
Easier Said Than Done: Diagnosing Misconfiguration via
Configuration Constraints Analysis

A Study of the Variance of Configuration Constraints in Source Code

Shulin Zhou
National University of Defense

Technology
P. R. China

zhoushulin@nudt.edu.cn

Shanshan Li
National University of Defense

Technology
P. R. China

shanshanli@nudt.edu.cn

Xiaodong Liu
National University of Defense

Technology
P. R. China

liuxiaodong@nudt.edu.cn

Xiangyang Xu
National University of Defense

Technology
P. R. China

xuxiangyang11@nudt.edu.cn

Si Zheng
National University of Defense

Technology
P. R. China

si.zheng1009@gmail.com

Xiangke Liao
National University of Defense

Technology
P. R. China

xkliao@nudt.edu.cn

Yun Xiong
Fudan University

P. R. China
yunx@fudan.edu.cn

ABSTRACT
Miscon�gurations have drawn tremendous attention for their in-
creasing prevalence and severity, and the main causes are the com-
plexity of con�gurations as well as the lack of domain knowledge
for software. To diagnose miscon�gurations, one typical approach is
to �nd out the conditions that con�guration options should satisfy,
which we refer to as con�guration constraints. Current researches
only handled part of the situations of con�guration constraints in
source code, which provide only limited help for miscon�guration
diagnosis. To better extract con�guration constraints, we conduct
a comprehensive manual study on the existence and variance of
the con�guration constraints in source code from �ve pieces of
popular open-source software. We summarized several �ndings
from di�erent aspects, including the general statistics about con�g-
uration constraints, the general features for speci�c con�gurations,
and the obstacles in extraction of con�guration constraints. Based
on the �ndings, we propose several suggestions to maximize the
automation of constraints extraction.

CCS CONCEPTS
• General and reference → Surveys and overviews; • Soft-
ware and its engineering → Maintaining software;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
EASE’17, Karlskrona, Sweden
© 2017 ACM. 978-1-4503-4804-1/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3084226.3084276

KEYWORDS
Miscon�guration, miscon�guration diagnosis, con�guration con-
straints
ACM Reference format:
Shulin Zhou, Shanshan Li, Xiaodong Liu, Xiangyang Xu, Si Zheng, Xiangke
Liao, and Yun Xiong. 2017. Easier Said Than Done: Diagnosing Miscon�gu-
ration via Con�guration Constraints Analysis . In Proceedings of EASE’17,
Karlskrona, Sweden, June 15-16, 2017, 6 pages.
DOI: http://dx.doi.org/10.1145/3084226.3084276

1 INTRODUCTION
In recent years, miscon�gurations have drawn tremendous atten-
tion for their increasing prevalence and severity. As Barroso and
Hoelzle [1] mentioned, miscon�guration were the second major
cause of service outage in Google’s main services, counting nearly
28 percentage. Furthermore, Rabkin and Katz [6] indicated that,
considering both the reported clients’ failure cases number and
the total technique support time, miscon�guration was the lead-
ing cause of Hadoop cluster failures. Many other works [7, 8, 12]
also indicate such miscon�guration problems, and many researches
[2, 9, 10] have been focusing on it from di�erent views.

The reasons for miscon�gurations are mainly twofold. On one
hand, users rarely have the knowledge of the software and its
con�guration options. For instance, there would be hundreds of
con�guration options in current database server [4] and web server
[3], which would be a great challenge for rookies and even experi-
enced users to correctly set them. On the other hand, the complexity
in the procedure of con�guration is also an obstacle. Every single
con�guration option’s value should satisfy a valid range, and some
structural module should be well formatted. In addition, there might
be some complex relationship between di�erent con�guration op-
tions. For example, in PostgreSQL, the value of con�guration option

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3084226.3084276&domain=pdf&date_stamp=2017-06-15

EASE’17, June 15-16, 2017, Karlskrona, Sweden S. Zhou et al.

“superuser_reserved_connections” must be less than the value of
con�guration option “max_connections”, otherwise the daemon of
PostgreSQL would exit.

When miscon�guration occurs, a typical diagnosis approach is to
check whether the current settings of the con�guration options are
set in the correct value range. Thus, if we could extract the condi-
tions that con�guration options should satisfy, which is hereinafter
referred to as con�guration constraints, the users’ con�guration as
well as the diagnosis and repair of miscon�guration will be much
bene�ted.

As important references of the software, user manuals and o�-
cial documentations may record the con�guration constraints, but
it is hard for common users to �nd them in thousands pages of
documents. More seriously, some documentation of the software
may not be updated timely or even not contain the constraints of
the con�guration options at all. So extra e�orts are needed to obtain
the con�guration constraints.

To obtain con�guration constraints, current researches have
made much e�orts. After summarizing the three commonly used
mapping structures, SPEX [11] extracts con�guration constraints
from source code based on the speci�c patterns, such as if-statement
checking and lib-function calling. Then, based on those con�gura-
tion constraints, some fault injections are made and some sugges-
tions are provided for con�guration design and implementation.
Rabkin et al.[5] also try to extract some information from source
code. Focusing on key-value model, they present a static analysis
that extracts a list of con�guration options for a program based
on a few manual labeling. Besides, it [5] also can infer the type for
most con�guration options to reduce the burden of maintaining
con�guration documentations and con�guration debugging. En-
Core [13] uses machine learning algorithm to extract con�guration
constraints from thousands of user’s con�guration �les, which may
extract some hidden constraints between di�erent con�guration
options or even environment variables, but it requires prede�ned
constraints’ templates to reduce the search space, limiting the usage
of common users without domain knowledge.

Based on the conjectures that there must be some checking
modules for con�guration, and the results of existing work, we
thought there must be plenty of explicit con�guration constraints
in source code. However, after comprehensive studies in real-world
source code, we found it is often not the case. We manually studied
�ve pieces of popular open-source software, and found that the
formats of con�guration constraints are varied in di�erent kinds of
software, not always in if-statement or switch-case-statement. Then,
considering the fact that the con�guration constraints in some
software are context-sensitive with too much semantic information,
it is barely impossible to extract by simple program analysis. What’s
more, as a consequence of bad con�guration design or developers’
faults, there might be no con�guration constraints at all.

Faced with such situations, in order to ful�ll the extraction of
con�guration constraints for miscon�guration diagnosis, we did
a comprehensive manual study on the existence and variance of
the con�guration constraints in source code. Based on the over-
all results, several �ndings from di�erent aspects are summarized,
including the general statistics of con�guration constraints, the gen-
eral features of speci�c constraints and the obstacles in extracting

con�guration constraints. Furthermore, we also proposed several
automation suggestions about constraints extraction.

The rest of this paper is organized as follows. Section 2 introduces
the methodology we used. Section 3 describes the main �ndings
about con�guration constraints in source code. We propose several
strategies to automatically extract con�guration constraints from
source code in Section 4. Finally, some conclusions are mentioned
in Section 5.

2 METHODOLOGY
This section describes our methodology for analyzing the con�g-
uration constraints in source code. At present, there is no mature
tools or approaches to extract con�guration constraints from source
code. So in this section, we read the source code by manual e�orts
to �nd the con�guration constraints from source code. In detail,
we �rst search the o�cial documentations and manuals to collect
all the con�guration options of the software. Then, based on the
observations in [14] and code searches, we got the con�guration
variables that related to con�guration options. Through some sam-
pling statistical analysis and summarization, we hold the opinion
that con�guration variables are usually directly used for the pur-
pose of control the runtime �ow. Based on that, we manually trace
every use of the con�guration variables to dig out the potential
con�guration constraints. The targetting con�guration constraints
will be introduced in the following subsetion.

2.1 Data Set
To cover possibility as far as we can, we choose �ve typical pieces
of software to do the study, namely MySQL, Apache Httpd, Redis,
Post�x, PostgreSQL, which are all widely used and ranking top in
SourceForge or OSChina. For accuracy and e�ectiveness, all the
pieces of studied software are the newest stable version.

2.2 Study Methodology
In order to �gure out the existence of con�guration constraints in
source code, we should know what kinds of types that con�guration
options mainly are at �rst. To address this problem, we did a detailed
survey on con�guration types in o�cial documentations and source
codes, and found that con�guration options may have various kinds
of types and formations, but their basic types are commonly in range
of numeric type, string type, enumeration type and complex type.
The speci�c explanations of these con�guration basic types are list
in Table 1.

Based on the classi�cation of con�guration basis types men-
tioned above, as well as some reference in SPEX [11], we mainly
focus on the con�guration constraints listed in Table 2, considering
the fact that those constraint types represent the mainly manifesta-
tions of con�guration constraints in source code.

The exact meanings of the constraints are the same as SPEX
[11] declared except for enumeration and value control constraints
types. In this paper, we take con�guration options with type of
enumerate, boolean as constraint enumeration. As for value control,
we only take Boolean con�guration as the controller con�gurations,
because there are plenty of usages that di�erent con�guration
options are used in one condition to control the di�erent program

Easier Said Than Done: Diagnosing Misconfiguration via Configuration Constraints AnalysisEASE’17, June 15-16, 2017, Karlskrona, Sweden

Table 1: Explanation of con�guration types

Con�guration Types Explanations

Simple Type

Numeric
Type Includes integer and �oat types.

Enumeration
Type

Include enumerations, Boolean,
and some macros used as enum-
eration.

String
Type

Other common strings, such as
�le path, user name, etc.

Complex Type
Structural con�guration options
and software-speci�c encapsulat-
ed con�guration options.

Table 2: Con�guration constraints and their explanations

Constraint Types Explanations

Semantic Type The semantic type of the con�guration
option

Value Range The value range of a numeric con�gur-
ation option should satisfy

Enumeration The value space of a enumeration conf-
iguration option should satisfy

Value Control The usage of a con�guration option re-
lies on another con�guration option

Multi-value
relationship

The value relationship of two di�erent
con�guration options should satisfy

runtime routine in di�erent situations, which obviously are not
con�guration constraints.

2.3 Threats to Validity and Limitations
Considering the limitation of manual analysis, our study is sub-
ject to a validity problem, which lies on the representativeness of
software we choose and the constraints type we de�ne.

To address the former, we selected diverse open-source software
in terms of functionality, including web server, database server,
mail transfer agent, all of which are widely used in their product
categories. As for the latter, we have already found the common
con�guration types based on detailed survey, and thus de�ned our
target con�guration constraints sets considering the fact that those
constraint types represent the mainly manifestations of con�gu-
ration constraints in source code. Of course, there might be some
kinds of con�guration constraints not belonging to these lists, but
those constraints might also be di�cult to extract automatically, or
even by manual analysis. Therefore, the con�guration constraint
types we investigated could represent the common situations.

3 FINDINGS IN REAL-WORLD SOURCE CODE
This section describes the main �ndings of con�guration constraints
in source code. Our �ndings mainly focus on the current existence
of con�guration constraints, the limitations of current researches
and inspirations about con�guration extracting automation.

Table 3: Di�erent proportion of constraints in di�erent soft-
ware

Software
Proportion of
con�guration
constraints

Proportion of
con�guration cons-
traints that SPEX

could extract
PostgreSQL 87.5% 44.3%

Redis 92.1% 84.3%
MySQL 53% 4.2%
Httpd 45.3% 33.8%
Post�x 49.5% 7.4%

3.1 General Statistics about Con�guration
Constraints

Finding 1: On average, 64% of the con�guration constraints
can be extracted throughprogramanalysiswith various code
shape,while currentworksmainly consider the if-statement
situations.

According to our manual study of con�guration constraints, it
is obvious that di�erent pieces of software have di�erent level of
con�guration checking, representing as the proportion of con�gu-
ration constraints existing in the source code. The detailed statistics
are listed in Table 3. From the second column of Table 3, we can see
that Redis has the highest proportion of con�guration constraints
as 92.1% while Httpd has the lowest proportion, 45.3%. With fur-
ther analysis, we found that Redis has structured if-statement to
check most of its con�guration options, while Httpd uses a series
of set-functions to assign the con�guration value to variable, dur-
ing which the assign procedures are too complex to extract our
constraints.

More over, when compared with numbers of con�guration con-
straints that current work could extract, we found that there are
some gaps based on the last column of Table 3. The causes for these
gaps are that the formations of con�guration constraints are varied
in di�erent pieces of software, which will be detailed introduced in
Finding 3 and 4. Take SPEX [11] as an example, it mainly considers
the condition in if-statement as constraints. In implementation,
SPEX �rst locates the if-statements where con�guration options
used as judging conditions and extract the con�guration-related
conditions as its ranges. Then, if in the branch block, the program
exits, aborts, returns error code, or resets the parameter, SPEX treats
the range as invalid. Otherwise, it is valid. Thus, SPEX could extract
the con�guration constraints. However, in our study, there are few
con�guration constraints could be extracted from if-statements, so
the proportion is lower.

Finding 2: Numeric con�guration options have highest
proportion of constraints,while con�guration options in str-
ing type is the lowest except for complex type.

When considering with basic types that con�guration options
have, there are also some distinctions. Just as Table 4 shows, the
con�guration options in numeric type (i.e. integer and �oat) have
a higher proportion of constraints in general. As for con�gura-
tion options with string type, the proportion with constraints is
generally lower. After manual analysis, we hold the view that the

EASE’17, June 15-16, 2017, Karlskrona, Sweden S. Zhou et al.

Table 4: Constraint proportions of con�guration options
with di�erent basic types

Software Numeric Enumeration String Complex
PostgreSQL 100% 100% 0% -

Redis 100% 100% 50% 100%
MySQL 100% 100% 6.4% 0%
Httpd 64.3% 100% 22.2% 0%
Post�x 100% 100% 8.3% -

con�guration option in string type have �exible format. Except for
few special types such as �le path and directory, other kinds of
con�guration options’ values are hard to check. When it comes to
complex types con�guration, due to the particularity of its meaning
and formation in di�erent pieces of software, it is barely possible to
extract common con�guration constraints with rich semantic con-
text. Therefore, the constraint proportion of con�guration options
with complex type are extremely low.

3.2 General Features in the Existence of
Con�guration Constraints

Finding 3: Con�guration constraints have various manifes-
tations, rather than if-condition statement.

Current works mainly focus on if-condition statement to ex-
tract con�guration constraints. In some circumstances it makes
sense. However, after manual analysis, we found that it is only ac-
count for a small percentage. On the other hand, there are various
manifestation of con�guration constraints, especially for numeric
con�guration options. Considering the fact that those constraints
are existing in the structures that con�guration options map with
relevant program variables, so we call them mapping constraints.
In summary, we found that MySQL, PostgreSQL and Post�x have
plenty of these kinds of constraints. For instance, in Fig. 1, MySQL
use object declaration to announce the constraints, especially with
some macros for readability, while PostgreSQL and Post�x use
speci�c structure arrays to accomplish the complex jobs.

Finding 4: The enumeration constraints have variousman-
ifestations rather than simply switch-case-statement situa-
tions, but in uniform patterns.

In current works, researchers only focus on the switch-case
situations to extract enumeration con�guration constraints, while
in manual study, we found that is often not the case. Through
manually statistics shown in Table 5, it is obvious that switch-case-
statement can be rarely used for con�guration constraints in those
pieces of software.

Furthermore, we found that there are some clustered code snip-
pets for enumeration con�guration values. As Fig. 2(a) shows, Post-
greSQL uses a series of structure arrays to connect the value space
and the relevant enumerated values, Redis and MySQL use the
similar method to conduct this work. While in Fig. 2(a), Httpd uses
Macro as Enumeration and ful�ll the assignment from con�guration
value to program variable values.

Finding 5: The parameters of the functions that call con-
�guration options contain the information of their seman-
tic types.

1 /* mysql-5.7.16/sql/sys_vars.cc */
2 …
3 static Sys_var_ulong Sys_connect_timeout(
4 ”connect_timeout”,
5 ”The number of seconds the mysqld server is waiting for

a connect ”
6 ”packet before responding with ’Bad handshake’”,
7 GLOBAL_VAR(connect_timeout), CMD_LINE(REQUIRED_ARG),
8 VALID_RANGE(2, LONG_TIMEOUT), DEFAULT(CONNECT_TIMEOUT),

BLOCK_SIZE(1));
9 …

(a) MySQL-5.7.16

1 /* postgresql-9.5.6/src/backend/utils/misc/guc.c */
2 …
3 {
4 {”geqo_effort”, PGC_USERSET, QUERY_TUNING_GEQO,
5 gettext_noop(”GEQO: effort is used to set the default

for other GEQO parameters.”),
6 NULL
7 },
8 &Geqo_effort,
9 DEFAULT_GEQO_EFFORT, MIN_GEQO_EFFORT, MAX_GEQO_EFFORT,
10 NULL, NULL, NULL
11 },
12 …

(b) PostgreSQL-9.5.6

1 /* postfix-3.1.3/src/global/mail_params.c */
2 …
3 static const CONFIG_TIME_TABLE time_defaults[] = {
4 VAR_EVENT_DRAIN, DEF_EVENT_DRAIN, &var_event_drain, 1, 0,
5 VAR_MAX_IDLE, DEF_MAX_IDLE, &var_idle_limit, 1, 0,
6 VAR_IPC_TIMEOUT, DEF_IPC_TIMEOUT, &var_ipc_timeout, 1, 0,
7 VAR_IPC_IDLE, DEF_IPC_IDLE, &var_ipc_idle_limit, 1, 0,
8 VAR_IPC_TTL, DEF_IPC_TTL, &var_ipc_ttl_limit, 1, 0,
9 VAR_TRIGGER_TIMEOUT, DEF_TRIGGER_TIMEOUT, &

var_trigger_timeout, 1, 0,
10 VAR_FORK_DELAY, DEF_FORK_DELAY, &var_fork_delay, 1, 0,
11 VAR_FLOCK_DELAY, DEF_FLOCK_DELAY, &var_flock_delay, 1, 0,
12 VAR_FLOCK_STALE, DEF_FLOCK_STALE, &var_flock_stale, 1, 0,
13 VAR_DAEMON_TIMEOUT, DEF_DAEMON_TIMEOUT, &

var_daemon_timeout, 1, 0,
14 VAR_IN_FLOW_DELAY, DEF_IN_FLOW_DELAY, &var_in_flow_delay,

0, 10,
15 0,
16 };
17 …

(c) Post�x-3.1.3

Figure 1: Examples of mapping constraints.

Table 5: Proportion of enumeration constraints that can be
extract from switch-case-statement

Software Total Switch-case-statement
PostgreSQL 97 2

Redis 19 0
MySQL 86 3
Httpd 26 1
Post�x 19 0

To �nd out the semantic type of a con�guration option, cur-
rent work may need to use data�ow analysis to trace to known
library functions. However, in our manual study, we found there
are plenty of con�guration options can’t be traced to known library
functions, or doesn’t use the common library functions. On the
other hand, many function parameters have meaningful identi�ers
rather than arbitrary strings. So we could mine much information
from the function calling situation of the con�guration options and
the parameter identi�ers. For example, in Postgresql, con�guration
option “ssl_key_�le” cannot be traced to a known library function

Easier Said Than Done: Diagnosing Misconfiguration via Configuration Constraints AnalysisEASE’17, June 15-16, 2017, Karlskrona, Sweden

1 /* postgresql-9.5.6/src/backend/utils/misc/guc.c */
2 …
3 {
4 {”backslash_quote”, PGC_USERSET, COMPAT_OPTIONS_PREVIOUS,
5 gettext_noop(”Sets whether \”\\’\” is allowed in string

literals.”),
6 NULL
7 },
8 &backslash_quote,
9 BACKSLASH_QUOTE_SAFE_ENCODING, backslash_quote_options,
10 NULL, NULL, NULL
11 },
12 …
13 static const struct config_enum_entry

backslash_quote_options[] = {
14 {”safe_encoding”, BACKSLASH_QUOTE_SAFE_ENCODING, false},
15 {”on”, BACKSLASH_QUOTE_ON, false},
16 {”off”, BACKSLASH_QUOTE_OFF, false},
17 {”true”, BACKSLASH_QUOTE_ON, true},
18 {”false”, BACKSLASH_QUOTE_OFF, true},
19 {”yes”, BACKSLASH_QUOTE_ON, true},
20 {”no”, BACKSLASH_QUOTE_OFF, true},
21 {”1”, BACKSLASH_QUOTE_ON, true},
22 {”0”, BACKSLASH_QUOTE_OFF, true},
23 {NULL, 0, false}
24 };
25 …

(a) PostgreSQL-9.5.6

1 /* httpd-2.4.23/server/core.c */
2 …
3 static const char *set_enable_sendfile(cmd_parms *cmd,

void *d_, const char *arg)
4 {
5 core_dir_config *d = d_;
6

7 if (strcasecmp(arg, ”on”) == 0) {
8 d->enable_sendfile = ENABLE_SENDFILE_ON;
9 }
10 else if (strcasecmp(arg, ”off”) == 0) {
11 d->enable_sendfile = ENABLE_SENDFILE_OFF;
12 }
13 else {
14 return ”parameter must be ’on’ or ’off’”;
15 }
16

17 return NULL;
18 }
19 …

(b) Httpd-2.4.23

Figure 2: Examples of enumeration clustering in source code
from di�erent pieces of software.

Table 6: Proportion of enumeration constraints that can be
extract from switch-case-statement

Software
Con�guration options
that could trace to kn-

own lib-functions

Con�guration options
that could trace to kno-
wn function parameters

PostgreSQL 28.6% 42.9%
Redis 50% 66.7%

MySQL 40% 65%
Httpd 33.3% 88.9%
Post�x 33.3% 44.4%

call, but in its call trace, the function “pgwin32_safestat” is called,
where the �rst parameter name is “path”, just as shown in Fig. 3,
so we could infer that the semantic type of con�guration option
“ssl_key_�le” is “PATH”.

Based on this �nding, we get the statistics of the existence of
this phenonmen, and the results is listed in Table 6.

1 /* postfix-3.1.3/src/global/mail_dict.c */
2 …
3 dymap_init(path, var_shlib_dir);
4 myfree(path);
5 …
6

7 /* postfix-3.1.3/src/global/dynamicmaps.c */
8 …
9 void dymap_init(const char *conf_path, const char *

plugin_dir)
10 {
11 static const char myname[] = ”dymap_init”;
12 …
13 }
14 …

Figure 3: Example of semantic information in parameter
identi�ers from function call in PostgreSQL-9.5.6.

Table 7: Proportion of �le resource-related con�guration
that has been checked

Software File resource-related
con�gurations

Proportion of acc-
essibility checking

PostgreSQL 14 0%
Redis 4 66.7%

MySQL 20 25%
Httpd 9 44.4%
Post�x 9 33.3%

3.3 Obstacles in Extraction of Con�guration
Constraints

Finding 6: Structural con�guration options are hard to an-
alyze and the e�ect scope of con�guration options are not
considered yet.

There are some structural con�guration options in Httpd and
MySQL to organize the con�guration �les well, but those kinds
of con�guration options and its e�ect on constraints extraction
are not considered yet. For instance, in Httpd, plenty of structural
con�guration options, such as “<VirtualHost”, “<Directory”, are
used to limit the e�ect scope of speci�c con�guration options. The
similar measures are used in MySQL con�guration �les. Moreover,
in PostgreSQL, there are parameters limiting the e�ect scope of
a con�guration option, such as the keyword “PGC_USERSET” in
Fig. 1(b) and Fig. 2(a). These kinds of implementation have great ef-
fect on the extraction of con�guration constraints, but it is complex
to handled them well yet.

Finding 7: Resource-related con�guration are not checked
well in majority of studied software.

In runtime of software, it might need various of resources, such
as �le resources, network resources, hardware resourced and so
on. Most of these resources might be declared in con�guration
�les considering the di�erence in users’ system environment. So
it is necessary to check the accessibility of those resources before
the program uses them. However, after study, we found that the
checking for software-needed resources are relatively lacked. In
term of �le resources, the proportion of accessibility checking is
shown in Table 7.

With these results, we thought that developers may hold the
opinion that users who con�gure those resource-related con�gu-
ration are experienced users, so they can make it correct. On the

EASE’17, June 15-16, 2017, Karlskrona, Sweden S. Zhou et al.

1 /* postgresql-9.5.6/src/include/utils/guc_tables.h */
2 …
3 struct config_int
4 {
5 struct config_generic gen;
6 /* constant fields, must be set correctly in initial

value: */
7 int *variable;
8 int boot_val;
9 int min;
10 int max;
11 GucIntCheckHook check_hook;
12 GucIntAssignHook assign_hook;
13 GucShowHook show_hook;
14 /* variable fields, initialized at runtime: */
15 int reset_val;
16 void *reset_extra;
17 };
18 …

Figure 4: De�nition of mapping structure in PostgreSQL-
9.5.6.

other hand, in the view of good con�guration design, it may be
potential miscon�guration causes.

4 AUTOMATIC EXTRACTION OF
CONFIGURATION CONSTRAINTS

Based on the �ndings we summarized from real-world software,
as well as the con�guration constraints type we de�ned in Table 2,
we want to extract common situations and patterns to maximize
the automation of con�guration constraints extraction from vari-
ous source codes. In summary, the main con�guration constraints
contain the followings: 1) numeric value ranges; 2) enumeration
constraints; 3) semantic type of con�guration options.

Strategy 1: Extracting numeric value ranges from map-
ping code snippets.

As mentioned in Finding 3, the mapping structures of con�gu-
ration options and relevant variables contain mainly value range
constraints, i.e. mapping constraints. Although there are obvious
features to locate the mapping code snippets [14], it is hard to
extract the constraints from those snippets without any domain
knowledge. Aiming to this challenge, we are inspired to use some
semantic information to help the extractions. For instance, in Post-
greSQL, the de�nition of the mapping structure arrays is shown
in Fig. 4, where the value range of integer type con�guration are
declared by structure members “int min” and “int max”. Therefore,
if we could use this kind of semantic information during the auto-
matic analysis, the accuracy of constraints extraction will be much
improved. The similar situations also occur in MySQL and Post�x.

Strategy 2: Extracting enumeration constraints from clus-
tered code snippets.

As for enumeration constraints, we could use texture analysis
to �nd the clustered code snippets for enumeration constraints,
as Fig. 2 shows, without considering the complex and varied con-
text as well as its implement. Then based on the features of these
clustered snippets, the value spaces of enumerations could be ex-
tracted. Besides, some verifying strategies could be used to ensure
the correctness based on the structured formations.

Strategy 3: Extracting semantic typewith function param-
eters’ information.

Aiming to the semantic type extraction of con�guration options,
we could optimize the data�ow analysis by using function parame-
ter informations. To extract the semantic type of a con�guration

option, we �nd the function calls that take this con�guration option
as argument at �rst. Then, we could either analyze the parameter
information to extract the possible semantic type of this con�g-
uration option, or trace into the implementation of this function
to further analysis. Thus, we could get the semantic type of this
con�guration option.

5 CONCLUSION
Miscon�gurations have become major causes of software failure.
Con�guration constraints play a vital role in miscon�guration di-
agnosis. In order to better obtain con�guration constraints, we did
a comprehensive study about the existence and variance of con-
�guration constraints in source code. Based on the study results,
we summarized several �ndings about con�guration constraints
and con�guration designs. Finally, with features re�ected in �nd-
ings, we proposed several strategies to automatically extracting
con�guration constraints from source code.

ACKNOWLEDGMENTS
This work was partially supported by National Natural Science
Foundation (61690203, 61532007) and National 973 Program (2014CB
340703) of China.

REFERENCES
[1] L Barroso, J Clidaras, and U Hoelzle. 2009. The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machines. 8, 3 (2009), 154.
[2] Zhen Dong, Mohammadreza Ghanavati, and Artur Andrzejak. 2013. Automated

diagnosis of software miscon�gurations based on static analysis. In IEEE Inter-
national Symposium on Software Reliability Engineering Workshops. 162–168.

[3] Httpd. 2017. http://httpd.apache.org/. (2017).
[4] MySQL. 2017. http://www.mysql.com/. (2017).
[5] Ariel Rabkin and Randy Katz. 2011. Static extraction of program con�guration

options. In International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , Hi, Usa, May. 131–140.

[6] Ariel Rabkin and Randy Howard Katz. 2013. How Hadoop Clusters Break. IEEE
Software 30, 4 (2013), 88–94.

[7] Y Sverdlik. 2012. Microsoft: miscon�gured network device led to azure outage.
Retrieved January 29, 2017 from http://www.datacenterdynamics.com/focus/ar-
chive/2012/07/microsoft-miscon�gured-network-device-led-azure-outage.
(2012).

[8] A Team. 2011. Summary of the amazon ec2 and amazon rds ser-
vice disruption in the us east region. Amazon Web Services,[online]
http://aws.amazon.com/message/65648. (2011).

[9] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki. 2012.
Generating range �xes for software con�guration. In International Conference on
Software Engineering. 58–68.

[10] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Con�guration Errors to Reduce
Failure Damage. (2016).

[11] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do not blame users for miscon-
�gurations. In Twenty-Fourth ACM Symposium on Operating Systems Principles.
244–259.

[12] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. 2011. An empirical study on con�guration
errors in commercial and open source systems. In ACM Symposium on Operating
Systems Principles 2011, SOSP 2011, Cascais, Portugal, October. 159–172.

[13] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-
anth Bala, Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: exploiting system
environment and correlation information for miscon�guration detection. In
International Conference on Architectural Support for Programming Languages
and Operating Systems. 687–700.

[14] Shulin Zhou, Xiaodong Liu, Shanshan Li, Wei Dong, Xiangke Liao, and Yun
Xiong. 2016. ConfMapper: Automated Variable Finding for Con�guration Items in
Source Code. In 2016 IEEE International Conference on Software Quality, Reliability
and Security, QRS 2016, Companion, Vienna, Austria, August 1-3, 2016. 228–235.
DOI:https://doi.org/10.1109/QRS-C.2016.35

https://doi.org/10.1109/QRS-C.2016.35

	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Set
	2.2 Study Methodology
	2.3 Threats to Validity and Limitations

	3 FINDINGS IN REAL-WORLD SOURCE CODE
	3.1 General Statistics about Configuration Constraints
	3.2 General Features in the Existence of Configuration Constraints
	3.3 Obstacles in Extraction of Configuration Constraints

	4 AUTOMATIC EXTRACTION OF CONFIGURATION CONSTRAINTS
	5 CONCLUSION
	Acknowledgments
	References

