applicable and scalable for configuration-related
tasks with a few lines of code.

D. Discussion

In this section, we discuss the limitations of CONFTAINTER.

The first limitation is the potential inaccuracy of configuration

variable mapping. We integrate ConfMapper [27] to find

the original configuration variable. Although the accuracy of

ConfMapper could reach 95% in many C/C++ programs,

potential errors of ConfMapper might reduce the accuracy

of CONFTAINTER. To this end, we also provide interfaces

to accept user-provided variable mapping. This also enables

CONFTAINTER to support taint analysis on regular variables.

The second limitation is that the analysis of ConfTainter is

not path-sensitive, which might lead to overtainting. Some

variables should not be tainted because they have not stored

option values at runtime. Our future work will focus on

supporting path-sensitive analysis to reduce false positives.

Another limitation is the potential omissions in the propagation

policy of configurations. In this paper, we concluded the

implicit control-flow propagation, which had not been inves-

tigated by previous studies. To avoid missing some implicit

propagation, we selected various categories of systems and

configuration options for the empirical study.

VI. LESSONS LEARNED

In this section, we discuss our experience and lessons

learned while developing and applying CONFTAINTER.

Leveraging the propagation feature of taint seeds is
able to improve the efficiency of field-sensitive analysis.
Achieving precise field and object-sensitive analysis in C/C++

programs is typically challenging. To achieve this goal, taint

analysis tools need to track all traces of the tainted object and

inspect whether the specific field propagates the taint. The

lack of precise pointer and path-sensitive analysis also leads

to false positives and false negatives. To this end, we conduct

a study on the propagation feature of fields that store option

values. We find that configuration options are usually stored

in some specific fields of particular structures, with one field

designated to store the corresponding option. Therefore, we

record the struct type and offset if taints are propagated to

fields. CONFTAINTER would then taint all the fields with the

same struct type and offset, which significantly improved the

efficiency, compared to other taint tools.

A good practice in configuration design is to con-
sider the interplay between user-defined configurations,
developer-defined constants, and workload-related vari-
ables. Throughout our investigation of configuration prop-

agation, we frequently observed that configurations interact

with constants and workload-related variables, thereby in-

fluencing program behaviors. For instance, in the following

code, the maximum value among the configuration option

(i.e., srv_page_size), constant (i.e., IO_BLOCK_SIZE), and

workload-related variable (i.e., io_size) is used to calculate

the IO buffer size for file sorting. By taking these factors

into account, developers can enable end-users to customize

the behavior of the system while preventing unexpected side

effects from user-defined configurations. This practice also

ensures that the system is adaptable to varying workload.

1 int merge_io_buffer_size(int n_buffers){
2 int io_size = load_io_buffer_size(n_buffers);

3 return max(max( srv_page_size ,IO_BLOCK_SIZE),io_size);}

Scalable infrastructure and convenient interfaces for
intermediate results can effectively help developers to
perform configuration analysis. There are many existing

taint analysis tools [14]–[16], [29]. These techniques, however,

are rarely used in configuration analysis due to a lack of

supporting some propagation policies of configurations and

interfaces for intermediate results. Therefore, we implemented

CONFTAINTER as a taint analysis infrastructure to support

various kinds of configuration analysis. For applicability, we

provide many interfaces for intermediate results of taint analy-

sis, e.g., getExplicitDataflow(). Based on the infrastruc-

ture and intermediate results, developers can easily implement

analysis techniques for different configuration-related targets.

The evaluation in Section V-C shows that, it is easy to

apply CONFTAINTER infrastructure to misconfiguration and

bug detection with only a small amount of C++ code.

VII. RELATED WORK

Static taint analysis. Static taint analysis [14]–[16], [29]
tracks data and control flow to identify bugs, with no need

for concrete execution. DG [14] conducts data and control

dependence analysis to construct dependence graphs [45] of

the program. SUTURE [15] conducts static points-to and high-

order taint analysis to discover high-order taint vulnerabilities.

These methods, however, are not suitable for configuration

analysis due to the lack of certain propagation policies of

configurations. In this paper, we conduct an empirical study

on the propagation policy of configurations, and design CON-

FTAINTER to support various kinds of configuration analysis,

e.g., explicit and implicit analysis for data or control flow.

Some works [46]–[51] focus on improving the precision

and efficiency of static analysis. ConDySTA [46] uses dynamic

analysis results as supplements to static analysis to reduce false

negatives. Fusion [47] improves the scalability of the path-

sensitive analysis by conducting an optimized SMT-solving

method, which works directly on the program dependence

graph. Dillig et al. [48] improve path sensitivity by considering

the variable observability and sufficient conditions of original

path constraints. P/Taint [49] unifies points-to analysis and

taint analysis to improve precision and recall. Pearce et al. [51]

extend the set-constraints language to support an efficient field-

sensitive pointer analysis for C programs. These methods can

also be used as supplements and improve the effectiveness of

CONFTAINTER.

Dynamic taint analysis. Dynamic taint analysis [18], [52]–
[54] is also a form of information flow analysis, useful for

identifying the origin of data during execution. Phosphor [52]

conducts dynamic taint tracking for the Java Virtual Machine

(JVM), and simultaneously achieves high performance, sound-

ness, precision, and portability. Neutaint [53] employs neural

1649

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:02:54 UTC from IEEE Xplore.  Restrictions apply. 



program embeddings to conduct the dynamic taint analysis,

and utilizes saliency maps to reason about the most influential

sources for different sinks. TaintInduce [54] automatically

learns taint rules with minimal architectural knowledge by

observing the execution behavior of instructions.

VIII. CONCLUSION

Taint analysis is a form of information-flow analysis, which

tracks data and control flow to identify vulnerabilities and

diagnose bugs. However, existing taint analysis tools are not

suitable for configuration analysis due to the complex effects

of configurations on program behaviors. We conducted an

empirical study and concluded four propagation policies of

configuration options. In this paper, we design and implement

a taint analysis infrastructure for configurations, CONFTAIN-

TER, which can support explicit and implicit analysis for

data or control flow. Based on the infrastructure, researchers

and developers can easily implement analysis techniques for

different configuration-related targets. The evaluation shows

CONFTAINTER is is highly effective and applicable.
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