
How to Pet a Two-Headed Snake? Solving Cross-Repository

Compatibility Issues with Hera

Yifan Xie

National University of Defense

Technology

Changsha, China

xieyifan@nudt.edu.cn

Zhouyang Jia
∗

National University of Defense

Technology

Changsha, China

jiazhouyang@nudt.edu.cn

Shanshan Li
†

National University of Defense

Technology

Changsha, China

shanshanli@nudt.edu.cn

Ying Wang

Northeastern University

Shenyang, China

wangying@swc.neu.edu.cn

Jun Ma

National University of Defense

Technology

Changsha, China

majun@nudt.edu.cn

Xiaoling Li

National University of Defense

Technology

Changsha, China

lixiaoling@nudt.edu.cn

Haoran Liu

National University of Defense

Technology

Changsha, China

liuhaoran@nudt.edu.cn

Ying Fu

National University of Defense

Technology

Changsha, China

fuying@nudt.edu.cn

Xiangke Liao

National University of Defense

Technology

Changsha, China

xkliao@nudt.edu.cn

ABSTRACT

Many programming languages and operating system communities

maintain software repositories to build their own ecosystems. The

repositories often provide management tools to help users using

the packages. The tools are often, if not all the times, well-designed

to handle intra-repository dependencies without considering inter-

repository dependencies. The users, however, often need packages

from different repositories, and thus may suffer from compatibility

issues. We refer to these issues as Cross-repository Compatibility
(CC) issues. Existing works typically focus on a single software

repository and are insufficient to detect CC issues.

To fill this gap, we use both Python and Ubuntu repositories as

representatives to study the root cause of CC issues, then summarize

their triggering patterns and failure symptoms. Guided by the above

analysis, we design Hera, an automatic tool to solve CC issues.

Hera first builds a cross-repository compatibility database offline,

and then online predicts, detects and fixes CC issues in the user’s

system environment. In our evaluation, we construct a dataset of

1,692 real-world CC issues, and Hera can detect 3,689 issues with

the precision of 90.5% and the recall of 93.7%. We also collected

27 real-world CC issues from GitHub and Stack Overflow, and

∗
Zhouyang Jia is the co-first author.

†
Shanshan Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00

https://doi.org/10.1145/3691620.3695064

reproduced 26 of them. Hera can detect all the 26 cases, and provide

accurate reasons as well as fixing advice.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories.

KEYWORDS

Python Repository, Ubuntu Repository, Compatibility Issue

ACM Reference Format:

Yifan Xie, Zhouyang Jia, Shanshan Li, Ying Wang, Jun Ma, Xiaoling Li,

Haoran Liu, Ying Fu, and Xiangke Liao. 2024. How to Pet a Two-Headed

Snake? Solving Cross-Repository Compatibility Issues with Hera. In 39th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3691620.3695064

1 INTRODUCTION

Package management tools are widely used to manage software de-

pendency and automate the process of package installation. Many

programming language communities provide their own manage-

ment tools. For example, pip is responsible for managing nearly

half a million Python packages [15], while npm handles over three

million JavaScript packages [11]. Besides, operating system com-

munities also provide management tools like apt and dnf. These
tools manage packages for operating system distributions instead

of specific programming languages. For instance, in distributions

like Debian/Ubuntu, apt is capable of managing deb packages in-
cluding but not limited to C/C++/Python/JavaScript [1]. Similarly,

dnf can handle rpm packages of different programming languages

in distributions like RHEL/Fedora [5].

A package management tool itself is often, if not all the times,

well-designed to handle the dependencies of packages in its own

694

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yifan Xie, Zhouyang Jia, Shanshan Li, Ying Wang, Jun Ma, Xiaoling Li, Haoran Liu, Ying Fu, and Xiangke Liao

1. $ apt install python3-amp
2. Successfully install python3-amp 0.6.1 python3-ase 3.19.0-1

python3-scipy1.3.3 python3-numpy 1.17.4
3. $ python3
4. >>> import amp

5. $ pip install pandas
6. Successfully install pandas 1.5.3 numpy 1.24.3
7. $ python3
8. >>> import amp
9. Traceback (most recent call last):
10. ···
11. File "/home/xxx/.local/lib/python3.8/sitepackages/numpy/__init__.py", ···
12. raise AttributeError("module {!r} has no attribute "
13. AttributeError: module 'numpy' has no attribute 'typeDict'

Figure 1: Package incompatibility due to mixing apt and pip

installation in Ubuntu.

repository. To achieve this, the repository usually requires its pack-

ages explicitly specify dependent packages and corresponding ver-

sion ranges. From the view of an end user, however, they often

need packages cross different repositories. For example, Ubuntu

users may alternately use apt and pip. In these cases, compatibility

issues may happen. Figure 1 illustrates a real-world example, which

contains a series of commands installing Python packages using dif-

ferent management tools. Line 1 uses apt to install “amp 0.6.1” (an
atomic-level machine learning package), as well as its dependencies

“ase 3.19.0-1”, “scipy 1.3.3”, and “numpy 1.17.4”. At this point,
“amp” can be imported normally (Line 3-4). Line 5 then uses pip to

install “pandas 1.5.3” and its dependency “numpy 1.24.3”. After
that, “amp” can not be imported any more (Line 7-8). According

to the traceback information, “amp” is incompatible with “numpy”,
which locates at “$HOME/.local/lib/python3.8/site-packages/”, i.e.,

the install path of pip. This means that when importing “amp 0.6.1”
(installed via apt), Python interpreter will import “numpy 1.24.3”
(installed via pip) instead of “numpy 1.17.4” (installed via apt) ,
and thus resulting in a compatibility issue. We refer to this issue as

a Cross-repository Compatibility (CC) issue.
There has been a long research history on addressing compatibil-

ity issues, which can be roughly divided into two major categories.

First, many works focus on detecting dependency conflicts (i.e.,

if one package depends on two conflicting versions of another

package) [27, 36, 45, 49, 50, 52–55] and dependency resolving (i.e.,

if there is a package version that is compatible with all installed

packages) [24, 25, 48]. The former often addresses in a given pro-

gramming language community (e.g., Python, JAVA, JavaScript),

while the latter usually works on an operating system distribution.

All these works are hard to handle cross-repository issues. Second,

some works apply testing or program analysis techniques to detect

package compatibility (i.e. if two packages witinh given versions

are compatible with each other) [28, 33, 40, 42, 46, 56]. These works

can determine if the specified version ranges of dependent packages

(often in package specification files) contain incompatible versions.

Cross-repository compatibility issues, however, often happened

even the version ranges inside all repositories are correct.

In this paper, we focus on solving CC issues, which are caused

by inter-repository dependencies. We assume both apt and pip are

correct, since they only handle intra-repository dependencies. To

achieve this, we propose Hera, an automatic tool to predict, detect
and fix CC issues:

• Predicting: When user execute installation commands, Hera

predicts if the commands could cause CC issues.

• Detecting: Hera scans all Python packages installed in user’s

system, and detects if there are CC issues.

• Fixing: When CC issues were detected, Hera provides fixing

advice to prevent users from failures.

As all the three scenarios are working in the user’s production

environment, the overhead should be critical when deploying Hera.

In this regard, the insight of Hera is to build a cross-repository

compatibility database offline, and then online predict, detect and

fix CC issues. Both the offline and online phases are challenging:

• Building a cross-repository compatibility database is hard.

The software repository may contain a large number of packages

(e.g., pip is managing nearly half a million packages), and most of

them have long evolution histories. These packages keep evolv-

ing asynchronously, and thus the database has to keep updating

accordingly. The combinations of dependency relationships be-

tween packages from different repositories would be huge. It

would be nearly impossible to consider all possible combinations

of package versions.

• Predicting, detecting and fixing CC issues are non-trivial.

Each repository has its own management tool with unique in-

stalling strategy and directory. When installing a package, apt
installs a specific version if the package is not found in its own in-
stalling directory, whereas pip installs the latest version when the

package is not found in any system-level directory. When import-

ing a package, Python interpreter tries all directories according

to a pre-defined order. A CC issue involves interactions of the

above three roles, i.e., apt, pip and Python interpreter, making it

complex to be predicted, detected or fixed.

To address the first challenge, we study the root cause of real-

world CC issues and find that each issue contains an application
package and a library package (e.g., “amp” and “numpy” in Figure 1):

the application package is always hosted in the apt repository,
whereas the library package is always hosted in both the apt and
pip repositories. Please note that, the application and library are

relative concepts as an application itself may be a library of anther

application. This finding implies two relationships: a) the applica-

tion package is compatible with the library package hosted in apt;
b) the library package hosted in apt is incompatible with the same

package hosted in pip. In this regard, Hera creates two tables in

the compatibility database:

• Dependency table: For each application package in the apt
repository, this table collects its API usages of each library pack-

age in the apt repository.
• Compatibility table: For each library package in the apt repos-
itory, this table collects its API compatibility with each version

of the same package hosted in the pip repository.

These two tables provide sufficient information about CC issues, and

the scale is acceptable since apt only manage about 3,319 Python

packages with selected versions. When an OS distribution is re-

leased, Hera builds a new database. After that, Hera incrementally

fetches the latest package versions from the pip repository.

695

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

How to Pet a Two-Headed Snake? Solving Cross-Repository Compatibility Issues with Hera ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

As for the second challenge, we propose a system-level package

dependency graph (S-PDG) to describe the interactions among apt,
pip and Python interpreter. The S-PDG contains dependencies of

all Python packages in the user’s system. To achieve this, Hera

first builds two dependency graphs of packages installed by apt and
pip, respectively. We refer to these two graphs as repository-level

package dependency graphs (R-PDG). After that, Hera merges the

two R-PDGs into one S-PDG according to the importing rules of

Python interpreter. When two versions of a package occur in dif-

ferent R-PDGs, Hera queries the compatibility table to determine

if there are breaking APIs between the versions. If yes, Hera fur-

ther queries the dependency table to check if there is an application

package in the system using the breaking APIs. If yes, Hera reports

a CC issue. Finally, Hera can provide fixing advice according to

the dependencies in R-PDGs, which are regarded as compatible

since only containing intra-repository dependencies. For the pre-

diction scenario, Hera dry-runs the installation command, then

temporarily adds the packages to be installed into the S-PDG.

To evaluate Hera, we first constructed a real-world dataset of

CC issues based on all Python packages maintained by apt. The
repository includes 23,866 pairs of application and library packages.

We installed the application and library by apt and pip respectively,
and 1,692 pairs failed when importing. We then used Hera to ana-

lyze all the pairs and detected 3,689 CC issues with the precision

of 90.5%. These issues can cover 93.7% of the above 1,692 ones. To

evaluate the effectiveness of analyzing incompatible API changes,

we manually checked the results and found the precision and recall

are 91.1% and 98.2% at a 95% confidence level and a error margin of

5%, respectively. Finally, we collected 27 real-world CC issues from

GitHub and Stack Overflow, and reproduced 26 of them. Hera can

detect all of the 26 cases, and provide accurate reasons as well as

fixing advice.

In summary, the contributions of this paper are as follows:

• To the best of our knowledge, this is the first work addressing

compatibility issues across software repositories. We defined the

CC issues, and studied them from the Python perspective. The

problem could be extended to other programming languages.

• We designed Hera, a novel tool to build a cross-repository com-

patibility database offline, and the online predict, detect and fix

CC issues. Hera could analyze the whole software repositories,

and keep lightweight in users’ production environment.

• We conducted a comprehensive evaluation and found Hera is

effectiveness in detecting CC issues in terms of both precision

and recall. Hera could also detect and fix real-world CC issues

from GitHub and Stack Overflow.

The source code of Hera and experiment data are publicly available

at https://github.com/cse0001/Hera.

2 BACKGROUND

All CC issues involve two important stages of using a package: in-
stalling and importing the package. In this section, we will introduce
the installing and importing strategy of Python packages.

2.1 The Installing Strategy of Python Packages

In OS distributions like Ubuntu, users can use either apt or pip to

install Python packages. The most important step of these tools

1.'/usr/lib/python38.zip',
2.'/usr/lib/python3.8',
3.'/usr/lib/python3.8/lib-dynload',
4.'/home/xxx/.local/lib/python3.8/site-packages',
5.'/usr/local/lib/Python3.8/dist-packages',
6.'/usr/lib/python3/dist-packages'

Figure 2: The default directory order scanned by Python

interpreter in Ubuntu.

is to find appropriate versions of the required packages (as well

as their dependencies) that satisfy given version constraints. This

process is also called dependency resolving [49]. On one hand, apt
resolves dependency within its own directory and will install some

specific versions if not found in the directory. The versions are

pre-defined corresponding to the version of OS distribution [24].

On the other hand, pip resolves dependency by scanning all system-

level Python directories [16], and a) if the required package is not

found in any directory, pip will by default install the latest version;

b) if the package is found and the version satisfied constraints,

pip will do nothing; c) if the package is found but the version is

inappropriate, pip will either replace it with an appropriate version

(when the package is in pip directories) or only install an appropriate
version without removing the old one (when the package is in other

directories).

In conclusion, apt installs a package without considering if pip
has already installed it. As a result, it is common to have different

versions of a package in different directories when using apt and
pip alternately,

2.2 The Importing Strategy of Python Packages

When importing a package, Python interpreter initiates a sequen-

tial search process through various package directories to find

the package [16]. Users can view all directories used by the inter-

preter through sys.path. Figure 2 shows the default search order

of Python interpreter in Ubuntu system. The first two are Python

standard library directories (line 1-2), which store the compressed

and uncompressed standard libraries, respectively. The third is for

dynamically loaded compiled extension modules (line 3). Others

are the third-party package directories, including pip user-level

directory (line 4), the pip system-level directory (line 5), and the apt
system-level directory (line 6). The user-level and system-level di-

rectories store packages installed by the normal user and root users.

Python interpreter searches for the required packages by names in

the order of the directories with a find and import strategy, i.e., not
searching further directories if the package has already been found.

If not found, the interpreter will report an ImportError.
In conclusion, Python interpreter prioritizes importing packages

from pip directories over apt directories without considering the
versions by default. As a result, it could be possible to import an

incorrect version when the system having multiple versions.

3 MOTIVATION

In this section, we first introduce the reason why both apt and
pip are necessary for installing Python packages, then analyze the

root causes of widely presented CC issues, finally summarize the

characteristics of CC issues.

696

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yifan Xie, Zhouyang Jia, Shanshan Li, Ying Wang, Jun Ma, Xiaoling Li, Haoran Liu, Ying Fu, and Xiangke Liao

apt repo
amp 1.5.3Python

interpreter

import

compatible

import

numpy 1.17.4
pip repo

···

(a) Dependency importing before installing pandas

apt repo
amp 1.5.3Python

interpreter

import

compatible

import

numpy 1.17.4
pip repo

numpy 1.24.3 pandas 1.5.3
compatible

incompatible

(b) Dependency importing after installing pandas

Figure 3: The root cause of the example CC issue

3.1 Both Repositories Play Significant Roles

The PyPI [18] repository hosts hundreds of thousands of Python

packages, each of which contains all history versions. The repos-

itory provides pip [15], one of the most popular tool for users to

install Python packages with significant flexibility. Besides, the

Ubuntu repository also provides thousands of Python packages,

which can be managed by apt. These packages are different from
the ones of the PyPI repository in three aspects:

• Providing unique packages: The Ubuntu repository provides

some packages which are not in the PyPI repository (e.g., fail2ban,
a security tool [4]), whereas their dependencies may be hosted in

both repositories (e.g., whois [22], which is depended by fail2ban).
• Ensuring security and stability: Python packages from apt
are usually experienced rigorous audit and their versions are

carefully selected tomatch the Ubuntu distribution version. These

manual efforts can ensure the system security and stability.

• Handling non-Python dependencies: Some Python packages

may depend on non-Python system libraries (e.g., lxml [19]).

The Ubuntu repository provides packages of many programming

language, which can only be managed by apt.
Therefore, apt and pip can provide stability and flexibility for

users when installing Python packages, respectively. Thus, it is a

common practice for users to use both tools alternately.

3.2 Cross-Repository Issues are Widely Present

Each repository has its own management tool with unique package

installing strategy and directory. The tool is often, if not all the times,

well-designed to handle intra-repository dependencies without con-

sidering inter-repository dependencies. At the same time, Python

interpreter will import packages from both repositories. Even if

apt, pip and Python interpreter all work as expected, users may

still suffer from compatibility issues like the example in Figure 1.

Figure 3 shows the root cause of the example. When installing “amp”
using apt, Python interpreter will import “numpy 1.17.4” from
the apt directory as a dependency of “amp” as shown in Figure 3a.

After using pip to install “pandas”, the importing dependency is

shown as Figure 3b. At this time, due to the import rules of Python

interpreter, “numpy 1.24.3” from the pip repository is regarded as

Table 1: Three triggering patterns leading to CC issues

Index Command Pattern Description

1 pip install B
apt install A

The default installed version of B is

incompatible with A.
2 apt install A

pip install B==version
The version of B is incompatible

with A.
3 apt install A

pip install C
The version of B installed with A
does not satisfy the constraints of C,
thus pip installs a new one.

Assuming there are packages A, B, C, where both A and C depend on B.

a dependency for “amp”. However, “numpy 1.24.3” has removed

the numpy.typeDict attribute, leading to the CC issue.

The normal use of apt, pip and Python interpreter could lead

to CC issues like Figure 1. As a result, users may suffer from the

issues frequently. It is, however, hard to blame any of the apt, pip or
interpreter alone, since they all work as expected. The root cause of

CC issues is that apt and pip do not consider the global dependency
relationships within the system, and the dependencies imported by

Python interpreter during execution differ from those resolved by

the package managers.

3.3 Characteristics of Cross-Repository Issues

Based on the above study of root cause, we summarize three trig-

gering patterns of installation commands leading to CC issues as

shown in Table 1. In these patterns, apt always installs a compati-

ble version of B with regard to A, whereas pip always installs an

incompatible version. When Python interpreter imports A from the

apt repository, it will import the incompatible version of B from

the pip repository, and thus triggers compatibility issues.

According to the above analysis, we can further summarize the

following four failure symptoms of CC issues: a) the application

package is always in the apt directory; b) the library package is

always in both the apt and pip directories; c) the application package
is compatible with the library package in apt directory; d) the
library package hosted in apt directory is incompatible with the

same package in pip directory.

These patterns and symptoms can guide the design and evalua-

tion of Hera: a) we use the installation patterns to build a dataset

of real-world CC issues during evaluation; b) we use the symptoms

to build the dependency and compatibility tables during the design

of Hera. The fact that "there is always a compatible package in apt
directory" can help Hera fixing CC issues.

4 APPROACH

In this section, we described the Hera approach, which is designed

to detect and predict CC issues, and provide fixing advice for users.

The overview of Hera is shown in Figure 4. Hera mainly includes

an offline and an online phases. The offline phase constructs a

cross-repository compatibility database including two main tables:

dependency table and compatibility table (See Section 4.1). The

online phase constructs a system-level package dependency graph

(S-PDG) to detect, predict CC issues and provide fixing advice (See

Section 4.2).

697

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

How to Pet a Two-Headed Snake? Solving Cross-Repository Compatibility Issues with Hera ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Libraries.io

Preparing
Packages

Package
Collection

Dependency
Analysis

Merging
R-PDGs

Ubuntu System

Install Commands

Build Database Offline

Predict, Detect And Fix CC Issue Online

PyPI Repository

Ubuntu Repository
Compatibility Database

CC Issue Report And Fixing Advice

Directories

Index

Index Update

Dry run
Script

S-PDG

Command
Predicting
CC Issue

API
Extraction

Analyzing Incompatible
Changes

Detecting
CC Issue

Fixing
CC Issue

Building Compatibility Table

R-PDGs

Constructing S-PDG

Analyzing intra-repository
Dependency

API Usage
Extraction

Building Dependency Table

Figure 4: Overview of Hera.

4.1 Building Compatibility Database

As Hera is designed to work in the user’s production environment,

its overhead should be important. However, online analyzing com-

patibility between all application and library packages requires

high overhead. To overcome this limitation, based on the CC is-

sue characteristics in Section 3.3, we transform the compatibility

issue between application package and library package into the

compatibility issue of the same library package hosted in the apt
repository and the pip repository. For example, in Figure 1, there is

a CC issue between the application package “amp” and the library

package “numpy”. Since “amp” is compatible with the library package

“numpy 1.17.4”, we can determine the compatibility between “amp”
and “numpy 1.24.3” by analyzing the API compatibility between

“numpy 1.17.4” and “numpy 1.24.3’ and whether “amp” calls any
breaking APIs.

To achieve this, we build a cross-repository compatibility data-

base offline, which can prevent the online phase from complex

program analysis. The compatibility database includes a depen-

dency table and a compatibility table. For each application package

in the apt repository, the dependency table collects its API usages

of each library package in the apt repository. For each library pack-

age in the apt repository, the compatibility table collects its API

compatibility with each version of the same package hosted in

the pip repository. The build process first prepares the application

packages and library packages from the packages indexed in the

two repositories (See Section 4.1.1), then builds the dependency

table through API usage extraction (See Section 4.1.2), finally builds

the the compatibility table through compatibility analysis (See Sec-

tion 4.1.3).

4.1.1 Preparing Packages. First, we collected application packages

from the apt repository. Ubuntu 20.04 maintains a total of 3,319

Dependency Table
Application

Package
Library
Package

API
Usage

ase
scipy ······

numpy ······

amp
ase ······

numpy ······
scipy ······

scipy numpy
typeDict

······
······

Compatibility Table
Library
Package

Apt
version

Pip
version Compatibility Breaking

API Pattern

numpy
1:1.17.4
-5ubun

tu3

······

1.17.4 True None

······

1.24.3 Fasle
typeDict API

removal
······

······

Figure 5: Examples of dependency and compatibility tables.

Python packages. We used apt to obtain the source code for all

packages, which would be used for API usage extraction. Then, we

analyzed whether each application package is also hosted in the

pip repository. The central repository for pip is PyPI [18], which

contains over 400,000 third-party Python packages. Specifically, we

retrieved the installable versions for each package from PyPI. If an

installable version exists, we considered the package to be a library

package and use pip to download the source code for all versions

of the package. However, due to different naming policy in the two

central repositories, the same Python package may have different

names in the two repositories. To solve this problem, we obtained

the top-level module name for each application package and used

it to match packages in PyPI, thus avoiding omissions. In this way,

we totally identified 2,419 library packages and all their installable

versions in PyPI.

Since these library packages keep evolving asynchronously, in

PyPI, the database has to keep updating accordingly. However, man-

ual updating is impractical because it can not keep up with the pace

of PyPI updates. To solve this problem, we resort to Libraries.io [8],
a platform that monitors repository updates from 32 ecosystems

including PyPI. Based on this, we can incrementally fetch the latest

package versions and update the compatibility database timely.

4.1.2 Building Dependency Table. The dependency table stores all

application packages’ API usages of library packages in the apt
repository. The storage format of the dependency table is shown in

Figure 5. The data retrieval process is divided into two steps:

Step 1: Analyzing intra-repository dependencies of apt repos-

itory. All application packages in the apt repository depend on a

pre-defined version of library packages in the apt repository. There-
fore, analyzing the intra-repository dependencies of apt requires
retrieving the library packages that each application package de-

pends on. However, the apt package documentation categorizes

dependencies into Depends, Recommends, and Suggests. Depends
are definite dependencies, but application packages may also de-

pend on the other two category packages. This makes it difficult

to accurately determine dependencies from the documentation. To

solve thisi issue, we installed each application package in a clean

environment to obtain accurate dependencies, ensuring the correct

analysis of the intra-repository dependencies of apt repository.
Step 2: Extract all API usages of the library packages. Hera

extracted API usage through static analysis. Specifically, for each

application package and dependent library package, we first tra-

versed the source code files of the application package to check

if the library package is imported. If yes, Hera would parse the

code to abstract syntax tree (AST), and scan AST nodes to detect

698

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yifan Xie, Zhouyang Jia, Shanshan Li, Ying Wang, Jun Ma, Xiaoling Li, Haoran Liu, Ying Fu, and Xiangke Liao

Table 2: Rules for determining incompatible changes

Index Change Pattern Rule Frequency IC Type

1 API_addition 𝐴𝑃𝐼 ∉ 𝐴𝑃𝐼𝑜𝑙𝑑 ∧𝐴𝑃𝐼 ∈ 𝐴𝑃𝐼𝑛𝑒𝑤 32,674,616 (77.69%) 𝐵𝐼𝐶

2 API_removal 𝐴𝑃𝐼 ∈ 𝐴𝑃𝐼𝑜𝑙𝑑 ∧𝐴𝑃𝐼 ∉ 𝐴𝑃𝐼𝑛𝑒𝑤 8,831,893 (21.00%) 𝐹𝐼𝐶

3 Param_addition 𝐴𝑃𝐼 ∈ 𝐴𝑃𝐼𝑜𝑙𝑑 ∩𝐴𝑃𝐼𝑛𝑒𝑤 ∧ 𝑝 ∉ 𝑃𝑜𝑙𝑑 ∧ 𝑝 ∈ 𝑃𝑛𝑒𝑤 ∧ 𝑝 ∉ 𝑂𝑃𝑛𝑒𝑤 102,490 (0.24%) 𝐵𝐼𝐶/𝐹𝐼𝐶
4 Param_removal 𝐴𝑃𝐼 ∈ 𝐴𝑃𝐼𝑜𝑙𝑑 ∩𝐴𝑃𝐼𝑛𝑒𝑤 ∧ 𝑝 ∈ 𝑃𝑜𝑙𝑑 ∧ 𝑝 ∉ 𝑂𝑃𝑜𝑙𝑑 ∧ 𝑝 ∉ 𝑃𝑛𝑒𝑤 71,221 (0.17%) 𝐵𝐼𝐶/𝐹𝐼𝐶
5 Optional_param_addition 𝐴𝑃𝐼 ∈ 𝐴𝑃𝐼𝑜𝑙𝑑 ∩𝐴𝑃𝐼𝑛𝑒𝑤 ∧ 𝑝 ∉ 𝑂𝑃𝑜𝑙𝑑 ∧ 𝑝 ∈ 𝑂𝑃𝑛𝑒𝑤 328,988(0.78%) 𝐵𝐼𝐶

6 Optional_param_removal 𝐴𝑃𝐼 ∈ 𝐴𝑃𝐼𝑜𝑙𝑑 ∩𝐴𝑃𝐼𝑛𝑒𝑤 ∧ 𝑝 ∈ 𝑂𝑃𝑜𝑙𝑑 ∧ 𝑝 ∉ 𝑂𝑃𝑛𝑒𝑤 46,275(0.11%) 𝐹𝐼𝐶

7 Param_reordering 𝐴𝑃𝐼 ∈ 𝐴𝑃𝐼𝑜𝑙𝑑 ∩𝐴𝑃𝐼𝑛𝑒𝑤∧𝑟𝑝 (𝑝, 𝑃𝑜𝑙𝑑 ,𝑂𝑃𝑜𝑙𝑑) ≠ 𝑟𝑝 (𝑝, 𝑃𝑛𝑒𝑤 ,𝑂𝑃𝑛𝑒𝑤) 3,973 (0.01%) 𝐵𝐼𝐶/𝐹𝐼𝐶
"API" denotes a single API and "𝐴𝑃𝐼𝑜𝑙𝑑/𝑛𝑒𝑤 " denote the API set. "p" denotes a single parameter, "𝑃𝑜𝑙𝑑/𝑛𝑒𝑤 " denote the necessary parameter list and

"𝑂𝑃𝑜𝑙𝑑/𝑛𝑒𝑤 " denote the optional parameter list. 𝑟𝑝 (𝑝, 𝑃𝑜𝑙𝑑/𝑛𝑒𝑤 ,𝑂𝑃𝑜𝑙𝑑/𝑛𝑒𝑤) denotes the relative position of "p" in the parameter list.

the usage of the library package’s API. If detected, the application

package, the library package, and the used API would be recorded

in the dependency table. If not detected, it was because the appli-

cation package and the library package are indirectly dependent,

which would also be recorded in the dependency table.

4.1.3 Building Compatibility Table. The compatibility table stores

the API compatibility between each library package and each ver-

sion of the same package in the pip repository. The storage format

of the compatibility table is shown in Figure 5. If there are incompat-

ible changes in the APIs of different versions of the library package,

Hera will record the incompatibility between them and all the

incompatible APIs in the compatibility table. To achieve this goal,

Hera perform the following two steps:

Step 1: API extraction. To accurately analyze the compatibility

between different versions of library packages, it is first necessary

to obtain all APIs of each version of the library package. For most

static programming languages, static analysis can effectively ex-

tract the APIs provided by packages. However, Python is a dynamic

programming language, and some APIs are created and modified

by Python objects at runtime, which cannot be obtained through

static analysis. To overcome this problem, we employ a strategy

that combines dynamic and static analysis to extract APIs, cover-

ing classes, functions (and their parameters), and attributes, etc.

For dynamic analysis, we use the inspect module for reflective dy-

namic API extraction after importing Python packages. The inspect
module is able to dynamically access the internal structure of live

objects, thus extracting APIs created and modified at runtime by

Python objects. Additionally, we use the parso [13] module for static

analysis to supplement the extraction of function definitions and

other information.

Step 2: Analyzing incompatible changes. Correctly analyzing

incompatible changes (IC) between different versions of a library

package is a guarantee of effectiveness of Hera. There are two types

of incompatible changes including forward incompatible changes

(FIC) (e.g., adding an API) and backward incompatible changes

(BIC) (e.g., removing an API) [33]. Since the version order of library

packages in the apt repository and the pip repository in CC issues

is not necessarily sequential, both types of incompatible changes

can lead to package incompatibility and may cause CC issues. The

target of incompatible change analysis, Python, has flexible syntax,

so the complexity of its API changes far exceeds that of languages

like C++ and Java. Therefore, it is difficult to determine which API

changes are incompatible.

To address this issue, inspired by existing work [56], we con-

sider both BIC and FIC, summarize seven patterns of incompatible

changes, and design determining rules. The patterns and rules are

shown in Table 2, and the frequency represents the proportion of

each pattern in the compatibility table. For API-related changes, we

detect the addition or deletion of classes, functions, and attributes

within a Python program based on the results of the API extraction

step. For API parameter-related changes, we consider the changes

in required and optional parameters as well as the changes in pa-

rameter order. It is noteworthy that a parameter changing from

required to optional (or vice versa) will be detected by Rule 3 (4).

We refer to the API with incompatible changes as a breaking API.

The compatibility table will store the breaking API information of

each incompatible change, including name, parameters, type, and

change pattern, etc.

Based on the above two steps, in the Ubuntu 20.04 and Python

3.8.10 environment, we extract 62,552,811 APIs across 47,387 ver-

sions of 2,419 library packages and found a total of 42,059,456

incompatible changes.

4.2 Detecting, Predicting And Fixing CC Issues

A CC issue involves interactions of the above three parts, i.e., apt,
pip and Python interpreter, making it non-trivial to be predicted, de-

tected or fixed. To address this challenge, we propose a system-level

package dependency graph (S-PDG) to describe the interactions

among apt, pip and Python interpreter. In this section, we mainly

explain how to construct the S-PDG (See Section 4.2.1 and use it

along with the cross-repository compatibility database to detect

CC issues (See Section 4.2.2). We also explain how to dry run com-

mands to predict CC issues (See Section 4.2.3) and provide users

advice for fixing CC issues (See Section 4.2.4).

4.2.1 Constructing S-PDG.. First, Hera will collect packages and

analyze dependency in the installing directory of apt and pip, and
construct two repository-level package dependency graphs (R-

PDG). Then, Hera will merge the two R-PDGs into one S-PDG

and detect CC issues. The construction of the S-PDG is divided into

the following three steps:

Step 1: Collect packages in the apt and pip directory. For

the apt directory, Hera uses the dpkg [3] tool, a low-level package

manager for Debian-based systems, to collect all packages in the apt
repository based on the package installation records. Pip provides

a similar function, however, it can only collect packages from all

system-level directories and can not specify to collect packages from

699

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

How to Pet a Two-Headed Snake? Solving Cross-Repository Compatibility Issues with Hera ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

A

B
C B

D

F

D

apt package

pip package

Intra-repository
dependency

Covered-edge

E

A

B
C B

D

F

D

E

apt P-PDG pip P-PDG S-PDG

Figure 6: Merge two R-PDGs to construct one S-PDG.

the pip directory. To solve this issue, Hera uses the pkg_resources
module to collect all packages from the pip directory based on the

directory path.

Step 2: Analyze dependency and construct R-PDGs. In this

step, Hera analyzes the intra-directory dependencies of apt and pip
and constructs two repository-level package dependency graphs (R-

PDG). The R-PDG is a directed acyclic graph where nodes represent

packages and edges represent the internal dependencies between

packages within the directory, which are regarded as compatible in

this paper. For the apt directory, we construct the R-PDG based on

the intra-repository dependencies of the apt repository obtained in

section 4.1.2. For the pip directory, we employ pipdeptree [17], a

dependency analysis tool, to analyze the internal dependencies of

the pip directory and construct the R-PDG.

Step 3: Merge R-PDGs to construct S-PDG. Hera constructs

the system-level package dependency graph (S-PDG) by merging

the two R-PDGs. Figure 6 shows a schematic figure of merging two

R-PDGs to construct one S-PDG, where packages B and D each

have a version in both the apt and pip directories. When a package

has two versions in the two R-PDGs respectively, Hera adds an

edge to connect those two versions, meaning that the version in

apt is covered by the version in pip. This edge directs from a node

in the apt R-PDG to a node in the pip R-PDG, and is referred to

as a covered-edge. The covered version will not be used any more

according to the importing rules of Python interpreter.

4.2.2 Detecting CC Issues. After constructing the S-PDG, we can
detect CC issues in the users’ system environment. To achieve

this, Hera queries the compatibility table to determine if there

are breaking APIs between the two versions connected by each

covered-edge (e.g., between two versions of package B and D in

Figure 6). If yes, it means the users’ system contains incompatible

versions of a library package, which may lead to potential CC issues.

To confirm the potential issues, Hera queries the dependency table

to check if there is an application package in the apt directory uses

the breaking API (e.g., checking package A and C in Figure 6). If

yes, Hera reports a CC issue.

4.2.3 Predicting CC Issues. For prediction, Hera dry-runs the in-

stallation command, and then temporarily adds the packages to

be installed into the S-PDG. Specifically, for each apt or pip in-

stallation command, Hera uses the "apt install -s" or "pip install

–dry-run" command to preview the packages that will be installed.

Subsequently, Hera temporarily adds these packages to the S-PDG

and checks whether a new covered-edge should be added. If there

Table 3: Statistics of CC Issue Dataset

Group Pkg Avg. dep Pair Crash Breaking API

G1 [1,5] 1,048 2.24 2,234 89 82

G2 [6,10] 282 7.80 2,189 261 255

G3 [11,20] 218 14.60 2,322 91 89

G4 [21,49] 211 31.96 6,751 677 674

G5 [50,+∞] 158 89.84 10,370 574 574

Total/Average1,917 14.96 23,866 1,692 1,674

is a new covered-edge should be added, Hera queries the com-

patibility and dependency tables to detect if a new CC issue will

arise. If so, Hera warns the user that executing the installation

command will cause a CC issue, and reports detailed information

about the predicted CC issue, such as the packages at both ends of

the covered-edge. This prediction mechanism effectively prevents

the introduction of CC issues during the installation process.

4.2.4 Fixing CC Issues. When a CC issue is detected, as R-PDGs

contain compatible dependencies, Hera can provide fixing advice

accordingly. There are generally two solutions to fix CC issues: a)

breaking the covered-edge in the S-PDG by deleting and reinstalling

packages, b) specify importing compatible library package from

the apt directory. Since solution a might cause other system-level

dependency issues, therefore, we recommend using solution b to fix

the CC issue. Based on the R-PDG of the apt directory, Hera will

advise users to use importlib module to import compatible library

packages from the apt directory before importing the application

package.

5 EVALUATION

We study three research questions in our evaluation section:

• RQ1 (Detecting CC issues): How effective is Hera in detect-

ing CC issues? To anwser RQ1, we constructed a large-scale

dataset of CC issues within the Ubuntu 20.04 system to evaluate

the effectiveness of Hera, and confirmed its reliability through

a sampling-based manual verification process.

• RQ2 (Analyzing Incompatible Changes): How effective is

Hera in analyzing incompatible changes? To answer RQ2,

We extracted breaking APIs from each CC issue’s traceback in

the dataset, thus evaluating the recall of analyzing incompati-

ble changes, and additionally evaluating the precision through

sample validation.

• RQ3 (Fixing Real-world Issues): Can Hera detect real-world

CC issues and provide effective fixing advice? To answer RQ3,

We collected 27 real-world CC issues from Stack Overflow and

GitHub to evaluate whether Hera could detect and fix real-world

CC issues.

5.1 Dataset Construction

We first constructed a real-world dataset of CC issues in the Ubuntu

20.04 system, and the construction process involves two steps:

• Step 1: Identifying application and library pairs. To identify

real-world CC issues, it is first necessary to identify pairs of

application packages and library packages that may encounter

CC issues. We use (A, B) to refer to the pair in the following part.

We identify pairs based on the following two conditions:

700

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yifan Xie, Zhouyang Jia, Shanshan Li, Ying Wang, Jun Ma, Xiaoling Li, Haoran Liu, Ying Fu, and Xiangke Liao

1.$ pip install -y B
2.$ apt install -y A
3.>>> import A
4.$ pip freeze | xargs pip uninstall -y
5.>>> import A

Figure 7: Commands for testing CC issues.

– Condition 1: Package A should be an application package and

depend on at least one other application package;

– Condition 2: Package B should be hosted in both apt and pip
repositories, and should be a direct dependency or transitive

dependency of A.
Based on the apt intra-repository dependency obtained in Section
4.1.2 and Condition 1, we identified 1,917 application packages

that depend on at least one other application. Based on the library

packages obtained in Section 4.1.1 andCondition 2, we identified

23,866 pairs that may encounter CC issues. To assess the impact

of the number of dependencies of the application package on CC

issue occurrence, we categorized these application packages into

five groups based on their number of dependencies.

• Step 2: Testing for real-world CC issues. To test whether each

package pair will encounter a CC issue, we used triggering

pattern 1 in Section 3.3 to design testing commands shown in

Figure 7. We used Docker [2] to execute the commands, ensuring

a clean system environment. First, we install B and A using pip
and apt respectively (line 1-2). Second, we importA in the Python

interpreter (line 3). If it crashes, we will uninstall all packages in

the pip directory and imported A again (line 4-5). If it imports

normally, it means B makes A fail to be imported and there is a

CC issue with (A, B). Additionally, we also analyzed traceback
information to extract the breaking API that caused the crash.

Overall, we tested all 23,866 pairs and identified 1,692 pairs (7%)

with CC issues. The statistics of CC issue dataset are shown in

Table 3, where application packages with more dependencies are

relatively more prone to CC issues. And we successfully extracted

1,674 (98.9%) breaking APIs from the traceback. Among the 18 (1.1%)

failures, 11 cases were due to the incompatibility between the pack-

age and the Python interpreter, and 7 cases lacked clear breaking

API information in the traceback.

5.2 RQ1: Detecting CC Issues.

Study Methodology. In this study, we employed Hera to detect

CC issues across all 23,866 package pairs in our dataset. Each pair

(A, B) consists of application package A (a pre-defined version from

apt repository) and library package B (the default version installed

via pip). It’s crucial to understand that Hera does not delve into

the API call chain, meaning that if B is a transitive dependency of

A without a direct call, this might lead to false negatives. However,

if a dependency C of A calls a breaking API in B, the installation
of A and B can also introduce a CC issue into the system. Thus,

if a CC issue is identified between C and B, we consider there

is a CC issue between A and B as well. We used sample manual

verification to check the precision of identified issues. For detected

issues, we manually verified their correctness. The sample size was

calculated through the finite population correction, ensuring our

sample accurately represents the dataset. We set the confidence

Table 4: Effectiveness of Hera in detecting CC issues.

Group Pair VTP FP DTP FN Pre. Rec. F1 Score

G1 309 27 2 55 34 93.1 61.8 74.3

G2 472 44 1 225 36 97.8 86.2 91.6

G3 327 27 4 81 10 87.1 89.0 88.0

G4 1,214 100 14 669 8 87.7 98.8 92.9

G5 1,367 117 12 555 19 90.7 96.7 93.6

T/A 3,689 315 33 1,585 107 90.5 93.7 92.1

level to 95% and the margin of error to 5%, which are standard

statistical thresholds.

Evaluation Metrics. Leveraging the CC issues dataset we con-

structed, we considered sevenmetrics in our evaluation: (1)Verified

True Positive (VTP): CC issues reported by Hera and passed man-

ual validation; (2) Direct True Positive (DTP): CC issues reported

by Hera and in the dataset; (3) False Positive (FP): CC issues

reported by Hera that did not pass manual validation; (4) False

Negative (FN): CC issues in the dataset but not reported by Hera.

Based on the above four metrics, we can calculate Precision,
Recall, and F1 score as follows: (5) Precision = VTP / (VTP + FP);
(6) Recall: DTP / (DTP + FN); (7) F1 score: 2 × Precision × Recall /
(Precision + Recall). Precision evaluates whether Hera can precisely

detect CC issues. Recall evaluates the capability of Hera to detect

all CC issues. F1 score combines Precision with Recall [38, 39].
Result. Using the above methodology, Hera reported a total of

3,689 CC issues. It should be noted that many issues Hera reported

were not identified during CC issue dataset construction because

our initial compatibility tests only involved importing library pack-

ages, that might not trigger all breaking APIs. From these reported

issues, we sampled 348 cases to manually verify. Table 4 shows the

experiment results of RQ1. Hera detected CC issue with a Precision
of 90.5%, a Recall rate of 93.7% and a F1 score of 92.1%. Based on

the results, we could conclude that Hera can effectively detect CC

issues.

FP Analysis.We summarize three main reasons for FPs:
• (a) Non-use of optional parameters or extra parameter list

(17/33): In the evolution of third-party packages, the removal

of optional parameters or extra parameter lists from functions

is commonly regarded as a BIC. However, when such function

calls only use required parameters, they are not affected by this

type incompatible changes. When detecting CC issues, Hera

queries the dependency table only to check for breaking APIs

usage without considering parameter usage, leading to FPs.
• (b) Breaking function API used for assignment (10/33):

When the breaking function API is used for assignment with-

out being called, it would not trigger CC issue. Currently, the

dependency table only stores API usage without considering the

type of usage, leading to FNs. For example, in application package

“partd 1.11.1” [14], the code decompress_bytes = blosc.decompress
assigns the breaking API blosc.decompress to decompress_bytes
without calling it, thereby not causing a CC issue.

• (c) Incorrect breaking APIs (6/33): In some versions of some

library packages, API extraction fails to capture all provided

APIs or extracts API names that do not match the actual API call

names. This makes the compatibility table stores incorrect break-

ing APIs and leads to these FPs. For instance, the library package

701

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

How to Pet a Two-Headed Snake? Solving Cross-Repository Compatibility Issues with Hera ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

“humanfriendly 10.0” [7] identified an API name as human-
friendly.model.coerce_boolean when API extraction, whereas the

actual API call is humanfriendly.coerce_boolean.
FN Analysis. Hera produced a total of 107 FNs, 59 of which

were due to the dependency table not storing the usage of the corre-

sponding breaking APIs. When extracting API usage, Hera mainly

detects AST nodes with frequent API calls, such as atom_expr node
and argument node. The usage of breaking APIs in other nodes

caused these FNs. Additionally, some breaking API usages do not

occur in *.py files, for example, the breaking API usages between

“pipdeptree 0.13.2-1build1” [17] and “pip 23.1.2” [15] occur
in *.pyx files, and Hera is unable to analyze *.pyx or *.pyc files. The
remaining 48 FNs were due to the compatibility table not storing

the breaking APIs corresponding to these cases. This was mainly

because of failures in API extraction or the determining rules not

covering all incompatible change scenarios during the analysis of

incompatible changes.

¨ Conclusion: Hera can effiectively detect CC issues, achieving a

precision of 90.5% and a recall rate of 93.7%.

5.3 RQ2: Analyzing Incompatible Changes.

Study Methodology. RQ2 aims to evaluate the compatibility ta-

ble, the core component of Hera, focusing on the effectiveness of

analyzing incompatible changes. To evaluate the precision, we per-

formed stratified random sampling of breaking APIs according to

the proportion of each incompatible changes pattern in the compat-

ibility table, using the same sample size calculation method as RQ1.

For each sampled breaking API, we installed the corresponding apt
version and pip version of the library package, and manually veri-

fied whether calling the breaking API would cause compatibility

issue. To evaluate recall rate, we verified whether the breaking APIs

in CC issues dataset were present in the compatibility table.

Evaluation Metrics. We measure six metrics: (1) Verified True

Positive (VTP): Breaking APIs sampled from the compatibility

table and passed manual validation; (2)Direct True Positive (DTP):

Breaking APIs in the CC issues dataset and also in the compatibility

table; (3) False Positive (FP): Breaking APIs sampled from the

compatibility table that did not pass manual verification; (4) False

Negative (FN): Breaking APIs in the CC issues dataset but not in the

compatibility table. Based on these metrics, we calculate Precision
and Recall in the same manner as withRQ1. The Precision evaluates
whether Hera can accurately analyze incompatible changes, and

the Recall assesses whether Hera can analyze all incompatible

changes.

Result. Figure 8 shows the experiment results of RQ2. Among

384 breaking APIs sampled for manual validation, 350 were val-

idated as while 34 were not validated, with a precision of 91.1%. The

FNs came from four categories, includingAPI_addition,API_removal,
Param_addition, and Optional_param_addition. Among the total of

1674 breaking APIs in the CC issue dataset, 1644 were found in the

compatibility table, with a Recall of 98.2%. Based on the experimen-

tal results, we could conclude that Hera can effectively analyze

incompatible changes.

FP Analysis.We analyze FPs separately according to IC patterns:

API
addition

API
removal

Param
addition

Param
removal

Optional
param

addition

Optional
param

removal

Param
reordering

Patterns of imcompatible change

C
ou

nt
 (0

-8
0)

C
ou

nt
 (8

0+
)

Verified True Positives
False Positives

0

20

40

60
80

200

220

240 238

21

66

9 97 103 10 10
0 0 01

(a) Precision of analyzing incompatible changes

1644 30

Direct True Positives False Negatives

(b) Recall rate for analyzing incompatible changes

Figure 8: Experiment Results of RQ2

• (a) API addition and removal (30/34): The FPs in these two

categories were primarily due to the API extraction process not

extracting all APIs. Hera employs dynamic reflection to extract

APIs, which fails when Python interpreter cannot import the

module due to missing dependencies. Some versions of library

packages do not declare all their dependencies, leading to a fail-

ure in automatically installing the necessary dependencies. As

a result, modules that rely on these uninstalled dependencies

cannot be imported, leading to missing APIs.

• (b) Parameter addition (3/34): The three FPs in this category

occurred because the added parameter was part of an extra pa-

rameter list(e.g., xarray.open_rasterio in “xarray 0.15.0” and
“xarray 2022.10.0” [23]). In our rules, we considered parameter

additions to cause both FIC and BIC, but when the addition is to a

parameter list, it only causes BIC. We consider this misjudgment

of incompatible change types as FPs.
• (c) Optional parameter addition (1/34): The single FP in the

optional_param_addition category was also a result of a misjudg-

ment of incompatible change types. This occurred in the con-

structor of the marshmallow.fields.Field class in library package

“marshmallow” [9]. The new version modified the class to require

keyword arguments and also added optional parameters to the

parameter list. Hera reported this as optional_param_addition
and BIC. However, such changes are considered both BIC and

FIC, which led to an FN.
FN Analysis. All FNs were caused by omissions of some APIs

during the API extraction step when constructing the compatibility

table. Predominantly, these omissions were linked to the absence

of required dependencies, which led to the failure to import the

relevant modules and the inability to dynamically extract APIs.

Furthermore, due to the complexity of some library package design

and the limitations of the tool design, Hera was unable to extract

the relevant APIs.

¨ Conclusion: At a 95% confidence level with a 5% margin of error,

Hera demonstrates effectiveness in analyzing incompatible changes,

achieving a precision of 91.1% and a recall rate of 98.2%.

702

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yifan Xie, Zhouyang Jia, Shanshan Li, Ying Wang, Jun Ma, Xiaoling Li, Haoran Liu, Ying Fu, and Xiangke Liao

Table 5: Experiment results of RQ3

27 Real-world CC Issues

questions#75244186♠■■■; questions#61237965♠■; questions#76383191♠■■■;
questions#72593814♠■■■; questions#74843336♠■■■; questions#74411148♠■■■;
questions#74515643♠■■■; linode_panel#1♣■■■; ethz_piksi_ros#234♣■■■;
gradio#5154♠■■■; frr#14816♣■■■; In0ri#10♣■■■; gramine#1142♣■■■;
gsc#121♠■■■; PyDodge#24♣■■■; kasm-dof-workspace#9♣■■■; linkml#966♣■■■;
quart#171♠■■■; LittlePaimon#283♣■■■; fprime-tools#48♣■■■; taipy#255♣■■■;
stable-diffusion-webui#231♠■■■; mkchromecast#451♣■■■; InstallScript#396♣■■■;
cserbot#9688♣■■■; fact_CORE#858♣■■■; frr#14820♦■■■;
♠: CC issues from Stackoverflow; ♣: CC issues from Github Issue;

♦: CC issues from Github Discussion; ■: CC issues successfully reproduced;

■: CC issues unsuccessfully reproduced; ■: CC issues successfully detected by Hera;

■: CC issues successfully fixed by Hera.

5.4 RQ3: Fixing Real-world Issues.

Study Methodology. RQ3 evaluate the Usefulness of Hera by col-

lecting and reproducing real-world CC issues from well-known

Q&Awebsites or open-source platforms such as StackOverflow [21]

and GitHub [6]. The collection process is divided into two steps:

• Step 1: Searching keywords. We first used keywords such as

"Ubuntu", "ImportError", and "dist-packages" to preliminarily

filter out compatibility issues related to third-party packages on

the Ubuntu system.

• Step 2: Verifying traceback information. The most direct dis-

tinction between CC issues and traditional incompatibility issues

is that CC issues occur between apt and pip directories. Therefore,
we employed an engineer with over five years of Python program-

ming experience manually reviewed the traceback information

for each issue to determine whether it is a CC issue.

Based the above two steps, we identified 27 real-world CC issues

and we tried to reproduce them in the system. For issues that were

successfully reproduced, we used Hera to detect CC issues and

followed the advice provided by Hera to fix CC issues.

Result. Based the above method, we successfully reproduced 26

CC issues and Hera was able to detect all of them. Additionally,

we followed the advice to import the library package in the apt
directory before importing the application package and successfully

fixed all CC issues. All issues are presented in Table 5. The issue

that could not be reproduced was question #61237965 [20], due to

insufficient environmental information reported by the developer.

Example. Many CC issues have troubled developers within

the community, and Issue #5154 for gradio [29] is an example.

The developer faced a compatibility issue between the application

package “jinja2” and the library package “markupsafe” when
running the gradio program. Figure 9a shows the critical part of

the traceback information for this issue, illustrating that “jinja2”
from the apt directory encountered an error while attempting to

import the soft_unicode function from “markupsafe” in the pip
directory. Further, figure 9b details the API import chain, show-

ing that “jinja2 2.10.1-2ubuntu0.2” in apt directory tried to

import soft_unicode from “markupsafe 1.1.0-1build2” in the

apt directory, but the Python interpreter imported the function

from “markupsafe 2.1.3” in the pip directory. But the 2.1.3 ver-
sion deleted the attribute, which led to the issue. The developers

ultimately resolved the issue by downgrading the library pack-

age “markupsafe” in the pip directory to a version supporting

1.Traceback (most recent call last):
2. ···
3. File "/usr/lib/python3/dist-packages/jinja2/utils.py", line 656, in <module>
4. from markupsafe import Markup, escape, soft_unicode
5.ImportError: cannot import name 'soft_unicode' from 'markupsafe'
(/home/vadimkantorov/.local/lib/python3.8/site-packages/markupsafe/__init__.py)

apt directory

pip directory

(a) Traceback of Issue #5154 for gradio.

jinja2 2.10.1-2ubuntu0.2 (apt directory)
from markupsafe import Markup, escape, soft_Unicode

markupsafe 1.1.0-1build2 (apt directory)
def soft_unicode(s)

markupsafe 2.1.3 (pip directory)
- def soft_unicode(s)

want import

real import

(b) API import chain of Issue #5154 for gradio.

Figure 9: A real-world CC issue example.

soft_unicode. Hera advised specifying to import the library pack-

age “markupsafe” from the apt directory, which could help users

avoid reinstalling a compatible version of “markupsafe” in the pip
directory and solve this issue more easily. Additionally, the package

manager did not provide any warning to users about this issue,

while Hera could predict this issue when package installation.

¨ Conclusion: Among the 26 real-world CC issues reproduced, Hera

can detect all of the 26 cases, and provide accurate reasons as well as

effective fixing advice.

6 DISCUSSION

In this section, we discuss the limitations and generalizability of

this work.

Limitations. Firstly, Hera detects CC issues and advises users

to import compatible library packages from the apt repository be-

fore importing the application package. However, the user program

that depends on the application packages may not necessarily be

affected by the CC issue. This is because the user program may not

call the breaking API. To determine whether the user program will

encounter errors due to the CC issue, it is necessary to perform

online program analysis to obtain the API call chain. Currently,

our work does not perform online program analysis in order to

reduce deployment overhead. Secondly, some cross-repository com-

patibility issues are related to native modules and binary libraries,

which Hera cannot currently address. This is because Hera’s cur-

rent program analysis focuses on the Python language and cannot

analyze the API compatibility of such modules. Our work focuses

on solving cross-repository third-party package compatibility is-

sues at the Python source code level, which has already covered

the majority of incompatibility issues encountered by users. We

will consider the above limitations in our future work to optimize

Hera, and our technique should be evaluated over time by using

it in real-world development environments. In the future, we will

conduct user studies to enhance the usability of Hera.

Generalizability. Evaluation results show that Hera is effec-

tive in solving the CC issues between the Ubuntu system and the

Python language. In our research, we also found similar CC issues

in other Linux distribution ecosystems and other dynamic program-

ming language ecosystems (e.g., CentOS, Ruby), and we found the

root causes of such issues are consistent. Therefore, the overall

703

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

How to Pet a Two-Headed Snake? Solving Cross-Repository Compatibility Issues with Hera ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

framework of our work is applicable to other ecosystems. However,

the methods for analyzing package compatibility are not gener-

ally applicable to packages in different languages. We determine

compatibility by analyzing incompatible APIs, but since the way

APIs are implemented varies between languages, it is difficult to

create a general method for analyzing the compatibility of third-

party packages in all languages. In the future, we will explore more

general methods for analyzing compatibility to address CC issues

in additional ecosystems.

7 RELATEDWORK

Dependency Conflict Diagnosis. Many works focus on the Depen-

dency Conflict (DC) issues. The most relevant works to this paper

are smartPip [49], EasyPip [36], WatchMan [52], PyDFix [43], and

SnifferDog [51].WatchMan [52], samrtPip [49], and EasyPip [36]

aim to solve Python DC issues that cannot be solved by the most

popular Python packagemanager, pip. WatchMan first summarizes

the manifestation patterns of DC issues caused by pip installation

rules and proposes corresponding detection tools. SamrtPip reveals

new features of DC issues under the new dependency resolution

strategy released after Watchman. Their approach can also solve

DC issues without changing version constraints. EasyPip is used

to automatically detect and fix issues in Python dependency dec-

laration files, which is more helpful than SamrtPip in locating

the root cause of DC issues. However, they are limited to a single

software repository and do not take into account DC issues that

are affected by multiple package managers and cannot solve such

issues. PyDFix [43] aims to solve the issue that some packages on

PyPI are not able to be installed correctly due to environment com-

patibility issues. However, cross-repository compatibility issues

often do not occur during the installation phase but during the

runtime phase of the project. SnifferDog [51] fixes the environ-

ment of a Jupyter Notebook project with module information and

dependency information, but does not address the system Python

environment. In addition to these, many works focus on DC is-

sues in other ecosystems [32, 37, 45, 53–55]. Studies [32, 53–55]

mainly focus on dependency management in Java ecosystem. They

found DC issues in Maven [10] do not cause build failures, but

can lead to inconsistent semantic behavior [55] or runtime excep-

tions [53]. Based on this finding, some researchers have proposed

to use static analysis [53]and dynamic analysis [54, 55] to identify

DC issues in Maven. For .Net ecosystem, wang et al. conducted

an empirical study of DC issues in NuGet [12]. They summarized

manifestation patterns and fixing strategies and proposed an ef-

fective tool NuFix [37] to fix DC issues by adjusting the version

constraints. ConflictJS [45] targets DC issues in the JavaScript

ecosystem due to the fact that third-party libraries share the same

global namespace. Most of them are limited within a single software

repository and do not consider dependency conflicts under the joint

influence of multiple repository package managers.

Incompatible Change Detection. API incompatible changes

are also known as breaking changes. There are two main methods

of detection: testing [28, 40, 42] and program analysis [26, 28, 30,

31, 33, 46, 47, 56]. NoRegrets [40] is a regression testing tool that

can be used to determine whether updates to Javascript third-party

packages affect the use of the updated API. NoRegrets+ [42] can

automatically generate test cases to find incompatible changes in

Javascript third-party packages. DeBBI [28] detects incompatibili-

ties between Java packages and projects via testing and analysis.

For static programming language, studies [26, 34, 35, 41, 44, 47]

focus on analyzing Java API and detecting incompatible changes.

For dynamtic programming language, V2 [31] detects incompati-

ble changes based on Python program crash information. Stud-

ies [30, 56] use rules to detecting incompatible changes in the

Evolution of Python third-party packages. There are also stud-

ies that detect incompatible changes at the binary-level [33, 46].

Ponomarenko et al. present a method for automatically detecting

backward compatibility issues with third-party libraries at the bi-

nary level, available for multiple languages [46]. Jia et al. proposed

a more effective binary-level tool Depowl [33] that can detect both

forward and backward incompatibility issues. All of the above stud-

ies perform well in detecting incompatible changes, however, many

of these methods have too much overhead to build databases with

multi-million APIs. Therefore, we designed rules to detect most of

the incompatible changes with minimal overhead.

8 CONCLUSION

In this paper, we defined the CC issue, and we used both Python

and Ubuntu repositories as representatives to study the root causes

of CC issues, then summarized their triggering patterns and failure

symptoms. Guided by the above analysis, we designed Hera, an au-

tomatic tool to solve CC issues. Hera first builds a cross-repository

compatibility database offline, and then online predicts, detects and

fixes CC issues in the user’s system environment. We conducted

a comprehensive evaluation of Hera, which showed that Hera

could effectively detect CC issues and provided accurate reasons as

well as fixing advice. In the future, we plan to deploy Hera in real-

world developers’ development environments to further evaluate

its usefulness.

ACKNOWLEDGMENTS

The authors express thanks to the anonymous reviewers for their in-

sightful comments. This researchwas funded byNSFC (No. 62272473

and No. 62202474) and the Science and Technology Innovation Pro-

gram of Hunan Province (No. 2023RC1001 and No. 2023RC3012).

REFERENCES

[1] 2024. apt. https://help.ubuntu.com/lts/serverguide/apt.html.en Accessed:

2024-6-6.

[2] 2024. Docker. https://www.docker.com/ Accessed: 2024-6-6.

[3] 2024. Dpkg. https://wiki.debian.org/Teams/Dpkg/ Accessed: 2024-6-6.

[4] 2024. Fail2ban. http://www.fail2ban.org Accessed: 2024-6-6.

[5] 2024. Fedora. https://fedoraproject.org/ Accessed: 2024-6-6.

[6] 2024. GitHub. https://github.com/ Accessed: 2024-6-6.

[7] 2024. humanfriendly. https://pypi.org/project/humanfriendly/ Accessed: 2024-

6-6.

[8] 2024. Libraries.io. https://libraries.io/ Accessed: 2024-6-6.

[9] 2024. marshmallow. https://pypi.org/project/marshmallow/ Accessed: 2024-6-6.

[10] 2024. Maven. https://mvnrepository.com/repos Accessed: 2024-6-6.

[11] 2024. npm. https://www.npmjs.com/ Accessed: 2024-6-6.

[12] 2024. NuGet. https://www.nuget.org Accessed: 2024-6-6.

[13] 2024. parso. https://pypi.org/project/parso/ Accessed: 2024-6-6.

[14] 2024. partd. https://pypi.org/project/partd/ Accessed: 2024-6-6.

[15] 2024. pip. https://pypi.org/project/pip/ Accessed: 2024-6-6.

[16] 2024. pip documentation. https://pip.pypa.io/en/stable/cli/pip_install/ Accessed:

2024-6-6.

[17] 2024. pipdeptree. https://github.com/naiquevin/pipdeptree Accessed: 2024-6-6.

[18] 2024. PyPI. https://pypi.org/ Accessed: 2024-6-6.

704

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yifan Xie, Zhouyang Jia, Shanshan Li, Ying Wang, Jun Ma, Xiaoling Li, Haoran Liu, Ying Fu, and Xiangke Liao

[19] 2024. Python3-lxml. https://lxml.de/ Accessed: 2024-6-6.

[20] 2024. questions 61237965. https://stackoverflow.com/questions/61237965/no-

module-named-numpy-testing-decorators Accessed: 2024-6-6.

[21] 2024. Stack Overflow. https://stackoverflow.com/ Accessed: 2024-6-6.

[22] 2024. whois. https://pypi.org/project/whois/ Accessed: 2024-6-6.

[23] 2024. xarray. https://pypi.org/project/xarray/ Accessed: 2024-6-6.

[24] Pietro Abate, Roberto Di Cosmo, Georgios Gousios, and Stefano Zacchiroli. 2020.

Dependency solving is still hard, but we are getting better at it. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 547–551. https://doi.org/10.1109/SANER48275.2020.9054837

[25] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. 2012.

Dependency solving: a separate concern in component evolution management.

Journal of Systems and Software 85, 10 (2012), 2228–2240. https://doi.org/10.1016/

j.jss.2012.02.018

[26] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. APIDiff:

Detecting API breaking changes. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 507–511. https:

//doi.org/10.1109/SANER.2018.8330249

[27] Yulu Cao, Zhifei Chen, Xiaowei Zhang, Yanhui Li, Lin Chen, and Linzhang Wang.

2024. Diagnosis of package installation incompatibility via knowledge base.

Science of Computer Programming (2024), 103098. https://doi.org/10.1016/j.scico.

2024.103098

[28] Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. 2020. Tam-

ing behavioral backward incompatibilities via cross-project testing and analysis.

In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering. 112–124. https://doi.org/10.1145/3377811.3380436

[29] Gradio App Contributors. 2024. Issue 5154 on gradio-app/gradio. https://github.

com/gradio-app/gradio/issues/5154. Accessed: 2024-6-6.

[30] Xingliang Du and JunMa. 2022. Aexpy: Detecting api breaking changes in python

packages. In 2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 470–481. https://doi.org/10.1109/ISSRE55969.2022.

00052

[31] Eric Horton and Chris Parnin. 2019. V2: Fast detection of configuration drift in

python. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 477–488. https://doi.org/10.1109/ASE.2019.00052

[32] Kaifeng Huang, Bihuan Chen, Bowen Shi, Ying Wang, Congying Xu, and Xin

Peng. 2020. Interactive, effort-aware library version harmonization. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 518–529. https:

//doi.org/10.1145/3368089.3409689

[33] Zhouyang Jia, Shanshan Li, Tingting Yu, Chen Zeng, Erci Xu, Xiaodong Liu,

Ji Wang, and Xiangke Liao. 2021. DepOwl: Detecting Dependency Bugs to

Prevent Compatibility Failures. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 86–98. https://doi.org/10.1109/ICSE43902.

2021.00021

[34] L. Krejci. 2024. revapi. https://revapi.org/revapi-site/main/index.html Accessed:

2024-6-6.

[35] L. K¨uhne. 2024. clirr. https://clirr.sourceforge.net/ Accessed: 2024-6-6.

[36] Shuo Li. [n. d.]. EasyPip: Detect and Fix Dependency Problems in Python Depen-

dency Declaration Files. ([n. d.]).

[37] Zhenming Li, Ying Wang, Zeqi Lin, Shing-Chi Cheung, and Jian-Guang Lou.

2022. Nufix: escape from NuGet dependency maze. In Proceedings of the 44th
International Conference on Software Engineering. 1545–1557. https://doi.org/10.

1145/3510003.3510118

[38] Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang,

and Shanshan Li. 2023. At Which Training Stage Does Code Data Help LLMs

Reasoning? arXiv preprint arXiv:2309.16298 (2023). https://doi.org/10.48550/

arXiv.2309.16298

[39] Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yong-

bin Li. 2024. How to Understand Whole Software Repository? arXiv preprint
arXiv:2406.01422 (2024). https://doi.org/10.48550/arXiv.2406.01422

[40] GianlucaMezzetti, Anders Møller, andMartin Toldam Torp. 2018. Type regression

testing to detect breaking changes inNode. js libraries. In 32nd european conference
on object-oriented programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2018.7

[41] M. Mois. 2024. japicmp. https://github.com/siom79/japicmp Accessed: 2024-6-6.

[42] Anders Møller and Martin Toldam Torp. 2019. Model-based testing of breaking

changes in Node. js libraries. In Proceedings of the 2019 27th ACM joint meeting
on european software engineering conference and symposium on the foundations of
software engineering. 409–419. https://doi.org/10.1145/3338906.3338940

[43] Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021. Fixing

dependency errors for Python build reproducibility. In Proceedings of the 30th
ACM SIGSOFT international symposium on software testing and analysis. 439–451.
https://doi.org/10.1145/3460319.3464797

[44] Oracle. 2024. SigTest. https://wiki.openjdk.java.net/display/CodeTools/SigTest

Accessed: 2024-6-6.

[45] Jibesh Patra, Pooja N Dixit, and Michael Pradel. 2018. Conflictjs: finding and

understanding conflicts between javascript libraries. In Proceedings of the 40th

International Conference on Software Engineering. 741–751. https://doi.org/10.

1145/3180155.3180184

[46] Andrey Ponomarenko and Vladimir Rubanov. 2011. Automatic backward compati-

bility analysis of software component binary interfaces. In 2011 IEEE International
Conference on Computer Science and Automation Engineering, Vol. 3. IEEE, 167–173.
https://doi.org/10.1109/CSAE.2011.5952657

[47] Danilo Silva and Marco Tulio Valente. 2017. Refdiff: detecting refactorings in

version histories. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, 269–279. https://doi.org/10.1109/MSR.2017.14

[48] Paulo Trezentos, Inês Lynce, and Arlindo L Oliveira. 2010. Apt-pbo: solving the

software dependency problem using pseudo-boolean optimization. In Proceedings
of the 25th IEEE/ACM International Conference on Automated Software Engineering.
427–436. https://doi.org/10.1145/1858996.1859087

[49] Chao Wang, Rongxin Wu, Haohao Song, Jiwu Shu, and Guoqing Li. 2022. smart-

Pip: A Smart Approach to Resolving Python Dependency Conflict Issues. In

Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–12. https://doi.org/10.1145/3551349.3560437

[50] Huiyan Wang, Shuguan Liu, Lingyu Zhang, and Chang Xu. 2023. Automatically

resolving dependency-conflict building failures via behavior-consistent loosening

of library version constraints. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 198–210. https://doi.org/10.1145/3611643.3616264

[51] Jiawei Wang, Li Li, and Andreas Zeller. 2021. Restoring execution environments

of Jupyter notebooks. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 1622–1633. https://doi.org/10.1109/ICSE43902.2021.

00144

[52] Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang,

Hai Yu, Shing-Chi Cheung, Chang Xu, and Zhiliang Zhu. 2020. Watchman:

Monitoring dependency conflicts for python library ecosystem. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 125–135.
https://doi.org/10.1145/3377811.3380426

[53] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu,

Zhiliang Zhu, and Shing-Chi Cheung. 2018. Do the dependency conflicts in my

project matter?. In Proceedings of the 2018 26th ACM joint meeting on european
software engineering conference and symposium on the foundations of software
engineering. 319–330. https://doi.org/10.1145/3236024.3236056

[54] Ying Wang, Ming Wen, Rongxin Wu, Zhenwei Liu, Shin Hwei Tan, Zhiliang Zhu,

Hai Yu, and Shing-Chi Cheung. 2019. Could I have a stack trace to examine the

dependency conflict issue?. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 572–583. https://doi.org/10.1109/ICSE.2019.

00068

[55] YingWang, RongxinWu, ChaoWang, MingWen, Yepang Liu, Shing-Chi Cheung,

Hai Yu, Chang Xu, and Zhiliang Zhu. 2021. Will dependency conflicts affect my

program’s semantics? IEEE Transactions on Software Engineering 48, 7 (2021),

2295–2316. https://doi.org/10.1109/TSE.2021.3057767

[56] Zhaoxu Zhang, Hengcheng Zhu, Ming Wen, Yida Tao, Yepang Liu, and Yingfei

Xiong. 2020. How do python framework apis evolve? an exploratory study. In 2020
ieee 27th international conference on software analysis, evolution and reengineering
(saner). IEEE, 81–92. https://doi.org/10.1109/SANER48275.2020.9054800

705

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:07:39 UTC from IEEE Xplore. Restrictions apply.

