
ConfTest: Generating Comprehensive Misconfiguration for
System Reaction Ability Evaluation

Wang Li
National University of Defense

Technology
P. R. China

liwang2015@nudt.edu.cn

Shanshan Li
National University of Defense

Technology
P. R. China

shanshanli@nudt.edu.cn

Xiangke Liao
National University of Defense

Technology
P. R. China

xkliao@nudt.edu.cn

Xiangyang Xu
National University of Defense

Technology
P. R. China

xuxiangyang11@nudt.edu.cn

Shulin Zhou
National University of Defense

Technology
P. R. China

zhoushulin@nudt.edu.cn

Zhouyang Jia
National University of Defense

Technology
P. R. China

jiazhouyang@nudt.edu.cn

ABSTRACT
Miscon�gurations are not only prevalent, but also costly on diagnos-
ing and troubleshooting. Unlike software bugs, miscon�gurations
are more vulnerable to users’ mistakes. Improving system reaction
to miscon�gurations would ease the burden of users’ diagnoses.
Such e�ort can greatly bene�t from a comprehensive study of sys-
tem reaction ability towards miscon�gurations based on errors
injection method. Unfortunately, few such studies have achieved
the above goal in the past, primarily because they fail to provide
rich error types or only rely on generic alternations to generate
miscon�gurations. In this paper, we studied 8 mature opensource
and commercial software and summarized a �ne-grained classi�-
cation of option types. On the basis of this classi�cation, we could
extract syntactic and semantic constraints of each type to gener-
ate miscon�gurations. We implemented a tool named ConfTest
to conduct miscon�guration injection and further analyze system
reaction abilities to various of miscon�gurations. We carried out
comprehensive analyses upon 4 open-source software systems. Our
evaluation results show that our option classi�cation covers over
96% of 1582 options from Httpd, Yum, PostgreSQL and MySQL.Our
constraint is more �ned-grained and the accuracy is more than 90%
of of real constraints through manual veri�cation. We compared
the capability in �nding bad system reactions between ConfTest
and ConfErr, showing that the ConfTest can �nd nearly 3 times the
bad reactions found by ConfErr.

CCS CONCEPTS
•General and reference→Reliability;Evaluation; • Software
and its engineering→ Software testing and debugging;

KEYWORDS
Miscon�guration, system reactions, constraints

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or a�liate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
EASE’17, Karlskrona, Sweden
© 2017 ACM. 978-1-4503-4804-1/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3084226.3084244

ACM Reference format:
Wang Li, Shanshan Li, Xiangke Liao, XiangyangXu, Shulin Zhou, and Zhouyang
Jia. 2017. ConfTest: Generating Comprehensive Miscon�guration for Sys-
tem Reaction Ability Evaluation . In Proceedings of EASE’17, Karlskrona,
Sweden, June 15-16, 2017, 10 pages.
DOI: http://dx.doi.org/10.1145/3084226.3084244

1 INTRODUCTION
With large software systems’ growing impact on people’s lives, mis-
con�guration has become quite a critical issue. Several researches
[7, 8, 12, 13] reveal that miscon�gurations are one of the major
causes for deterioration of the software reliability. Yin et al. [25]
report that 27% of customer cases of a commercial storage system
are related to con�guration errors. At the same time, widely used
commercial systems [18, 19, 23] su�ered from miscon�guration
such as outages. Besides, the seriousness of the miscon�guration
problem was often underestimated, which has caused a major loss
every year. According to Computer Research Association’s report
[3], a large number of capital outlay of IT ownership was spent
during troubleshooting system miscon�gurations. Unfortunately,
the di�culty in diagnosis of miscon�gurations is much higher than
expected. This is re�ected in three main aspects: (1) Root causes
of miscon�guration are complicated. Figure 1(a) indicates that mis-
con�gurations are resulted from not only human mistakes but also
resulted from inappropriate software designs. (2) Miscon�gurations
are hard to be detected before triggered. Figure 1(b) gives an exam-
ple of how software Yum failed to detect the latent con�guration
error. In this case, the value of option “cachedir” was incorrectly
set, Yum, however, still works until it was called to access the lo-
cal cache. (3) The lack of feedback also obstructs the diagnosis of
miscon�gurations. Figure 1(c) shows that MySQL complains “can’t
start server”, which is helpless on diagnosing the miscon�guration.

The severity of miscon�gurations has inspired many research
e�orts on diagnosing them. Those works can be classi�ed into
program analysis approaches, statistical approaches and con�g-
uration testing approaches. Program analysis approaches [4, 6]
use data �ow to automatically diagnose miscon�gurations. These
approaches, however, have a limitation of scalability. Statistical
approaches, such like PeerPressure [20], STRIDER [21] and EnCore

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3084226.3084244&domain=pdf&date_stamp=2017-06-15


EASE’17, June 15-16, 2017, Karlskrona, Sweden W. Li et al.

Misconfiguration A: symbolic_lin=0 
Root cause: typo mistakes of administrator: omission  k  in 
 symbolic_link 
Misconfiguration B: symbolic_link=yes
Root cause: system can t recognize the string  yes  and rollbacks 
the value of the parameter

/* MySQL */

(a) Complicated miscon�guration root cause

Misconfiguration: 
cachedir=/nonexistent/directory
Symptoms:
Yum will fail if it needs to access the local cache, but works well if 
not

/* Yum */

(b) Study case of Yum. Miscon�gurations is latent in system until trig-
gered by speci�ed functions.

Misconfiguration: 
socket=/nonexistent/filename
Symptoms:
MySQL fails after startup and prints logs:  Can t start server : Bind 
on unix socket: Address  already in use 

/* MySQL */

(c) Study case ofMySQL. Poor feedbacks ofMySQL obstruct the diagnoses
of the miscon�guration.

Figure 1: Challenges in diagnosing miscon�guration

[27], diagnose miscon�gurations by learning con�guration rules,
which requires a large collection of independent con�guration set-
tings from hundreds of machines. Con�guration testing approaches
like ConfErr [9] and SPEX [23] evaluate system reactions ability
by generating and testing miscon�gurations.

Researchers and developers would bene�t greatly if there is
a comprehensive study of system reaction ability of miscon�gu-
ration since it will help miscon�guration diagnosis (e.g. �nding
and enhancing inadequate diagnostic messages for miscon�gura-
tions). A good reaction, which means error indication and error
handling, would greatly ease the burden of users diagnosingmiscon-
�gurations. Unfortunately, few such studies have been conducted
in the past. Despite pioneer in con�guration testing, ConfErr re-
lies on generic alternations to generate miscon�gurations, which
weaken the capability of evaluating system reactions. SPEX, takes
a step further, infers 5 main categories of constraints (i.e., rules that
di�erentiate correct con�gurations from miscon�gurations) but
coarse-grained in those of option types, as a result of poor diversity,
variance in reactions of miscon�gurations cannot be observed by
researchers and developers.

In order to harden systems against miscon�guration and improve
software reliability, we explored an error-injection method to test
systems and try to detect their reaction ability to miscon�guration.
We evaluated system ability for miscon�guration diagnosis accord-
ing to their reactions, such as failures and inadequate diagnostic
messages [29]. To achieve above goal and provide a more compre-
hensive study of system reaction ability of miscon�gurations, we
implemented a tool named ConfTest.

In our work, we summarized and classi�ed 1593 software con-
�guration options from 8 mature open source and commercial
software systems. Based on these classi�cations, we are able to

summarize and extract �ne-grained options constraints compared
to previous work. Through violating these �ne-grained constraints,
a variety of miscon�gurations are generated and injected into sys-
tems by ConfTest. We then analyzed the distribution of di�erent
system reactions and tried to reveal some design problems related
to miscon�guration, based on these problems, we put forward some
comments to improve software reaction ability.

The contributions of this paper are as follows:
(1) To generate more e�ective constraints for each type of con-

�guration option, we summarized a comprehensive classi�cation
based on a large amount of con�guration options from 8 mature
open-source and commercial software. Our classi�cation is tree
based and easy for extension. Based on this classi�cation, we pro-
posed syntactic and semantic constraints for each type. Our evalu-
ation results show that our option classi�cation covers over 96% of
1582 options from Httpd, Yum, PostgreSQL and MySQL. Compared
with constraints proposed by EnCore, our constraint is more �ned-
grained and is consistent with more than 90% of real constraints
through manual veri�cation.

(2) We implemented a tool named ConfTest to conduct mis-
con�guration injection and make evaluation on system reaction
abilities. Based on these results, ConfTest can reveal bad reactions
and design problems in the systems. We compared the capability
in �nding bad system reactions between ConfTest and ConfErr,
the results show that the ConfTest can �nd nearly 3 times the bad
reactions found by ConfErr.

(3) We de�ned 6 types for system reactions to miscon�gurations.
Based on these types, we calculated the distribution of system re-
actions and analyzed the reasons for these reactions. We found
that miscon�guration of Path might be hard for system to diag-
nose due to lack of checking for constraints both syntactically and
semantically. Our experimental results show that adequate con�g-
uration syntax checking after startup can e�ectively help diagnose
the miscon�gurations.

The remainder of this paper is organized as follows. We present
constraints generation in Section 2. In Section 3, we give the process
of miscon�guration generation. The evaluation is in Section 4, and
Section 5 is our experience and practice. We present the related
work in Section 6, and conclude our work in Section 7.

2 CONSTRAINTS GENERATION
Con�guration constraints are the condition that con�guration
options should satisfy. For example, when administrator tries to
rewrite the options in con�guration �les, he should follow the rules
speci�c to options such like �le path options or boolean options.
To understand con�guration constraints better, in this section, we
studied over 1500 con�guration options from several open-source
and commercial software, which are widely used, and classi�ed
these options by types and generated corresbonding constraints,
which can be used for miscon�guration injection.We selected Squid,
Nginx, Redis, Nagios, Lighttpd (core), Puppet, SeaFile, Vsftpd in our
study for their representativeness in each �eld. Squid is a caching
proxy for web and are being increasingly used in content delivery
architectures like Flickr and Wikipedia. Nginx is a light-weight
web server and now used by millions of sites, including WordPress



ConfTest: Generating Comprehensive Misconfiguration for System Reaction Ability ... EASE’17, June 15-16, 2017, Karlskrona, Sweden

and SourceForge. Redis is an open source in-memory data struc-
ture store, and used by Twitter, GitHub, SnapChat etc. Nagios is a
commercial IT infrastructure monitoring system, with over 1 mil-
lion users worldwide. Lighttpd is a web server system with rapidly
rede�ning e�ciency. Puppet is a platform for automatically deliv-
ering, operating and securing infrastructure, and used by over 30
thousands organizations. Sea�le is an enterprise �le sync and share
platform with high reliability and performance. Currently, Sea�le
has over 300,000 users worldwide. Vsftpd is the default FTP server
in the Ubuntu, CentOS, Fedora, NimbleX, Slackware and RHEL
Linux distributions. In this section, we investigated the con�gura-
tion �les and related documents for each software. We manually
investigated the con�guration �les as well as related o�cial docu-
ments of software and recorded the detailed information of each
option, such as name, default value, descriptions, etc. In this paper,
we only consider options in the form of key-value pairs. To simplify
our work, we convert those options of other formats into key-value
pairs.

2.1 Type Taxonomy
Although previous work [16] had studies on type taxonomy, our
aim is to generate option constraints for miscon�guration injec-
tion, therefore, we need a �ne-grained enough classi�cation for all
con�guration options. We carefully classi�ed each option manually
according to its type as we encountered it. In Table 1, we illustrate
the main types of options in our work by statistics. These con�g-
uration options mainly come from software documents, such as
user manuals, o�cial guidebook etc. If this information can’t be
accessed from documents, we return to con�guration �les or even
source code to speculate types the options might belong.

According to results in Table 1, we found that most options can
be well presented by a few set of types. Figure 2 illustrates our
classi�cation as a tree. This classi�cation tree can be supplemented
with more software to be considered.

We evaluated our classi�cation e�ectiveness on 1582 options
of other four open source software systems (Httpd, MySQL, Post-
greSQL and Yum) by checking whether every options can be clas-
si�ed into types listed Figure 2. Table 2 shows that coverage rate
(option types excluding “Others”) of the classi�cation is as high as
96.5%, and at least 95.8% for each one.

While our classi�cation can be reasonably e�ective, there are
still some knotty problems. Some options we examined can be
set as several types. For example, option “LogFile” in MySQL has
default value type which is Path, at the same time, value of “LogFile”
can be changed to network address. Besides, some options exist in
the form of complicated structure which are hard to be converted
into the form of key value pairs. Many options in Httpd are like
directives with more than one argument and cannot be recognized
by our method. In this case, we consider each value’s type of the
option. Types unclassi�ed in Figure 2 (labeled as “Others”) are also
a problem, in particular, all of the classi�cations in our method
should be taken with speci�c software systems and it may fail to
�nd particular types in some situation, but our classi�cation can
be easily supplemented and new types can be easily incorporated
into it.

Configuration 
type

String

Numeric

URI

Enumerative

Name

Others

Path

URL

Domain name

IP address

Email

Mode

Boolean

Language

MIME types

User name

Password

Filename

File path

Partial file path

Directory path

Partial directory 
path

Number with 
units

Number 

Memory

Time

Speed rate

Port

Fraction

Count

Permission

Figure 2: Type classi�cation

2.2 Inferring Type Constraints
To evaluate system reaction ability comprehensively, we should gen-
erate varied miscon�gurations as much as possible. To achieve this
purpose, we try to extract �ne-grained constraint of each con�gu-
ration type, either by inherent constraint or from domain knowl-
edge (e.g. RFC documents). Some previous studies tried to use
program analysis to infer constraints [23], unfortunately, through
large amount of manual analyses on source code of many open
source software, we found there are various kinds and styles of
constraint existing in source codes, it’s di�cult, if not impossible,
to extract constraints through program analysis. We consider con-
straints from aspects of semantic and syntactic according to the
relationship with execution environment. For example, Type PORT
has a semantic constraint that it should not use a same number with
a used port number because this constraint is related with other
software running in its execution environment, and its value should
be an integer between 0 and 65535, that is a syntactic constraint.

Similar to work in EnCore [27], our syntactic constraints can be
expressed by normal forms or string patterns of their commonly
used standardization. We consider all these constraints in software
as syntactic constraints, and such prede�ned patterns are used to
generate miscon�gurations by violating rules of syntax to simulate
human errors. Table 3 illustrates the details of the syntactic con-
straints. We use wildcard to represent the elements in the patterns
and further explain their value range. Program analysis is also used
in our inference for certain system speci�ed constraints (e.g., Range
of Count, the value set of Mode)



EASE’17, June 15-16, 2017, Karlskrona, Sweden W. Li et al.

Table 1: Numbers of options with classi�cation, by applications

Software IP-address Boolean Mode Path Email Count Permission Port Domain Name Name Others -

Squid 11 73 46 26 4 111 0 7 11 34 16 339
Nginx 7 114 124 65 1 186 5 0 7 104 24 637
Redis 2 13 9 6 0 33 0 1 0 0 6 70
Nagios 0 33 10 17 2 37 0 0 0 16 8 123
Lighttpd 1 12 6 5 0 12 0 0 1 14 4 55
Puppet 0 45 1 77 0 19 0 1 6 57 2 208
SeaFile 0 15 2 1 0 13 0 1 3 1 2 38
Vsftpd 2 73 2 19 0 16 0 4 2 1 2 123

Table 2: Coverage rate of classi�cation

Software Options Coverage rate

Httpd 564 543(96.2%)
MySQL 671 643(95.8%)

PostgreSQL 273 270(98.9%)
Yum 74 71(95.9%)
Total 1582 1527(96.5%)

Unlike syntactic constraints, semantic constraints re�ect the
complex relationship between software and environments. We con-
sider that semantic constraints consist of two parts: the semantic
constraints of option’s value and the environment related attributes
of options. As for the former, Table 4 lists the semantic constraints
for value of each con�guration option type. These constraints do ex-
ist while they cannot be expressed by syntactic form.With syntactic
constraints, you might get a URL with correct syntactic form, but
whether it can be accessed depends on the system context, for exam-
ple, whether it is forbidden by �rewall. These semantic constraints
are related to environment and deserve our high attention.

Each con�guration option has attributes, which re�ect system
context. Although they don’t have a direct relationship with the
value of con�guration option, their values must meet some require-
ments to keep the consistent of system. In Table 5, we augment
each option type with environment attributes, which re�ect system
context, and each attribute is assigned with a type. We infer the se-
mantic constraints with the environment information collected and
domain knowledge. Inspired by EnCore [27], we summarized envi-
ronment related con�guration into 7 main sources: Network, Ser-
vices, Hardware, File System, Security, and Environment Variable.
For each option type, we collect the relevant execution information
as listed in Table 4 and Table 5.

As illustrated in Table 6, our constraints can be consistent with
over 90% of options. Compared to the prede�ned patterns EnCore
[27] uses to infer certain option types, our constraints are more
�ne-grained and �exible, because we consider not only the string
pattern but also the data range (e.g. the value set of Mode, the valid
range of Count). SPEX can also infer such constraints but not �ne-
grained enough in syntactic constraints, and incapable in semantic
ones. Some options may use other system-speci�ed constraints not
included in our work. Since our purpose of constraints inference is
to generate miscon�gurations and evaluate the system reactions

Misconfigurations

Constraints-related 
misconfigurations

Permission
Syntactic misconfigurations

Semantic misconfigurations

Formats-related 
misconfigurations

Partial file path
Syntactic misconfigurations

Semantic misconfigurations

 

Permission
Syntactic misconfigurations

Semantic misconfigurations

Misspell

Omission

Replication

Wrong operator

Others

Figure 3: Miscon�guration generation rules

instead of precise constraints analysis. We consider this limitation
acceptable.

3 MISCONFIGURATION INJECTION
This section we answer two questions: How we use these con-
straints to generate miscon�gurations and how we test system
reactions with miscon�gurations. To address these problems, we
propose a tool, called ConfTest, to conduct miscon�guration injec-
tion and make analyses on system reactions to a variety of miscon-
�gurations.

3.1 Miscon�gurations Generation
To generate miscon�gurations for injection, we de�ned some rules
in ConfTest based on the constraints. Firstly, ConfTest parses con-
�guration �les into structured data for easily manipulating the
con�guration with prede�ned rules, then modi�es original data
to generate miscon�gurations. Finally, these modi�ed data are as-
sembled to new con�guration �les with miscon�gurations. As il-
lustrated in Figure 3, the rules we used can be classi�ed into two
main categories: constraints-related and formats-related.

In constraints-related rules, ConfTest violates the constraints
to generate miscon�guration. The constraints are de�ned as the
description of what should be right for con�guration option val-
ues both syntactically and semantically. We convert syntactic con-
straints into several conditions the value must satisfy, therefore,
syntactic miscon�gurations can be generated by violation of these
conditions. For instance, as illustrated in Figure 4(a), ’Listen’ in



ConfTest: Generating Comprehensive Misconfiguration for System Reaction Ability ... EASE’17, June 15-16, 2017, Karlskrona, Sweden

Table 3: Syntactic constraints. Due to space limit, we show here simpli�ed regular expressions and descriptions of syntactic
constraints. Program analysis is used for inferring certain system speci�ed constraints (e.g., Range of Count, the value set of
Mode)

Type Syntactic Constraints
Parttern Element Format of Element

File (Dierctory) Path (/%S)+/? S [\w.-]+
Partial File (Directory) Path %S(/%S)* S [\w.-]+

Domain Name [%S1]?://%S2
S1 (telnet|https|http|ftp)
S2 [a-zA-Z0-9.]+

IP Address %D1.%D2.%D3.%D4 D1�4 [0-255]

Email %S1@%S2
S1 (\w)+(\.\w+)*
S2 (\w)+((\.\w+)+)

Mode %S S (value1|value2|value3)
Boolean %S S (on|o�|yes|no|true|false)
Language %S S [a-zA-Z]{2}

MIME-types %S S [\w/-. ]+

Memory %D %S S (K|M|G|T|KB|GB|TB|B)
D [min-max]

Time %D %S S (s|min|h|d|ms)
D [min-max]

Speed Rate %D %S S (bps|Mbps|Kbps)
D [min-max]

Count %D D [min-max]
Fraction %F F [min-max]
Port %D D [0-65535]

Permission %O O [0-777]
Username %S S [a-zA-Z][a-zA-Z0-9 ]*
Password %S S N/A
Filename %S S [\w -]+.[\w -]+

Table 4: Semantic constraints

Option Type Semantic Constraints Resources
Path The path should be existent File System
URL The URL should be reachable Network

IP address The IP should be accessible Network
Email The email should not be existent Network

Domain name The domain name should
not be existent Network

Port The port should not be occupied Services
Language The language should be existent Services
MIME type The MIME type should be existent Services

Memory The memory should be less
than available memory Hardware

Speed rate The speed rate should be less
than available bandwidth Hardware

Username The username should be
from root group Security

Httpd is identi�ed as PORT with syntactic constraints: value should
be the integer between 0 and 65535. ConfTest can derive three
conditions as shown in Figure 4(a). Therefore, by violating these
conditions, syntactic miscon�gurations are generated to test the

upper and lower bound and the situation of the �oat type. Seman-
tic constraints of type PORT is that option ’Listen’ must not use
the occupied port number. To violate this constraints, ConfTest
acquires the occupied port from relevant execution information,
such as ’/etc/services’ in system, and generates the semantic mis-
con�gurations.

In formats-related rules, we consider the fact that con�guration
�les often satisfy some speci�c format, such as some prede�ned
module structure. Thus, as the example shown in Figure 4(b), Con-
fTest generates miscon�gurations by simulating users’ common
mistakes, such as omission, misspelling, etc., while editing those
complex con�guration �les.

3.2 Testing
In order to evaluate system reactions better without the defection
caused by the fact that even the same miscon�guration may cause
di�erent system reactions due to the di�erent states of programs,
ConfTest tests our miscon�gurations in real world software envi-
ronment by using software’s own test infrastructure [2, 11, 14, 26] ,
including test cases and test oracles. ConfTest uses a sequence of
test scripts (e.g. launching system, functional tests etc.) to simulate
the administrators’ behavior when faced with miscon�gurations.
Before the tests, ConfTest needs to check whether system can pass
all these test cases, to make sure system is in the correct state.



EASE’17, June 15-16, 2017, Karlskrona, Sweden W. Li et al.

Table 5: Environment related attributes for option type

Option Type Environment-
related Attribute Type Description

Path

Owner String Owner of Path
Group String Group name of Path

Permission Octal Permission of Path
Contents String Contents of path

HasSymLink Bool If has a symbol link
Type Enum What’s type of Path

URL Forbidden Bool Is URL forbidden
by �rewall

Type Enum What’s type of URL

IP address Forbidden Bool Is IP forbidden
Type Enum What’s type of IP

Port User String What’s the user of port
Type Enum What’s type of port

Language IsSupported Bool Is Language supported
by system

MIME type IsSupported Bool Is MIME type supported
by system

Memory Allocation Enum Strategy of allocation
Username GroupName String Group name of Username

Table 6: The proportion of options consistent with syntactic
constraints

Software Options Satis�ed

Httpd 564 466(82.6%)
MySQL 671 641(95.5%)

PostgreSQL 273 265(97.0%)
Yum 74 68(91.9%)
Total 1582 1440(91.0%)

Table 7: Systems in evaluation

Software LoC Options Miscon�gurations

Httpd 148K 30 236
MySQL 1.2M 26 255

PostgreSQL 757K 33 334
Yum 38K 26 244

When a miscon�guration is tested, ConfTest �rst uses the faulty
con�guration �le(s) to replace the old one(s), and then launches
the target system. If system succeeds in startup, ConfTest would
run test cases persistently until system failure happens or all test
cases executed, ConfTest monitors all the system and console logs
to record the system state. At last, ConfTest analyses these logs to
evaluate the system reaction towards miscon�gurations.

4 ANALYSIS OF RESULTS
In this section, we evaluate the reaction ability based on the result
from miscon�guration injection of ConfTest. Table 7 illustrates the

Option: Listen 80        /**Httpd**/

Syntactic Constraints: 
Should be integer 
between 0 and 65535 

Condition 1:
Port is integer
Condition 2:
Port >= 0
Condition 3:
Port <= 65535

Misconfiguration 1:
Listen 80.5
Misconfiguration 2:
Listen -1
Misconfiguration 3:
Listen 65536

Semantic Constraints: 
Must not use the already 
used port number. 

execution information:
System services: 
file:///etc/services 

Misconfiguration 4:
Listen 53
(already used port )

Æ Æ 
inviolating

Type: Port 

Æ
 

(a) Constraints-related miscon�gurations generation

Formats: 
key value

Misconfiguration type:
Value omission 

Misconfiguration:
Listen 
(value missing)

Æ Æ 

Option: Listen 80        /**Httpd**/

(b) Formats-related miscon�gurations generation

Figure 4: Challenges in diagnosing miscon�guration

Table 8: System reactions classi�cation

Whether passes
all tests

Whether has
miscon�guration
related exception

information

Whether locate
the miscon-
�gurations

Abbr.

T T T Type 1
T T F Type 2
T F - Type 3
F T T Type 4
F T F Type 5
F F - Type 6

studied software and their options. Generating and testing miscon-
�gurations for all these options will lead to explosive exponential
growth of computational complexity. To avoid this problem, we
apply strati�ed random sampling method to options according to
their types. Speci�cally, all the options are divided into subgroups
according to the classi�cation in Figure 2. For each option type, we
randomly sampled options with fraction proportional to that of the
total population. Options of di�erent types varies greatly in system
con�guration, our sampling will ensure that estimates can be made
with equal accuracy in di�erent types of the con�guration, and
that comparisons of samples with di�erent types can be made with
equal statistical power. As shown in Table 7, we �nally sampled
115 options and generated 1069 miscon�gurations.



ConfTest: Generating Comprehensive Misconfiguration for System Reaction Ability ... EASE’17, June 15-16, 2017, Karlskrona, Sweden

Table 9: Overall results of system reactions

Abbr. Yum Httpd PostgreSQL MySQL Sum Ratio

Type 1 0 0 0 11 11 1.03%
Type 2 4 0 0 0 4 0.37%
Type 3 127 65 155 105 452 42.28%
Type 4 82 113 176 70 441 41.25%
Type 5 3 8 3 57 71 6.64%
Type 6 28 50 0 12 90 8.42%
Sum 244 236 334 255 1069 100%

4.1 System Reaction Ability Analysis
To evaluate the system reactions of miscon�gurations, we classify
the reactions into 6 types listed in Table 8. Given a miscon�guration
under tested, we �rst check whether the system can pass the test
suites we mentioned in Section 3.2. Secondly, we manually check
all the log messages recorded under the test suites to �nd whether
there is exception information related to miscon�gurations. If so,
lastly, we check whether this information could locate the miscon-
�guration. For example, Type1 reaction means that the system with
the miscon�guration passed all the test cases without any failure,
but we found exception information related to miscon�gurations
among the logs, furthermore, the exception information we found
could explicitly locate the miscon�gurations we injected. In this
section, we use the abbreviations in Table 8 to represent the results
of tests.

The overall results can be found in Table 9. To better understand
the root causes of di�erent system reactions, we further analyze
each type of reactions. Type 1 (1.03%) and Type 2 (0.37%) reac-
tions rarely happened, and only occurred in MySQL and Yum in
our test. Type 1 reactions are resulted from overruling to invalid
values during the assignments. For example, in MySQL, if option
“table_open_cache” was miscon�gured with an invalid number,
MySQL would reassign this option to a normal one. Type 2 reac-
tions have exception feedbacks, but still pass the functional tests
(e.g., Yum prints logs like could not open particular �le or direc-
tory during running but did not fail in the tests). Type 3 reactions
are relatively common (42.28%), i.e., passing all the tests without
throwing any exception. There are two occasions, one is the ro-
bust design that systems can legalize these miscon�gurations. For
instance, PostgreSQL allows both “key value” and “key = value”
formats, which would avoid formats-related miscon�gurations. In
another case, there may be latent con�guration errors (LC errors)
[22]. Such options are not checked during initialization, hence we
used various test cases to expose as many errors as we could. Type 4
reactions (41.25%) explicitly located the miscon�gurations with line
number or name of the option in con�guration �le. Most of these
reactions happened during con�gurations checking, primarily in
system startup. Type 5 reactions (6.64%) triggered the exceptions
but failed to locate miscon�gurations, mainly because options were
not checked or checking condition failed in capturing the error.
Even though being detected on exception, these reactions may be
obscure or mislead users in diagnosis. Give an example, When
Httpd was miscon�gured incidentally by adding option “Listen 80”
twice in con�guration �le, logs after failure printed that “Address

Figure 5: Miscon�guration diagnosis rate of di�erent sys-
tems with 3 kinds of miscon�guration

already in use” and “Could not bind to address” which may mislead
users. Type 6 reactions (8.42%) terribly obstructed the diagnosing.
These reactions (e.g. crashes, hangs, silent failures) were caused by
improper exception handling or lacking con�guration checking.

4.2 Miscon�guration Diagnosis Analysis
In this section, we evaluate the reactions to di�erent type of mis-
con�gurations. As illustrated in Figure 5, we analyze three widely
used option types, i.e., Path, Boolean and Count. We use miscon�g-
uration diagnosis rate to evaluate the system reactions, which is
the percentage of reactions that can locate the miscon�gurations
(Type 4) after system failures. We can see that MySQL and Yum
failed to locate Path related miscon�gurations. Compared with Path,
Boolean miscon�guration is easier to localize. The diagnosis rate
of Httpd, Yum, and PostgreSQL reaches 70%, while only 55.91% for
MySQL. This is mainly because MySQL only reported the exception
captured in systems without any location information about mis-
con�guration. Diagnosis rate of Count are even higher than those
of Boolean in Httpd (87.49%), Yum (80%) and PostgreSQL (100%).
Similar to the reason in Boolean miscon�guration, MySQL still has
a low proportion (15.63%) in this respect.

Among these three types, Path miscon�gurations are the hardest
to be diagnosed by systems, even the experienced developers may
fail to gracefully handle these miscon�gurations. However, it is not
impossible but requiring much more e�orts to help diagnose these
miscon�gurations (e.g., PostgreSQL checks each con�guration’s
syntax after startup). Miscon�gurations of types with simple con-
straints (e.g., Boolean, Count, Mode) have a high diagnosis rate,
mainly for the reason that the verifying these types’ constraints
can be easily implemented. Thus, using more simple constraints
options in con�guration is a highly recommended way for devel-
opers to reduce potential miscon�gurations. What’s more, users
require more reasons than symptoms of failures (e.g., exceptions)
in the systems. We recommend developers to point out the root
causes instead of only recording what happened in the system and
console log messages.

4.3 Capability Analysis
In this section, we evaluate the ConfTest’s capability of �nding bad
system reactions (Type 5 and Type 6) by comparing ConfErr [9].
We choose ConfErr in our comparison for the reason that ConfErr



EASE’17, June 15-16, 2017, Karlskrona, Sweden W. Li et al.

Table 10: Capability of ConfTest and ConfErr in �nding bad system reactions

# of undiagnosed miscon�gurations / # of injected miscon�gurations
Httpd MySQL PostgreSQL Yum Total

ConfTest 38/106 (35.85%) 60/169 (35.5%) 3/119 (2.52%) 23/101 (22.78%) 124/495 (25.05%)
ConfErr 30/183 (16.39%) 7/170 (4.12%) 2/105 (1.90%) 18/194 (9.28%) 57/652 (8.74%)

is not guided by constraints, it only generates miscon�gurations
by making generic alternations to valid con�guration options (e.g.,
omissions, substitutions, and case alternations of characters).

In Table 10, we calculate the proportion of the undiagnosed mis-
con�gurations (i.e., miscon�gurations of which systems fail to �nd
the root causes after failures, resulting in Type 5 and Type 6 reac-
tions) generated by two tools. These undiagnosedmiscon�gurations
could have been potentially avoided if ConfTest or ConfErr had
been used to evaluate the system reactions and harden the system
against miscon�gurations. Our results show that, ConfTest found
more undiagnosed miscon�gurations in all 4 systems than ConfErr,
and undiagnosed ones account for 25.05% of all while only 8.74% for
ConfErr. The ine�ciency in ConfErr is mainly because state-of-art
software can easily detect the violation of con�guration formats
by checking con�gurations �les. However, diagnosing constraints-
related miscon�gurations require not only domain knowledge but
also environment information, which enable ConfTest to �nd the
potential bad reactions of systems.

4.4 Threats to Validity
There are several major threats to the validity of our evaluation.
(1) Although the software systems we studied in Section 2 are
mature and large, our classi�cation based on these systems may
not be representative. In our work, to verify the generalization
of our classi�cation and avoid the over�tting, the con�guration
options we used in classi�cation are from 8 open source software,
while the invalidation in Section 2.1 are from another 4 open source
software. (2) We only considered a subset of system options in
our evaluation. There might be other con�guration options, some
hidden ones even not listed in the documentation, which may alter
our results. However, all the options we chose are the frequently
used ones and from existing con�guration �les, thus we believe
that these con�guration options are representative for the options
in most cases. (3) All the results of our evaluation are based on
system and console logs we recorded. Manually checking these
information may introduce errors, so we have double checked all
the results to ensure the correctness. (4) There may be some other
miscon�gurations not included in our works, in the future, we plan
to reduce this threat further by analyzing more bug reports from
open source and commercial software projects.

5 EXPERIENCE AND PRACTICE
In this section, we mainly talk about some advices or practices
based on what we have observed from evaluated systems in mis-
con�guration issues.
Avoiding Inconsistency:We observed some good habits in han-
dling unit inconsistency. For example, in PostgreSQL, numbers
are assigned to options with units (e.g. max_stack_depth = 100kB)

which clari�es users’ confusion. To the contrary, lack in such suf-
�xes or necessary explanations in con�guration may trap adminis-
trator into making miscon�gurations.
Making Con�guration Simple and Easy: User-friendly design
in con�gurations is also important for reduce the incidence of
miscon�gurations. In our research, we found many obscure options
in these software documents. A good practice is that hiding these
options from users, and only providing basic options instead. Like
these practices, software system con�guration should have di�erent
options and is targeted to di�erent customers.
EarlyChecking:After checking the source code of these evaluated
systems, we found that PostgreSQL processes the con�guration �le
through consistent interface. During this process, values of each
option are enforced to go through the checking, and diagnostic
messages are printed in the situation on exception. Early checking
helps users e�ectively detect the miscon�gurations in the startup.
Friendly Comment: In con�guration, PostgreSQL explicitly in-
forms users of usage of speci�ed options by comments (e.g., “#1s-
600s”, “#defaults to ’localhost’ ”; “use ’*’ for all”) as guidance or hand-
books. Such comments also can be found in many other systems.
Adequate comments could guide users to have options con�gured
correctly.

6 RELATEDWORK
To address miscon�guration problems, many research e�orts have
been made by focusing on detecting [17, 21, 27] and troubleshoot-
ing [1, 4, 5, 10, 15, 20, 28] miscon�gurations. Although it’s helpful
for people to understand and address miscon�gurations, only few
e�orts [9, 23] focus on evaluating system reaction ability of mis-
con�gurations, also known as con�guration testing [24].
Con�gurationTesting:To improve systems reliability, researchers
evaluate software systems by testing system reactions to con�g-
uration errors. We refer to such testing e�orts as con�guration
testing. ConfErr [9] plays the role of a pioneer in con�guration
testing, it uses human errors model to simulate human mistakes
(e.g. typo, copy-paste mistake, and other generic alternations.) in
con�guration. However, ConfErr is not guided by the con�guration
constraints, and it can only generate de�cient miscon�gurations,
which impedes the analyses on system reactions. SPEX [23] goes
a step further, it infers constraints through program analysis to
�nd vulnerabilities and error-prone design by injecting constraints-
violated miscon�gurations. However, its coarse-grained constraints
resulted in the poor diversity of generated miscon�gurations. Based
on �ne-grained constraints of option types, ConfTest could gen-
erate comprehensive miscon�gurations, which means the system
reaction ability of miscon�gurations could be e�ectively evaluated.
Miscon�guration Detecting and Troubleshooting: Miscon�g-
uration detection [17, 21, 27] refers to checking the con�guration



ConfTest: Generating Comprehensive Misconfiguration for System Reaction Ability ... EASE’17, June 15-16, 2017, Karlskrona, Sweden

options before the miscon�gurations manifest, while the miscon-
�guration troubleshooting [1, 4, 5, 10, 15, 20, 28] is carried out
afterwards. EnCore [27] uses machine-learning method to infer the
con�guration rules between applications and executing environ-
ment, which can be used for detecting miscon�gurations. X-ray [4]
proposes a technique for automatically diagnosing the root causes
of performance problems. Our work is complementary to these
works. The major part of our works is generating comprehensive
miscon�gurations through constraints, these constraints can be
used as references for developers and researchers to detect the mis-
con�gurations. Meanwhile, miscon�guration troubleshooting can
also bene�t from our evaluation on system reactions by analyzing
the characteristics of them.
Others: There are also some other researches on miscon�guration
issues. Rabkin and Katz [16] proposed a taxonomy of con�guration
options after study the options in several Java applications. Our
classi�cation of con�guration option is mainly di�erent from theirs
in objectives, they are aimed at automatically extracting options
from the source code, while we intend to infer constraints for each
type. Therefore, we need a more �ne-grained classi�cation to infer
various constraints as much as possible. ConfDiagDetector [29]
focuses on detecting inadequate diagnostic messages of miscon�g-
urations. Yin et al. [25] conducted a real-world miscon�guration
characteristic study on 546 real world miscon�gurations. Both of
them are based on the system reactions and would bene�t from our
work.

7 CONCLUSION
Miscon�gurations have become themajor cause of software failures.
In this paper, we proposed a miscon�guration-injection method to
evaluate the system reactions ability. To help infer constraints, we
studied 8 mature open-source systems to summarize a �ne-grained
classi�cation of option types. Based on this classi�cation, we are
able to summarize and extract �ne-grained options constraints to
generate miscon�gurations. We implemented a tool named Con-
fTest to conduct miscon�guration injection and make analyses
on system reaction abilities to variety of miscon�gurations. Our
evaluation results show that our option classi�cation covers over
96% of 1582 options from Httpd, Yum, PostgreSQL and MySQL. Our
constraint is more �ned-grained and the accuracy is more than 90%
through manual veri�cation. We compared the capability in �nding
bad system reactions between ConfTest and ConfErr, the results
show that the ConfTest can �nd nearly 3 times the bad reactions
found by ConfErr.

ACKNOWLEDGMENTS
This work was partially supported by National Natural Science
Foundation (61690203, 61532007) andNational 973 Program (2014CB-
340703) of China.

REFERENCES
[1] Bhavish Aggarwal, Ranjita Bhagwan, Tathagata Das, Siddharth Eswaran,

Venkata N Padmanabhan, and Geo�rey M Voelker. 2009. NetPrints: diagnosing
home network miscon�gurations using shared knowledge. In Usenix Symposium
on Networked Systems Design and Implementation. 349–364.

[2] Apache. 2017. Apache HTTP Test Project. Retrieved January 29 from
http://httpd.apache.org/test/. (2017).

[3] Computing ResearchAssociation. 2003. Grand research challenges in information
systems. A Conference Series on Grand Research Challenges in Computer Science
and Engineering. (2003).

[4] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: automating root-
cause diagnosis of performance anomalies in production software. In Usenix
Conference on Operating Systems Design and Implementation. 307–320.

[5] Mona Attariyan and Jason Flinn. 2008. Using Causality to Diagnose Con�gu-
ration Bugs.. In Usenix Technical Conference, Boston, Ma, Usa, June 22-27, 2008.
Proceedings. 281–286.

[6] MonaAttariyan and Jason Flinn. 2010. Automating con�guration troubleshooting
with dynamic information �ow analysis. In Usenix Conference on Operating
Systems Design and Implementation. 1–11.

[7] L Barroso, J Clidaras, and U Hoelzle. 2009. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. 8, 3 (2009), 154.

[8] Jim Gray. 1985. Why do computers stop and what can be done about them.
Technical Report TR-85.7 30, 4 (1985), 88–94.

[9] L Keller, P Upadhyaya, and G Candea. 2008. ConfErr: A tool for assessing
resilience to human con�guration errors. In IEEE International Conference on
Dependable Systems and Networks with Ftcs and DCC. 157–166.

[10] James Mickens, Martin Szummer, and Dushyanth Narayanan. 2007. Snitch: inter-
active decision trees for troubleshooting miscon�gurations. In Usenix Workshop
on Tackling Computer Systems Problems with Machine Learning Techniques. 8.

[11] MySQL. 2017. The MySQL Test Framework. Retrieved January 29 from
https://dev.mysql.com/doc/mysqltest/2.0/en/. (2017).

[12] Kiran Nagaraja, F Oliveira, Ricardo Bianchini, Richard P Martin, and Thu D
Nguyen. 2004. Understanding and dealing with operator mistakes in internet ser-
vices. In Conference on Symposium on Opearting Systems Design & Implementation.
61–76.

[13] David Oppenheimer, Archana Ganapathi, and David A. Patterson. 2003. Why
Do Internet Services Fail, and What Can Be Done About It?. In Conference on
Usenix Symposium on Internet Technologies and Systems. 1–1.

[14] PostgreSQL. 2017. PostgreSQL 9.6.1 Documentation. Retrieved January 29 from
https://www.postgresql.org/docs/9.6/static/pgbench.html. (2017).

[15] Ariel Rabkin and Randy Katz. 2011. Precomputing possible con�guration error di-
agnoses. In Ieee/acm International Conference on Automated Software Engineering.
193–202.

[16] Ariel Rabkin and Randy Katz. 2011. Static extraction of program con�guration
options. In International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , Hi, Usa, May. 131–140.

[17] Vinod Ramachandran, Manish Gupta, Manish Sethi, and Soudip Roy Chowd-
hury. 2009. Determining con�guration parameter dependencies via analysis of
con�guration data from multi-tiered enterprise applications. In International
Conference on Autonomic Computing, Icac 2009, June 15-19, 2009, Barcelona, Spain.
169–178.

[18] Y Sverdlik. 2012. Microsoft: miscon�gured network device led to azure outage.
Retrieved January 29 from http://www.datacenterdynamics.com/focus/archive/
2012/07/microsoft-miscon�gured-network-device-led-azure-outage. (2012).

[19] A Team. 2011. Summary of the amazon ec2 and amazon rds service dis-
ruption in the us east region. Retrieved January 29 from http://aws. amazon.
com/message/65648. (2011).

[20] Helen J Wang, John C Platt, Yu Chen, Ruyun Zhang, and Yi Min Wang. 2004.
Automatic miscon�guration troubleshooting with peerpressure. In Conference
on Symposium on Opearting Systems Design & Implementation. 17–17.

[21] Yi Min Wang, Chad Verbowskia, John Dunagana, Chenb Yu, Helen J. Wanga,
Chun Yuanb, and Zhangb Zheng. 2003. STRIDER: A Blackbox, State-based
Approach to Change and Con�guration Management and Support. In Usenix
Conference on System Administration. 159–172.

[22] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Con�guration Errors to Reduce
Failure Damage. (2016).

[23] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do not blame users for miscon-
�gurations. In Twenty-Fourth ACM Symposium on Operating Systems Principles.
244–259.

[24] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Con�g-
uration Errors: A Survey. Acm Computing Surveys 47, 4 (2015), 1–41.

[25] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasun-
daram, and Shankar Pasupathy. 2011. An empirical study on con�guration
errors in commercial and open source systems. In ACM Symposium on Operating
Systems Principles 2011, SOSP 2011, Cascais, Portugal, October. 159–172.

[26] Yum. 2017. QA:Testcase Yum basics. Retrieved January 29 from
http://fedoraproject.org/wiki/QA:Testcase_Yum_basics. (2017).

[27] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-
anth Bala, Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: exploiting system
environment and correlation information for miscon�guration detection. In
International Conference on Architectural Support for Programming Languages
and Operating Systems. 687–700.



EASE’17, June 15-16, 2017, Karlskrona, Sweden W. Li et al.

[28] Sai Zhang and Michael D. Ernst. 2013. Automated diagnosis of software con�gu-
ration errors. In International Conference on Software Engineering. 312–321.

[29] Sai Zhang and Michael D Ernst. 2015. Proactive detection of inadequate diag-
nostic messages for software con�guration errors. (2015).


