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Abstract. Translating source code into natural language text helps
people understand the computer program better and faster. Previous
code translation methods mainly exploit human specified syntax rules.
Since handcrafted syntax rules are expensive to obtain and not always
available, a PL-independent automatic code translation method is much
more desired. However, existing sequence translation methods generally
regard source text as a plain sequence, which is not competent to cap-
ture the rich hierarchical characteristics inherently reside in the code. In
this work, we exploit the abstract syntax tree (AST) that summarizes
the hierarchical information of a code snippet to build a structure-aware
code translation method. We propose a syntax annotation network called
Code2Text to incorporate both source code and its AST into the transla-
tion. Our Code2Text features the dual encoders for the sequential input
(code) and the structural input (AST) respectively. We also propose a
novel dual-attention mechanism to guide the decoding process by accu-
rately aligning the output words with both the tokens in the source code
and the nodes in the AST. Experiments on a public collection of Python
code demonstrate that Code2Text achieves better performance compared
to several state-of-the-art methods, and the generation of Code2Text is
accurate and human-readable.

Keywords: Natural language generation - Tree-LSTM - Abstract
syntax tree - Data mining

© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12114, pp. 87-103, 2020.
https://doi.org/10.1007/978-3-030-59419-0_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59419-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-59419-0_6

88 Y. Xiong et al.

1 Introduction

We have witnessed a large amount of source code been released in recent years,
manually writing detailed annotations (e.g., comments, pseudocode) for them is
a tedious and time-consuming task. However, these annotations play an irreplace-
able role in the development of software. For example, it serves as a guideline
for the new engineers to quickly understand the functionality of each piece of
code, and it helps one grasp the idea of legacy code written in a less popular pro-
gramming language. Accordingly, an effective automatic source code translation
method is desired, where the goal is to translate the code into a corresponding
high-quality natural language translation (we also refer the translated text as
annotation for short throughout this paper).

Gefine (self, filed, code = None) :]

Syntax l Translate missing method name

Parse

Annotation 1

define the method'assign
with arguments self , field
and code set to None.

has_error

missing the number of arguments
Annotation 2

define the method has_error
with 3 arguments: self ,
field and code set to None.
Structure-Aware
Translate

Fig. 1. An illustration of the syntax structure-aware code translation task. We propose
to exploit the abstract syntax tree (AST) that reflects the syntax structure of the code
snippet for an improved code translation (Annotation 2). While conventional sequence
translation methods can only use the sequential input (the code), which may miss key
structural information in the code syntax (Annotation 1). (Color figure online)

Given the significance of the code translation problem, most of the existing
methods [1,19] only follow the common natural language translation routine by
treating the code as a plain sequence. However, programming languages obey
much more strict syntax rules than natural languages [8], which should not be
ignored in translation. Given the syntax rules of most programming languages
are explicitly defined, each piece of legal code could be represented by a struc-
tural representation called abstract syntax tree (AST). In Fig.1, the AST of
a simple function declaration (blue box) in Python is illustrated in the under-
neath yellow box, which depicts the syntax structure of the code. The plain
sequence translator who only takes the code as input may have difficulty in cap-
turing the structural information, so the generated annotation may omit crucial
details reside in the original code, such as the function name and the number of
parameters. We show that this limitation could be fixed by considering the corre-
sponding AST, as it represents the code structure and the hierarchical relations
that are hard to learn sequentially.
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Fig. 2. Comparison of related methods. (a) Seq2seq model consists of an LSTM encoder
and an LSTM decoder. (b) Tree structured recurrent neural network which encodes
structured text from children to parent nodes. (¢) Our Code2Text encodes both sequen-
tial and hierarchical information to generate the target sequence. Details on the dual-
encoder and dual-attention are illustrated in Fig. 3.

Thus, it is interesting to investigate whether and how one could combine
the information in source code and its AST for an improved structure-aware
code translation model. Although ASTs are much easier to obtain compared
to handcrafted syntax rules, it is not a trivial task to incorporate it into the
translation method due to the following reasons.

Sequential and Hierarchical Encoding: The encoder plays a vital role in cor-
rectly understanding the semantics of the input text in code translation. Exist-
ing methods usually employ RNN/LSTM to learn the dependencies between
words according to their sequential orders, as shown in Fig. 2(a). However, it is
not applicable to hierarchical inputs such as AST. To additionally consider the
hierarchical patterns of the input source code, we need an approach to encode
the tree-structured inputs. Besides, we also need the sequential encoder to pro-
cess the source code since ASTs focus more on structure rather than token-
level details. How to effectively combine the sequential encoder and hierarchical
encoder is also an open question.
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Tree to Sequence Alignment in Hierarchical Attention: Attention mech-
anism is an important component in machine translation. It helps the decoder
choose more reasonable and accurate tokens by aligning generated words with
the words from the input at each step. Without attention, the decoder may gen-
erate redundant words or miss some words from the source text. As shown in
Fig. 2(c), to obtain the best annotation, we need to align the decoding step with
the words in the source code and the nodes in AST simultaneously. However,
the existing attention models only work on sequential data. It is unknown and
challenging to align each decoding step with the nodes in the AST.

To tackle the challenges above, we propose a novel model called Code2Text.
As Fig. 2(c) and Fig. 3 show, our Code2Text informatively incorporates hierarchi-
cal information from code AST, and trains a dual-encoder sequence to sequence
language model with improved attention mechanism for word alignment. Experi-
ments on the open-source Python project dataset reveal that our model achieves
better performance than state-of-the-art algorithms. Several case studies are dis-
played to demonstrate that Code2Text generates accurate and understandable
annotations as we pursued.

We summarize our contributions as follow,

1. We are the first work to incorporate code structure information into a code
annotation task.

2. We create a model, Code2Text, with a dual-encoder which can encode both
semantic information from source code and hierarchical information of the
AST. We also propose a dual-attention mechanism to improve the original
attention mechanism by extending it to align the structural AST tokens.

3. We perform extensive experiments on a public benchmark Python code
dataset. Other than the numerical evaluation, we additionally present case
studies to demonstrate the effectiveness of our dual-attention encoder design.

2 Preliminary

2.1 Problem Definition

Let’s take a look at the definition of NMT (Neural Machine Translation) first.
Suppose we have a dataset D = {(x°,y)} and the corresponding annotation. X'
and ) are sets of source code and annotation, respectively. x® = (z§,--- ,z?%)
represents a sequence of source code with n words and y = (y1,--+ ,Ym) repre-
sents a sequence of annotation with m words. Our task is to translate x* to y for
each pair in dataset D, which is the same task as translating a source language to
a target language. The overall goal of normal Neural Machine Translation models
is to estimate the conditional probability distribution Pr(Y|X®). Conventional
inference approaches usually require i.i.d. assumptions, and ignore dependency
between different instances. The inference for each instance is performed inde-
pendently:

PrY|x*)oc [] Pr(vx®) (1)

(x*,y)€eD
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In this work, our model considers not only semantic information but also
hierarchical information. Therefore, we derive another symbol x* = (zf,- -, z}),
who contains AST information of relative source code x* with ¢ words. X* is a set
which contains x*. Accordingly, we create an extended dataset D’ = {(x*,x",y)}.
To incorporate hierarchical information, we will modify our probability distri-
bution:

Prylxs, X o [ Prlyvlx®,x) (2)
(x*,x*y)eD’

2.2 Attention Seq2seq Model

Attention seq2seq model is a sophisticated end-to-end neural translation app-
roach, which consists of the encoder process and decoder process with an atten-
tion mechanism.

Encoder. In the encoder process, we aim to embed a sequence of source code
x® = (x5, -+ ,x8) into d-dimension vector space.

We usually replace vanilla RNN [10] unit with LSTM (Long Short Term
Memory) [4] unit due to the gradient explosion/vanishing problem. The j-th
LSTM unit has three gates: an input gate i§ € R?*!, a forget gate ff € R¥!
and an output gate o € R¥>1 and two states: a hidden state hi e R4 and a
memory cell ¢} € R¥*1. Update rules for an LSTM unit are below:

it = o(WWembed(z5) + UPhi_; + b®), 3)
£2 = o(WWDembed(z3) + UPRS_, + b)), (4)
o} = U(W(o)embed(:cj) + U(D)hj_1 +b)), (5)
c~§ = tanh (W(é)embed(xj) + U(é)hjq + b(é))a (6)
¢ =G o¢ o, 0
h} = o} © tanh (cj), (®)

Here, c~§ € R denotes the state for updating the memory cell c;. Function
embed() turns a word into a d-dimension embedding vector. It can be assigned
with a fixed global word vector or trained by the model itself. W) U() ¢ Rdxd
are weight matrix and b(") € R4*! is a bias vector. o is the logistic function and
the operator ® means element-wise product between two vectors. We initialize
h{ as a d-dimension vector of all zeros, and iterate over the sequence and finally
obtain h} at the end of the source sentence, which represents the information of
source code.

Decoder. After we obtain source code representation vector h from the
encoder process, we then predict the annotation sequence with LSTM in a simi-
lar way in the decoder process. We define d; as the j-th hidden state. Given the
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input embedding vector embed(x?®) and previous word sequence y«;, we generate
j-th word by estimating the conditional probability:

p(Yjly<j, embed(x?®)) = softmaz(d;), (9)

where softmax() function produces probabilities according to the j-th hidden
state d;, and d; is calculated by another non-linear function fq as follows:

d; = fa(d;_1,embed(y;-1)), (10)

We initialize dy = h{ to ensure that our predictor can generate an annotation
sequence base on source code sequential information.

Attention Mechanism. Attention mechanism [9] was proposed to align each
decoder hidden state with the encoder output states. With the attention process,
we can explicitly calculate the contribution each encoder output state made to
the word prediction at each step.

Suppose we have hidden state d; at time j in the decoder process, and
(h$,--- ,h?) are encoder hidden states. According to [9], we first calculate atten-
tion weights o}; between the i-th hidden state hi in encoder and the j-th hidden
state d; in decoder as follows:

o = exp(score(hf,d;)) (11)
Yo S exp(score(hf,d;))’

where score() function is used to compare the decoder hidden state d; with each
of the source hidden states h?, and the result is normalized to produce attention
weights (a distribution over source positions). Then based on attention weights
we compute j-th context vector w; as the weighted average of the source encoder
hidden states:

wj = aihl (12)
i=1

Afterward, we apply a non-linear function tanh to the concatenation of the
context vector wj and the current decoder hidden state d;, and yield the final
attention vector a;:

a; = tanh(Wy x (d; ® w}) + bg), (13)

Rd><2d

where @ means concatenation of d; and wi. Wy € is a weight matrix

and by € R?*! is a bias vector. Once computed, the attention vector a; is used
to derive the softmax logit:

p(y;ly<j,x*) = softmax(a;). (14)

In Sect.4 our experiments will present performance and cases of this seq2seq
model.
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Fig. 3. Architecture of our Code2Text model. (z1, 2, - ,x,) are tokens of source code,
(t1,t2,- - ,tq) are tokens of AST and (y1,y2, - ,ym) are tokens of natural language
annotation. < st > and < eos > are start and end tokens, respectively. Encoder process
consists of sequence encoder and tree encoder, and hg is initialized with a vector of
all zeros. In the decoder process, dg is initialized with the bilinear result of h, and
hé. Context vector c¢ in attention mechanism is the concatenation of sequence context
vector and hierarchical context vector.

3 Proposed Method: Code2Text

In this section, we will formally introduce our model, Code2Text, which is an
extension and improvement of original seq2seq models. We first propose a dual-
encoder by creating a tree encoder for representing the summary of AST infor-
mation along with the original sequential encoder in the encoder process, then we
explain how our dual-attention mechanism works by incorporating hierarchical
outputs from tree encoder. The architecture of our model shows in Fig. 3.

3.1 Dual-Encoder

As Fig. 3 describes, in our encoder process, the sequential encoder produces
sequential representation hj , which will be a part of our dual-encoder informa-
tion. The other part, tree encoder, will produce hierarchical representation from
AST of source code.
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Sequential Encoder. The encoder introduced in Sect. 2.2 would be employed
as our sequential encoder directly.

Tree Encoder. Now we formally formulate our tree encoder. For each pair
of source code sequence x* = (z5,x5,--- ,2%) and annotation words sequence
y = (y1,%2, - ,Ym), We preprocess by parsing x® to AST sequence x' =
(zf,25,--- ,x}) and AST parent index list p = (p1,p2,--- ,p,). Here, ¢ is equal
to the number of words in AST sequence.

Our tree encoder aims to represent AST with a vector, hence, for propagating
information from children nodes to the root node, we employ a special LSTM
unit, tree-LSTM [17] to our tree encoder. Tree-LSTM was proposed to improve
semantic representations on tree-structured network topologies, which is appro-
priate for our work. There are two architectures: the Child-Sum Tree-LSTM
and the N-ary Tree-LSTM. Code AST is a natural kind of dependency trees,
and Child-Sum Tree-LSTM is a good choice for dependency trees [17]. However,
N-ary Tree-LSTMs are suited for constituency trees which are not suitable for
AST in our task. Therefore, we will choose Child-Sum Tree-LSTM in our work.

We denote C; as the children of j-th node in a AST. The hidden state h; € RIx1
and memory cell c§- € R4 for j-th node are updated as follows:

hi = > hj, (15)

keC(j)

st t it it
it = o(Wembed(z!) + U + b)),

16

(16)

f;k = (W(f )embed(x! 5+ U )hi + b(ft)), (17)

o} = (W) embed(z! 5+ Ul )l{’? + by, (18)

c§ = tanh (W(° )embed( 2+ U(cf)ht + b(ct)), (19)

02—1 ®c+ Z k@ck, (20)
keC(j)

h! = o} ® tanh (c;), (21)

e 7.Attribute

4.stmt*

8. expor —
P p T 10.Name

: ; .
S owpe e aaii} 7 acenira ] 5 o] 10 e

Parent index 0 1 2 1 3 6 7 8 10 7 1 4

Tokens |1.for!|2.Name! i [11. caches] [5.a1

Fig. 4. For each AST, we extract node tokens and put them into a token array, then
assign parent index for each token.
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where k € C; in Eq. 17, 1;3 € R4 is the sum of children hidden state, c~§ € R

denotes the state for updating the memory cell cf. if,of, ff; € R4 are input
gate, output gate and forget gate, respectively. W) U() € R¥*4 are weight
matrix and b() € R is a bias vector. ¢ is the logistic function and the

operator ® means element-wise product between two vectors.

3.2 Decoder

From the encoder process, we obtain two embedded vectors, sequential repre-
sentation vector h) and tree representation vector hfz. Afterward, we initialize
decoder hidden state dy with the concatenation of hj, and h/, along the sequence
length dimension:

do=h}, &h!, (22)
where @& means concatenation operation. This decoder initialization considers
not only source code sequential summary but also AST structure summary,
which could improve predictor performance than the original seq2seq model.
The rest decoder process remains the same.

3.3 Dual-Attention Mechanism

After introducing our dual-encoder, we need to improve the attention mechanism
to adopt hierarchical hidden outputs from tree encoder. The main difference
between our dual-attention and original attention mentioned in Sect.2.2 is the
construction of context vector w' for tree encoder. Concretely, as Fig. 3 shows,
at j-th step, aj; in attention seq2seq still represents sequential attention weights,
and hierarchical attention weights oz’;j are calculated by treating them the same
as sequential outputs:
. exp(score(ht,d,))
T ST explscore(h], d,)’
As in [2], we parameterize the score function score() as a feed-forward neural
network which is jointly trained with all the other components of the proposed
architecture. Then we compute j-th context vector w; as the weighted average
of the sequential hidden states and tree hidden states:

(23)

w;=w; D wj- (24)
n q
=> ajhi@) ol hl, (25)
i=1 i=1

4 Experiments

In this section, we conduct experiments on the task of annotating source code.
We first describe our dataset and data preparation steps, then we introduce
our training configurations in detail, after that we present experimental results
of our model and other baseline algorithms, finally, we show some persuasive
generation examples to prove the practicality and readability of our model.
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class StreamingBuffer (object):

def __init_ ( ):

derive the class StreamingBuffer from the object base class.
define the method __init__ with an argument self.

.vals = [] self.vals is an empty list.

def write( )z define the method write with 2 arguments: self and val.

.vals.append (val) append val to self.vals.

def read( ) define the method read with an argument self.

.vals = [] self.vals is an empty list.

return ret return ret.

def flush( )z define the method flush with an argument self.

return return nothing.

def close( ):

#
#
#
#
#
#
ret = b''.join( vals) |# join elements of self.vals into a bytes string, substitute the result for ret.
#
#
#
#
# define the method close with an argument self.
#

return return nothing.

Fig. 5. An example of a code snippet with its annotation. The left part is a snippet of
Python class, and the right part is its corresponding natural language annotation.

4.1 Dataset

For evaluating our model Code2Text effectively, we choose a high-quality
Python-to-English dataset from [12].

Data Description. Python-to-English dataset contains the source code and
annotations of Django Project (a Python web application framework). All lines
of code are annotated with corresponding annotations by an engineer. The whole
corpus contains 18,805 pairs of Python statements and corresponding English
annotations, and we split it into a training set and a test set. The training set
contains 16,000 statements, and we use it to train our Code2Text model. The
rest 2,805 statements in the test set are used to evaluate the model performance.
Figure5 is an example code snippet from the training dataset.

Data Preparation. Since our model exploits hierarchical information of source
code, we should first generate code ASTs by applying Python AST Parser! to
each line of source code in the dataset. Fortunately, Python interpreter itself
provides a built-in module called ast to help parse source code to its AST. Our
model could work on other programming languages such as Java, C++, etc. as
well if we apply their own open-source libraries for AST parsing?-3.

For consistency, we need to apply the same preparatory operations to all the
source code as follows:

1. For each line of source code, we parse it to an abstract syntax tree with a
built-in ast module in the Python interpreter.

2. For each AST, we extract node tokens and put them into a tokens array.

3. Then, we index all the nodes and assign the parent’s index for every token in
the list. We assign index 0 to the root of the tree. The purpose of this step is
to reconstruct the tree structure in our training and evaluation phase.

! https://docs.python.org/3/library/ast.html.
2 https://github.com/javaparser/javaparser.
3 https://github.com/foonathan/cppast.
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Figure 4 shows an example of how we generate the tokens array and parent index
list.

Finally, we extend our dataset by adding a new AST tokens array and an
index list for each line of source code. We feed source code sequence into the
sequential encoder and feed AST tokens sequence along with the parent index
list to the tree encoder.

The goal of our preprocessing steps is decoding an AST into a nodes array (for
node embedding) and a parent index array(for reconstruction). The order from
the breadth-first search is not important here because the parent index of each
node would help us reconstruct the AST tree. During the training process, we
would like to accumulate structure information from leaves to root, so we use the
parent index list to reconstruct an AST tree and compute root information with
the help of parent index array by recursively applying tree-LSTM (As Fig. 2(b)
shows).

4.2 Setup

In this part, we introduce our experiment setup, including compared methods
and evaluation metric.

Our training objective is the cross-entropy, which maximizes the log proba-
bility assigned to the target words in the decoder process.

In the test phase, we have the same inputs in the encoder process for gener-
ating h? and hfl. In the decoder process, we predict with the START tag and
compute the distribution over the first word y}. We pick the argmax in the dis-
tribution and set its embedding vector as the next input y;, and repeat this
process until the END tag is generated. The whole generated sentence y?P will
be our annotation result.

Table 1. Types of models, based on the kinds of features used.

Method Rules | Seq. Info. | Tree Info. | Atte.
PBMT Vv - - -
Seq2seq - Vv

Seq2seq w/ attention - Vv -
Code2Text w/o seq. info |- -
Code2Text w/o attention | —
Code2Text -

N
v

V4

YA
RNANAS

Compared Methods. To validate the improvement of our model, in this paper
we compare Code2Text to following state-of-the-art algorithms (summarized in
Table 1):
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— PBMT [6,7,12]: PBMT is a statistical machine translation framework which
uses the phrase-to-phrase relationships between source and target language
pairs. Oda et al. apply PBMT to pseudocode generation task [12].

— Seq2seq [16]: Seq2seq model is commonly used in NMT tasks. It consists
of encoder process and decoder process, while the encoder process encodes
source code sequential information and decoder process learns a language
model to predict annotations base on the summary of sequential information.

— Seq2seq w/ attention [9,19]: This version of seq2seq model incorporates atten-
tion mechanism which could improve the generation performance.

— Code2Text (w/o sequential encoder): This is one weak version of our method
with only tree encoder and hierarchical attention mechanism.

— Code2Text (w/o attention): This weak version of our method combines
sequential encoder and tree encoder with no attention mechanism.

— Code2Text: This is our method proposed in Sect. 3, which tries to improve
the performance of automatic annotation generation.

Oda et al. [12] also proposed a model with AST information included, however,
we have no comparability since we preprocess in different ways.

For all sequential encoders and decoders in both seq2seq models and our
model, we use the one-layer LSTM network. The number of epoches is set to 30.
All experiments were conducted under a Linux GPU server with a GTX 1080
device.

Metrics. In addition to the direct judgment from real cases, we choose BLEU
(Bilingual Evaluation Understudy) score [13] to measure the quality of generated
annotations for all the methods. BLEU is widely used in machine translation
tasks for evaluating the generated translations. It calculates the similarity of
generated translations and human-created reference translations. It is defined
as the product of “n-gram precision” and a “brevity penalty” where n-gram
precision measures the precision of length n word sequences and the brevity
penalty is a penalty for short hypotheses. BLEU outputs a specific real value
with range [0, 1] and it becomes 1 when generated hypotheses completely equal
to the references. We multiply the BLEU score by 100 in our experiments for
display convenience.

4.3 Performance

Our Model vs. Other Models. From Table 2 we can conclude that our model
Code2Text outperforms than other compared methods. For PBMT, we only com-
pare BLEU-4 score due to the lack of the other three metrics in [12]. Code2Text
has an obvious improvement than PBMT by around 1.6 times and outperforms
better than attention seq2seq model since we incorporate hierarchical informa-
tion in source code.
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Table 2. Comparison w.r.t BLEU scores. Only BLEU-4 score reported for PBMT due
to BLEU-1 to BLEU-3 are not available in source paper.

Models BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4
PBMT - - - 25.71
Seq2seq w/ atte. | 54.11 46.89 42.02 38.11
Code2Text 65.72 |55.08 |48.23 |42.78

Table 3. Comparison of BLEU Scores w/o Attention.

Models BLEU-1| BLEU-2 BLEU-3 BLEU-4
Seq2seq 3420 2846 2461 | 21.56
+ attention | 54.11 | 46.89 | 42.02 | 38.11
Code2Text ' 36.24 |22.96 1621 | 11.59
+ attention | 65.72 | 55.08 | 48.23 | 42.78

Table 4. Effects of tree encoder under BLEU metric.

Models BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4
Seq2seq + att. 54.11 46.89 42.02 38.11
Code2Text w/o seq. | 58.70 47.24 40.14 34.64
Code2Text 65.72 55.08 48.23 42.78

Effects of Attention Mechanism. Table 3 tells us how attention mechanism
improves model performance. Whether in seq2seq or in our Code2Text, mod-
els with attention mechanism both perform better than who without attention
mechanism. Meanwhile, the reason that Code2Text without attention mecha-
nism has a lower BLEU score than seq2seq model is dual-encoder compresses
more information than the sequential encoder, which makes it harder to capture
important information if we do not have an alignment mechanism.

Effects of Tree Encoder. To evaluate the effects of tree encoder in our pro-
posed model, Table4 reveals that attention seq2seq model and our Code2Text
model with only tree encoder has similar performance. Since this weak version
of Code2Text neglects sequential encoder, it may not capture order information,
which may result in worse performance under BLEU-3 and BLEU-4 than atten-
tion seq2seq model. However, our full version of Code2Text achieves the best
score.

4.4 Case Study

We present four cases in Fig. 6. Each case has three corresponding annotations
apart from the ground truth. For all the four cases, annotations generated by
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Python code

Ground truth
Code2text

Code2text w/o attention

Seq2seq w/ attention

Python code

Ground truth
Code2text

Code2text w/o attention

Seq2seq w/ attention

Python code

Ground truth
Code2text

Code2text w/o attention

Seq2seq w/ attention

Python code
Ground truth

Code2text
Code2text w/o attention

Seq2seq w/ attention

status_code = 405

status_code is an integer 405.

status_code is an integer 405. v/
substitute name for self.name.

substitute 405 for status_code.

if exit_code < 0 :pass

if exit_code is lesser than integer 0,

if exit_code is smaller than integer 0, v/
equal to terminal_char , append the result to output

if exit_code is false,

return force_text (error)

call the function force_text with an argument error,
return the result.

call the function force_text with an argument error,
return the result. v’

call the function mark_safe with an argument data ,
return the result .

call the force_text with an argument error, return the
result.

for i, line in enumerate (lines) :pass

for every i and line in enumerated iterable lines ,

for every i and line in enumerated iterable lines , v°

define the method __init__ with 3 arguments : self ,
unpacked list args and unpacked

for every i and line in enumerated iterable lines , v/

Fig. 6. Cases of our Code2Text model. Our model could generate readable natural
language annotations for various statements.

Code2text without attention mechanism have the least similarity to the ground
truth, which meets the BLEU score evaluation results. The reason may be that
LSTM performs worse due to the combination of source code tokens and AST
tokens. The attention mechanism will help align the annotation words with the
source tokens and AST tokens. For the first case and third case, although atten-
tion seq2seq model could generate reasonable annotations as well, our Code2Text
captures the hidden keyword (integer, function) from source code AST and pro-
vides more accurate annotations. The fourth case reveals that Code2Text could
generate complex expression, which is friendly to beginners.

We visualize our attention matrix «;; and aﬁj of the first and third cases in
Fig. 7. For the left figure, our model captures the relationship between keyword
integer and node tokens in AST (int, n). Since Python is a Weakly-Typed Lan-
guage, the base type of a variable (such as integer, string, etc.) will be inferenced
by the interpreter. Therefore, this type information could only exist in AST, that
is why our model can generate keyword integer. In the same way, right figure
exploits another two relationships. Keyword function corresponds with func and
argument corresponds with (expr*, args).
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Name

Name ‘args’ expr

Str Num

str
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id error

id status_code :
id force_text

status_code = 400 return force_text (error)

Fig. 7. Two sample alignments above refer to our first and third cases. The x-axis
corresponds to the generated annotation, and the y-axis corresponds to the tokens
from AST and source code. Each pixel shows the weight af-j of the annotation of the
j-th source word for the i-th target word (see Eq. 23), in grayscale (0: black, 1: white).

5 Related Work

In the early years, various rule-based models were explored by researchers.
Sridhara et al. [14,15] focused on automatic comment generation for Java pro-
gramming language. Their two works both concentrated on designing mapping
rules between source code and code comment by hand and generating comments
for Java methods by filling out pre-defined sentence templates. Moreno et al. [11]
studied comment for Java Classes as well. Their model extracted the class and
method stereotypes and used them, in conjunction with heuristics, to select key
information to be included in the summaries. Then it generated code snippet
summaries using existing lexicalization tools. However, there is a major limita-
tion for the rule-based approach that it lacks portability and flexibility. When
new rules that are never seen appear in the source code or we start a new project
with another programming language, we have to manually update our rules table
and sentence templates.

Later, most researchers tended to data-based approaches in recent years.
Wong et al. [18] crawled code-description mappings from online Q&A websites
at first, then output code comment by matching similar code segments. Therefore
this model does not have a generalization. Haiduc et al. [3] created summaries for
source code entities using text retrieval (TR) techniques adapted from automated
text summarization [5].

Recently, some deep neural networks are introduced in the annotation gen-
eration task. In the task of pseudocode generation, Oda et al. [12] combines the
rule-based approach and data-based approach. Their model updated the rules
table automatically and generated pseudocode through n-gram language model.
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However, its n-gram language model lacks explicit representation of long-range
dependency which may affect generation performance. In 2017, Zheng et al. [19]
applied attention sequence to sequence neural machine translation model on
code summary generation which motivates our work. Allamanis et al. [1] treated
source code as natural language texts as well, and learned a convolutional neural
network to summarize the words in source code into briefer phrases or sentences.
These models for code summary generation task do not consider the hidden hier-
archical information inside the source code.

6 Conclusion

In this paper, we studied the problem of structure-aware annotation generation.
We proposed a novel model, Code2Text, to translate source code to annotations
by incorporating tree encoder and hierarchical attention mechanism. Experiment
results showed that our model outperforms among state-of-the-art methods, and
example cases prove the practicality and readability. Our model could be also
extended to other programming languages easily with the specific parser.
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