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Abstract
Despite the importance of log statements in postmortem debugging, developers are difficult
to establish good logging practices. There are mainly two reasons. First, there are no rig-
orous specifications or systematic processes to instruct logging practices. Second, logging
code evolves with bug fixes or feature updates. Without considering the impact of software
evolution, previous works on log enhancement can partially release the first problem but
are hard to solve the latter. To fill this gap, this paper proposes to guide log revisions by
learning from evolution history. Motivated by code clones, we assume that logging code
with similar context is pervasive and deserves similar modifications and conduct an empir-
ical study on 12 open-source projects to validate our assumption. Upon this, we design and
implement LogTracker, an automatic tool that learns log revision rules by mining the corre-
lation between logging context and modifications and recommends candidate log revisions
by applying these rules. With an enhanced modeling of logging context, LogTracker can
instruct more intricate log revisions that cannot be covered by existing tools. Our exper-
iments show that LogTracker can detect 369 instances of candidates when applied to the
latest versions of software. So far, we have reported 79 of them, and 52 have been accepted.

Keywords Log revision · Software evolution · Failure diagnose · Empirical study

1 Introduction

Log statements are inserted by developers to record the runtime status of software. Being
informative and convenient, log messages have commonly been adopted to aid in post-
mortem failure diagnosis. Despite the importance of logging code, it is challenging for
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developers to establish good logging practices as software evolves. There are two main rea-
sons for this. First, there are no rigorous specifications and systematic processes to guide
the practices of software logging (Fu et al. 2014; Yuan et al. 2012b; Pecchia et al. 2015).
Hence, the means by which developers make log placement decisions is both subjective and
arbitrary. Second, logging code evolves with bug fixes or feature updates. This problem is
illustrated in Fig. 1. Figure 1a displays a commit that fixed bugs by inserting preliminary
validation of sensitive data (i.e., return value of refresh cache entry()). In addition to the
validation code, the developers also inserted one new log statement to support better excep-
tion handling. In Fig. 1b, the developers implemented a new feature which supports new
parameter (i.e., “–show-progress”). This commit also updated the verbosity of original log
statement to meet with new feature. In both cases, log revisions are committed in response
to bug fixes or feature updates.

Considering the difficulty of reaching good logging practices, several log revisions may
be missed by developers during software evolution. This meets with the finding of recent

Fig. 1 Logging code evolves with bug fixes or feature updates
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Fig. 2 Examples of log revisions that improve logging practices

works (Yuan et al. 2012b, c; Chen and Jiang 2017a) which pointed out that around 33% of
the log revisions are introduced as after-thoughts.1 For instance, the log revision in Fig. 1a
was actually missed in the first beginning. Figure 1c displayed its ancestor commit that
inserted code which invokes the error-prone function (i.e., refresh cache entry()) and uses
its return value without validation. Developers did not notice the necessity of logging until
the failure happened. For making up, one commit (see Fig. 1a) was introduced to validate
the return value as well as printing suitable log messages.

To avoid missing necessary log revisions, there are already many works that focused on
improving logging practices. Errlog (Yuan et al. 2012a) and LogAdvisor (Zhu et al. 2015)
help to insert missing log statements for given code snippets. LogEnhancer (Yuan et al.
2012c) appended informative variables to log messages in order to resolve the ambiguity in
failure diagnosis. Log2 (Ding et al. 2015) and Log20 (Zhao et al. 2017) decided what log
messages to output by seeking a balance between informativeness and overhead. Although

1Revisions are considered as after-thoughts if they are modified later than the modification of the surrounding
code.
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Fig. 3 Example of similar modifications on log statements with similar logging context

the abovementioned works are partly able to provide guidances on software logging, it is
difficult for them to predict log revisions that are related to bug fixes or feature updates (see
Fig. 1). This is because they ignored the impact that software evolution has on logging code.

It is challenging to improve logging practices during software evolution. First, evalua-
tion of the same log statements may vary in versions2 of software. In Fig. 2a, the original
log statement was thought to be correct in the initial version. However, it required modifica-
tion in the new version which should run on 64-bit machines. Second, log statements cannot
always provide sufficient clues when diagnosing unpredictable bugs. Figure 2b shows a
real log enhancement patch in Squid. Here, the developers appended a new variable into an
existing log statement in order to pinpoint the location of the null character. Third, verbose
log messages may interfere with the understanding of failure causes, thus decreasing the
efficiency of failure diagnosis. In Fig. 2c, users complained about the confusing log mes-
sages. This problem was discussed with the developers for over 150 days. Making reference
to related documents, they finally established that this log statement was a verbose mes-
sage. Its verbosity was bumped down from level-0 (critical) to level-1 (important) to release
interference. In addition, excessive log messages also increase runtime overhead and detri-
mentally affect software performance (Arnold and Ryder 2001; Sigelman et al. 2010; Ding
et al. 2015). Consequently, it is reasonable to remove or suppress verbose log messages in
order to avoid unwanted interference and unnecessary overhead.

Facing the abovementioned challenges, this paper intends to learn log revision behav-
iors from software evolution. Motivated by code clones, we assume that log statements

2Here “version” means the internal version number (not the release version). This may be incremented many
times in one day.
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Table 1 Subject Software

Software Description SLOC LLOC SLOC/LLOC

Httpd 2.4.27 Web server 188,360 12,960 15

Git 2.9.5 Version control system 429,166 7,318 59

Mutt 1.9.1 E-mail client 93,527 1,430 65

Rsync 3.1.2 File synchronization 47,720 200 239

Collectd 5.8.0 Perfomance collector 97,475 817 119

Postfix 3.2.4 E-mail server 118,219 8,265 14

Tar 1.3 Archive management 77,310 822 94

Wget 1.19.2 File retriever 84,678 1,642 52

OpenDDS 3.13 Data distribution service 252,647 19,037 13

Ice 3.7.1 RPC framework 343,076 2,194 156

GIMP 2.10.10 Image manipulation program 800,691 8,258 97

Wireshark 3.0.2 Network protocol analyzer 2,308,080 9,736 237

Total 4,840,949 72,679 67

which share semantically similar context3 are pervasive in software. As such, they ought
to undergo similar modifications if they are revised. In order to verify our hypothesis,
we conduct an empirical study using real-world log revisions. Figure 3 shows one pair of
context-similar log statements which were modified similarly. They both printed the first
reference argument of lock ref sha1 basic() when the return value of lock ref sha1 basic()
is logically false. And the log variable which expressed the last reference argument of
lock ref sha1 basic() was appended for better bug diagnosis.

Based on this observation, we design and implement LogTracker4 to mine the correlation
between logging context and modifications from historical log revisions. Since we propose
logging context description model (LCDM) as an enhanced model of logging context, Log-
Tracker can predict more intricate log revisions (see Table 6) that cannot be covered by
existing tools (see Section 2.3). In summary, this paper makes the following contributions:

– Empirical study on log revisions. The results of this study show that around 74.5%
of context-similar log revisions have undergone similar modifications. This shows the
guiding significance of historical log revisions.

– A proactive log revision tool. With an enhanced modeling of logging context, Log-
Tracker can recommend intricate log revisions by applying log revision rules5 learned
from software evolution history.

– Validation of the effectiveness of LogTracker. By applying generated rules to the latest
versions of subject projects, LogTracker identifies 369 instances of log revisions. So
far, we have reported 79 of them, and 52 have been accepted.

– Evaluation on the guidance of predicted log revisions. By recommending more instruc-
tive syntactical modifications, the average accept ratio of predicted log revisions
reaches 86.4%.

This paper extends our ICPC 2018 paper “LogTracker: Learning Log Revision Behaviors
Proactively from Software Evolution History” (Li et al. 2018). In this new version, we refine

3Log statements share semantically similar context if they print similar log variables under similar condition
and are called as “context-similar log revisions” for simplification.
4Source code of our prototype is hosted in Github (2019).
5In the following sections, we will call these “rules” for simplicity.
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our implementation of retrieving log modifications (see Section 3.3). Based on that, this
paper recommends syntactical modifications for candidate log revisions (see Section 3.5.2)
and evaluates quality of the recommendations (see Section 4.2.2). Besides, we evaluate our
tool on four more projects and provide more discussion about the usefulness of log revision
rules learned by LogTracker in Section 4.1.1, the precision of LogTracker in Section 4.2.1
and the future work in section 6.

The rest of paper is organized as follows. Section 2 summarizes the findings of the
empirical study. Section 3 illustrates the design overview and implementation details of
LogTracker. Section 4 evaluates the effectiveness and accuracy of LogTracker. Section 5
describes the limitations of this paper, Section 6 discusses the potential improvement direc-
tions of our work and Section 7 presents the related works. Lastly, we conclude our work in
Section 8.

2 Motivation

In this section, we conduct an empirical study on 12 open-source projects. In order to verify
our hypothesis, we answer the following three research questions (RQ). Among them, RQ1
and RQ2 aim to quantitatively evaluate the importance of providing more guidances on log
revisions. RQ3 studies the feasibility of learning from software evolution history.

RQ1. How pervasive are log revisions? Considering the high log density (see Table 1),
logging code may also be modified as the software evolves with bug fixes or feature
updates (Meng et al. 2013; Rolim et al. 2017). Since the proportion of log revisions
during software evolution is positively related to the importance of improving logging
practices, this research question targets at quantitatively evaluating the pervasiveness of
log revisions.

RQ2. What are the characteristics of log revisions? As pointed out by previous works
(Chen and Jiang 2017a; Yuan et al. 2012b), log revisions may involve different sorts of
log modifications. Existing works (Yuan et al. 2012a, c; Zhu et al. 2015; Ding et al. 2015;
Zhao et al. 2017) mainly focused on certain type of log modifications (e.g., log insertion
or insertion of log variables). This research question characterizes the distribution of
different revision scenarios so as to evaluate the completeness of existing works.

RQ3. How many context-similar log revisions are modified similarly? Previous
study (Kim et al. 2005) indicated that around 10% to 30% of the code in large projects
belongs to clone code, and that 36% to 38% of clone genealogies consist of clone
instances that have been systematically modified. Motivated by this observation, we
assume that context-similar log statements are pervasive in software and deserve similar
modifications if they are revised. In order to verify our hypothesis, this research ques-
tion is proposed to measure the proportion of context-similar log revisions in evolution
and how many context-similar log revisions are modified similarly (i.e., simplified as
“similar log revisions”).

2.1 Experimental Setup

This empirical study is conducted on 12 open-source projects in C/C++ languages. They are
Httpd (Foundation 2017c), Git (Conservancy 2018), Mutt (kevin8t8 2018), Rsync (Davison
2018), Collectd (Collectd 2017), Postfix (Venema 2013), Tar (Foundation 2017a), Wget
(Foundation 2017b), OpenDDS (OCI 2018), Ice (Ice 2018), GIMP (Team TG 2019) and
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Fig. 4 The procedure of generating log revisions which serve as the input of this empirical study

Wireshark (Foundation 2019). Each of these has a development history of more than 13
years. This improves the reliability and validity of this research study.

Table 1 lists several metrics of these subject projects. Among these indicators, the line
of source code (SLOC) is measured using SLOCCount (Media 2018) in order to eliminate
comments and empty lines. The line of logging code (LLOC) is the total number of lines
occupied by log statements.6 The final metric evaluates the ratio of SLOC to LLOC and
is inversely proportioned to log density. Despite the diversity among software, on average,
one line of logging code appears for every 67 lines of code. This result is consistent with
the findings of previous study (Yuan et al. 2012b; Chen and Jiang 2017a) and indicates
a relatively high log density. In addition, the diversity of these indicators (especially log
density) increases the generality of our research.

Figure 4 displays the process of generating the input for this empirical study. In order to
collect as many log revisions as possible, we first crawl all available released versions of
subject projects and then generate patches automatically by running Diffutils (Foundation
2016) on neighboring versions. For each patch, its containing hunks7 are roughly filtered
using regex to select hunks that contain log statements. The regex pattern used here is based
on log functions that are recognized by traditional methods (Yuan et al. 2012a; Zhu et al.
2015). All selected hunks are then passed to GumTree (Falleri et al. 2014; Github 2018a)
which generates the syntactical edit scripts.8 We use these edit scripts to identify hunks that
modified log statements (i.e., log hunks) rather than empty lines or comments (see Fig. 10).
Meanwhile, log revisions with non-empty syntactical edit scripts on log statements, e.g., log
revisions in Fig. 14, are retrieved and serve as the input of this data research.

The study methodology and main findings of our three RQs are explained in the
following subsections.

2.2 RQ1: How Pervasive are Log Revisions?

In order to capture the pervasiveness of log revisions in software evolution, we evaluate two
indicators that have been commonly used by previous studies (Yuan et al. 2012b; Chen and
Jiang 2017a).

6Log statements are recognized with regex which is explained in next paragraph.
7A hunk is the basic unit in a patch. It begins with range information and is immediately followed with the
line additions, line deletions, and any number of the contextual lines. Hunks used in this experiment contain
six lines of contextual code before and after the edited code.
8With edit scripts as a sequences of edit actions (Falleri et al. 2014), syntactical edit scripts in this paper
refers to sequences of edit actions made to syntactical structures.

Empirical Software Engineering (2020) 25:2302–23402308



Fig. 5 Churn rate of logging code and entire code

First, we measure the relative churn rate of the logging code in comparison to the entire
code. Its formula is listed as follows.

Relative churn rate = Churn rate of the logging code

Churn rate of the entire code

Churn rate of the logging code = Churned LLOC

LLOC

Churn rate of the entire code = Churned SLOC

SLOC
(1)

As shown in Fig. 5, the average churn rate of the logging code is 2.6 times over the churn
rate of the entire code. This data is consistent with previous studies (Yuan et al. 2012b; Chen
and Jiang 2017a) and indicates that logging code is modified at least as frequently as the
entire code.

Second, we evaluate the density of log revisions in evolution. This metric is measured
using the ratio of log hunks (i.e., hunks that contain log revisions) to all hunks, with
following formula.

Density of log revisions = Log hunks in evolution

All hunks in evolution
(2)

This value is positively related to the pervasiveness of log revisions. The data displayed in
Table 2 shows that, on average, 13.9% of revisions are about log statements. This result
is also consistent with previous studies (Yuan et al. 2012b; Chen and Jiang 2017a) and
indicates that log revisions are pervasive during software evolution, even when there is a
comparatively low log density (1/67 in Table 1).

The pervasiveness of log revisions emphasizes the demand for improving logging
practices and indicates the feasibility to learn log revision behaviors from evolution history.

2.3 RQ2: What are the Characteristics of Log Revisions?

One log statement (e.g., print(“value of variable a is %d”, variable a)) consists of three
components: log function (e.g., print), log variables (e.g., variable a) and static content (e.g.,
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Table 2 Revisions in software evolution

Software Studied versions #Log revisions #Hunk #Log hunk Density of log
revision

Httpd 2.0.40-2.4.27 5,347 33,422 7,435 22.3%

Git 2.0.0-2.9.5 2,002 14,432 4,380 30.4%

Mutt 1.4.2.3-1.9.1 322 3,848 686 17.8%

Rsync 0.1-3.1.2 557 8,251 1,026 12.4%

Collectd 1.7.0-5.8.0 635 18,750 2,048 10.9%

Postfix 1.1.13-3.2.4 2,222 18,909 4,877 25.8%

Tar 1.11.8-1.30 429 1,281 199 15.5%

Wget 1.5.3-1.19.2 730 9,276 1,433 15.5%

OpenDDS 1.0-3.13 1,981 21,722 3,550 16.3%

Ice 2.1.0-3.7.1 1,796 38,766 7,112 18.3%

GIMP 2.0.0-2.10.10 3,326 134,563 9,406 7.0%

Wireshark 2.0.0-3.0.2 3,090 106,981 7,551 7.1%

Total 22,437 303,220 42,152 13.9%

Table 3 Distribution of revisions among different categories of log modifications

Software Total Log Insertion Log Deletion Update of log
function

Modification
of variables

Modification of
static content

Httpd 5,347 1,140
(21.3%)

553
(10.3%)

579
(10.8%)

4,252
(79.5%)

3,725
(69.7%)

Git 2,002 405
(20.2%)

224
(11.2%)

550
(27.5%)

1,768
(88.3%)

588
(29.4%)

Mutt 322 71(22.0%) 44
(13.7%)

91
(28.3%)

179
(55.6%)

128
(39.8%)

Rsync 557 78
(14.0%)

27
(4.8%)

192
(34.5%)

312
(56.0%)

73
(13.1%)

Collectd 635 133
(20.9%)

46
(7.2%)

310
(48.8%)

277
(43.6%)

158
(24.9%)

Postfix 2,222 913
(41.1%)

219
(9.9%)

269
(12.1%)

1,222
(55.0%)

909
(40.9%)

Tar 429 116
(27.0%)

58
(13.5%)

108
(25.1%)

270
(62.9%)

198
(46.1%)

Wget 730 216
(29.6%)

43
(5.9%)

102
(14.0%)

564
(77.3%)

300
(41.1%)

OpenDDS 1,981 366
(18.5%)

166
(8.4%)

102
(5.1%)

1,939
(97.9%)

1,442
(72.8%)

Ice 1,796 565
(31.5%)

342
(19.0%)

535
(29.8%)

1,133
(63.1%)

648
(36.1%)

GIMP 3,326 874
(26.3%)

263
(7.9%)

967
(29.1%)

2,398
(72.1%)

1,276
(38.4%)

Wireshark 3,090 604
(19.5%)

294
(9.5%)

995
(32.2%)

1,189
(38.5%)

1,312
(42.5%)

Total 22,437 5,481
(24.4%)

2,279
(10.2%)

4,800
(21.4%)

15,503
(69.1%)

10,757
(47.9%)

Empirical Software Engineering (2020) 25:2302–23402310



Fig. 6 Distribution of modifications of log variables (left) and modifications of static content (right)

“value of variable a is %d”). In a similar fashion to previous works (Yuan et al. 2012b; Chen
and Jiang 2017a), we divide log revisions into five categories by combining edit types with
edited components. These categories are log insertion, log deletion, update of log function,
modification of log variables and modification of static content.

To identify the category for given log revisions, we design and implement a simple
classifier. It utilizes syntactical edit scripts that are generated by GumTree to decide what
components of the log statements have been modified. We sample 100 log revisions and
manually justify the correctness of automatic classification. As it turns out, the accuracy of
this classifier is 94.0%. With the help of this classifier, we characterize the distribution of
log revisions among the five categories and display it in Table 3.

As shown in the table, 10.2% of the log revisions delete log statements, 24.4% insert
new log log statements while over 69.1% of the log revisions modify log variables. In this
way, the insertion, deletion, and update of log statements all happen relatively frequently
during software evolution. Among the five categories, the modifications of variables and
static content take larger proportion. As such, we refine these two categories into eight
sub-categories, whose distribution characteristics are shown in Fig. 6. Almost half of the
modifications made to variables and static content are deletions and updates, which have
not been covered by existing works (Yuan et al. 2012a, c; Zhu et al. 2015). This indicates
the limitation of related works and the necessity of mining rules from software evolution.

2.4 RQ3: HowMany Context-Similar Log Revisions are Modified Similarly?

To capture the pervasiveness of context-similar log revisions, we evaluate the proportion
of context-similar log revisions to all log revisions. As a prerequisite, we run hierarchical
clustering algorithm (Defays 1977) on historical log revisions with the semantics of logging
context9 as the feature vector.10 This generates groups whose members all share semanti-
cally similar context (i.e., context-similar revision groups). Then, we compute the number
of context-similar log revisions by summarizing all instances in context-similar revision
groups.

9Logging context model used to describe the semantics context of log revisions is explained detailedly in
Section 3.2.
10For consideration of accuracy, clustering algorithm used in this paper takes the threshold of similarity as
one.
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Table 4 The ratio of context-similar log revisions (Context-similar groups: context-similar revision groups,
Average Group Size: average group size of context-similar revision groups, Similar groups: similar revision
groups)

Software Total
Revisions

Context-similar
Revisions

Ratio Context- simi-
lar Groups

Average
Group Size

Similar
Groups

Httpd 5,347 2,733 51.1% 894 3.1 587
Git 2,002 868 43.4% 272 3.2 188
Mutt 322 103 32.0% 37 2.8 25
Rsync 557 393 70.6% 124 3.2 91
Collectd 635 424 66.8% 139 3.1 155
Postfix 2,222 1,200 54.0% 380 3.2 286
Tar 429 184 42.9% 57 3.2 36

Wget 730 338 46.3% 119 2.8 60

OpenDDS 1,981 1291 65.2% 350 3.7 295
Ice 1,796 1,075 59.9% 321 3.3 241
GIMP 3,326 1,889 56.8% 627 3.0 412
Wireshark 3,090 2,294 74.2% 486 4.7 459
Total 22,437 12,792 57.0% 3,806 3.4 3,031

Table 4 displays the detailed data. On average, 57.0% of historical log revisions share
semantically similar logging context. That is to say, a comprehension of log revision behav-
iors may allow us to predict half of the revisions on log statements. This result indicates the
potential effectiveness of rules that are mined from software evolution history.

Additionally, for judging whether context-similar log revisions deserve similar modifica-
tions, we measure the proportion of similar modifications in context-similar log revisions.
We first classify log revisions that not only share similar logging context, but also undergo
similar modifications11, thus generating similar revision groups. From this, it is obvious that
the similar revision groups are a subset of context-similar revision groups, and that the ratio
of the former to the latter is positively related to the proportion of similar modifications in
context-similar log revisions.

As shown in Fig. 7, on average, 74.5% of the context-similar revision groups show simi-
lar modifications. This result validates our assumption that log statements with semantically
similar context deserve similar modifications. Hence, it is reasonable to apply modifications
that are learned from evolution history to log statements that share semantically similar
context with historical revision behaviors.

3 Design and Implementation

3.1 Overview

In order to provide guidances on logging practices, this paper designs and implements Log-
Tracker, which can predict intricate log revisions by mining the correlation between logging
context and log modifications. In this section, we detail the implementation of LogTracker.

As shown in Fig. 8, LogTracker consists of two main phases. The first phase involves
mining rules from software evolution. When given one log revision, LogTracker should

11This paper models log modifications based on syntactical edit scripts, see Section 3.3 for more details
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Fig. 7 Pervasiveness of similar modifications among context-similar log revisions

first analyze the semantics of the logging context and retrieve log modifications. These
then serve as the input of generating rules. In the second phase, LogTracker suggests log
modifications for candidate code snippets by applying rules. In summary, there are four
modules in LogTracker, detailed below.

Extracting the semantics of logging context. This module analyzes the semantics of
logging context for log statements. Since LogTracker aims to suggest modifications for
log statements that share similar logging context, the precision of this module seriously
affects the effectiveness of the whole tool. In Section 3.2, we illustrate the design and
implementation details of this module.

Retrieving log modifications. This module utilizes syntactical edit scripts to represent
log modifications. Section 3.3 explains how we handle these edit scripts.

Phase 1: Mine log revision rules

Phase 2: Apply log revision rules

Extract semantics of

logging context

Identify log

modification behaviors

Extract semantics of

logging context

Mine log

revision rules
Log revisions

in evolution

Code snippet

Log revision

rules

Apply log

revision rules

Log

modifications

Fig. 8 Architecture of LogTracker
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Mining log revision rules. In this module, historical log revisions are classified into mul-
tiple groups according to their logging context and log modifications. One group is
treated as one rule. One rule consists of two elements: logging context and modifications.
This indicates that those log statements that fall under the logging context deserve such
modifications. The details of how the rules are produced are illustrated in Section 3.4.

Applying log revision rules. This module applies the learned rules to code snippets
which share semantically similar logging context. For each candidate code snippet, syn-
tactical log modifications will be suggested. More details about locating candidates and
generating recommendations are provided in Section 3.5.

3.2 Extracting the Semantics of Logging Context

As mentioned above, the understanding of semantics of logging context seriously affects the
effectiveness of any recommendations. This subsection illustrates how LogTracker extracts
logging context.

Fig. 9 Real-world log statements that are with similar and different logging context
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3.2.1 Semantics of Logging Context

It is worth noting that understanding the semantics of logging context is challenging. First,
Logging context with similar semantics may correspond to several syntactical representa-
tions. In Fig. 9a and b, the two log statements both print messages when the return value of
select() is negative and errno is not EINTR. That is to say, despite the differences in syntacti-
cal structures, the semantics of these two logging context are similar. In this case, traditional
algorithms (Jiang et al. 2007; Gabel et al. 2008; Juergens et al. 2009) that approximate
semantics using syntactics may fail to recognize some semantically similar logging context.
Second, the length of logging context is usually so short that traditional algorithms (Jiang
et al. 2007; Gabel et al. 2008; Juergens et al. 2009) which calculate code similarity based
on syntactical structures may raise false alarms. While the two log statements in Fig. 9c
and d share similar syntactical structures, their semantics vary a great deal. Specifically, the
log statement in Fig. 9c prints log messages when the return value of gfi unpack entry() is
logically false while the log statement in Fig. 9d prints messages when the return value of
loopup object buffer() is logically false.

In summary, traditional algorithms (Jiang et al. 2007; Gabel et al. 2008; Juergens et al.
2009) that describe the semantics of context of functional code fail when used on logging
context. To overcome this challenge, we design LCDM to accurately describe the semantics
of logging context.

3.2.2 Logging Context Description Model

Logging context is generally made up of two components: where to log and what to log.
Where to log indicates that under what conditions log messages should be printed so that
it can be modeled by check conditions of log statements. And what to log describes what
variables to output and depends on the semantics of log variables. In this case, the task of
understanding the semantics of logging context can be split into a comprehension of the
check conditions and log variables. Consequently, this paper defines the Logging Context
Description Model as a 2-tuple m=<c,v>, where cmeans the check conditions and vmeans
the log variables.

c = lists of related f unctions

related f unction = < relation type, f unction name (, index) >

relation type ∈ {RET V AL,REF ARG,ARG} (3)

Log statements are usually controlled by branch statements that check one or multiple
variables which are related to error-prone functions. For example, log statement in Fig. 9c
depends on a branch statement that validates the return value of an error-prone function
named gfi unpack entry. Thus, LCDM models the check conditions of one log statement
with the semantics of its validated variables. Specifically, c is formulated as lists of error-
prone functions that are related to the validated variables (see Formular (3)). Each related
function is made up of the function name and type of relation between this function and the
validated variable.

There are mainly three sorts of relations: Return VALUE (i.e., RET VAL in formulas),
REFERENCE ARGUMENT (i.e., REF ARG in formulas) and ARGUMENT (i.e., ARG in
formulas). Relation of type Return VALUE indicates write dependences through the return
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value of functions (e.g., a=fun()). REFERENCE ARGUMENT means write dependences
on functions by reference arguments (e.g., fun(&a)). Relation of type ARGUMENT rep-
resents read dependences on functions by arguments (e.g., fun(a)). For relations of type
REFERENCE ARGUMENT and ARGUMENT, another index value is used to point out
the position of given argument in the argument list (e.g., index of a in fun(&a) is 1). For
instance, the variable buf in Fig. 9c related to gfi unpack entry() through return value. Thus,
the type of relation between buf and gfi unpack entry() is Return VALUE.

Similar to validated variables, log variables may also relate to error-prone functions. In
addition to the related functions, variable types (especially self-defined variable types) also
imply the semantics of log variables. As such, LCDM formulates v as lists of semantics
expressions which represent the semantics of log variables by either the related functions or
the variable types (see Formular (4)). To do this, LCDM implements three levels of seman-
tics: RELATED FUNCTION (i.e., RLAT FUN in following formula), VARIABLE TYPE
(i.e., VAR TYPE) and NO INFORMATION (i.e., NO INFO).

v = lists of semantics expressions

semantics expression = < semantics level, value >

semantics level ∈ {RLAT FUN, V AR T YPE,NO INFO} (4)

In detail, each semantic expression consists of semantics level and value. Actu-
ally, different levels of semantics correspond to different sorts of value. For level of
RELATED FUNCTION, value is the related function (shown in formula (3)) of one vari-
able. For level of VARIABLE TYPE, value is the data type of one variable (e.g., value of
a in “int a;” is int). If neither the related function nor the variable type can be inferred
in limited context (e.g., function that contains this log statement), value is NULL and the
semantics level is marked as NO INFORMATION.

In order to aid understanding, we illustrate LCDM with the initial code snippet of the
patch in Fig. 3a as an example:

The LCDMof this logging context equals to<[<Return VALUE, lock ref sha1 basic>],
[<RELATED FUNCTION, <REFERENCE ARGUMENT, lock ref sha1 basic, 1>>]>. It
indicates that this log statement will output the first argument of lock ref sha1 basic() if the
return value of lock ref sha1 basic() is logically false.

3.2.3 Extracting LCDM

Before illustrating the implementation details of extracting LCDM, we should first identify
which log statement to deal with. In reference to Fig. 8, LogTracker should analyze LCDM
for historical log revisions when mining rules, and for candidate code snippets (i.e., the
code snippet where rules apply) when applying rules. Specially, when applying rules to one
candidate code snippet, LogTracker needs to extract LCDM for its inner log statements (see
Section 3.5).
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When mining rules from historical log revisions, the input log statement is related to
the category of log modifications. In detail, if the historical log revision modifies exist-
ing log statement, LogTracker extracts LCDM of the modified log statement (i.e., old log
statement). While if the historical log revision inserts new log statements, the inserted log
statement (i.e., new log statement) will be analyzed.

Given the input log statement, the primary task when extracting LCDM is to identify
c and v. As mentioned in Section 3.2.2, c consists of the related functions of validated
variables and v consists of either the related functions or the variable types of log variables.
Technologically speaking, extraction of c is just a special case of identifying v. Thus, this
section focuses on explaining how to extract v for one log statement.

As the basic unit of v, extraction of semantics expression for one log variable is shown in
Algorithm 1. This procedure requires two inputs: the syntactical structure and the program
dependence graph (PDG) of the function body. As a prerequisite, we should first trace back
to the function body of the input log statement. To do this, we identify the location of input
log statement in the source file by analyzing the range information in the hunk. Then, by
traversing the ancestor nodes of input log statement in source file, we extract the function
body. With the function body, the syntactical structure is generated by srcML (Collard et al.
2013) which translates incomplete code into a syntactical unit. In order to retrieve PDG of
the function body, We then process the syntactical structure of the function body to build a
partial PDG, which illustrates data dependencies.
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Given the syntactical structure and PDG of the function body, we first identify the syn-
tactical node of one log variable before extracting its semantical expression. Specifically,
if this variable node indicates an invocation of function, the invoked function will be iden-
tified as relating to this variable in type of Return VALUE. Meanwhile, this semantics
expression belongs to level of RELATED FUNCTION. Otherwise, the PDG of function
body is traversed upward from this variable node to search for functions related to it by
either reference arguments (i.e., relation of type REFRENCE ARGUMENT) or return val-
ues (i.e., relation of type Return VALUE). If fails, the program traverses downward the
PDG to search for read dependences by arguments (i.e., relation of type ARGUMENT). If
either of above processes succeeds, program will exit with level as RELATED FUNCTION
and value as corresponding related function; otherwise, the program continues to traverse
upward the PDG to search for the declaration of this variable node. If succeeds, the program
exits with level as VARIABLE TYPE and value as declared type. If not, it exits with level
as NO INFORMATION and value as NULL.

We explain the extraction of LCDMwith the same instances in Section 3.2.2. The branch
statement and its dependent statement are:

This branch statement only validates one variable which corresponds to the invocation
of lock ref sha1 basic(). Thus, the value of c is [<Return VALUE, lock ref sha1 basic>].
The log statement is:

This log statement prints one log variable which is the first reference argument
of lock ref sha1 basic(). Thus, there is a write dependence between this log variable
and lock ref sha1 basic(). And the value of v is [<RELATED FUNCTION, <REFER-
ENCE ARGUMENT, lock ref sha1 basic, 1>>].

3.3 Retrieving LogModifications

Retrieving log modifications is another prerequisite when learning log revision behaviors.
This paper represents log modifications based on syntactical edit scripts.

Syntactical edit scripts of two log statements express the differences between their syn-
tactical structures and can eliminate the interference from comments or empty lines. For
example, the patch in Fig. 10 inserted an empty line among the static content and log
variables, but did not modify the syntactics of the log statement.

Fig. 10 Patch that inserted empty line in log statement
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In this paper, we generate syntactical edit scripts using GumTree that implement a state
of art tree differentiating algorithm. The syntactical edit scripts for the old and new log
statements12 in Fig. 3a are shown as follows.

Insert a variable whose text is err.buf after a variable whose text is oldrefname.
Update text of one literal node from “...” to “...: %s”.

Considering the limited information of variable names, we enhance above syntactics edit
scripts with semantics of log variables to reach a better understanding of log modifications.
In detail, we replace variables with their corresponding semantics expressions.

For example, the err.buf in above syntactical edit scripts can be enhanced with <REF-
ERENCE ARGUMENT, lock ref sha1 basic, 7> since it is the last reference argument of
lock ref sha1 basic(). As such, syntactical edit scripts turn to be:

Insert a variable whose semantics expression is <REFERENCE ARGUMENT,
lock ref sha1 basic, 7> after a variable whose text is oldrefname.

Update text of one literal node from “...” to “...: %s”.

Meanwhile, the oldrefname in this syntactical edit scripts can be enhanced with <REF-
ERENCE ARGUMENT, lock ref sha1 basic, 1> since it is the first reference argument of
lock ref sha1 basic(). This turns the syntactical edit to be as follows:

Insert a variable whose semantics expression is <REFERENCE ARGUMENT,
lock ref sha1 basic, 7> after a variable whose semantics expression is <REFER-
ENCE ARGUMENT, lock ref sha1 basic, 1>.

Update text of one literal node from “...” to “...: %s”.

The final syntactical edit scripts are then digitalized with traditional hash algorithm
(Foundation 2018) for better performance during rule mining. Comparing with textual edit
scripts in our previous work (Li et al. 2018), this enhanced syntactical edit scripts eliminate
the limitation of variable names and turn out to find more log revision rules (see Table 5).

3.4 Mining Log Revision Rules

One rule consists of two parts: logging context and log modifications. By combining LCDM
and edit scripts, we can define the rule as 3-tuple r = <c,v,e>, where c and v compose
LCDM, which describes the semantics of logging context, and e is syntactical edit scripts.
One rule indicates that if one code snippet shares similar context with <c,v>, it deserves
modifications represented by e.

Similar to log revisions during software evolution, generated rules also involve vari-
ous categories of log modifications, such as log insertion, log deletion, and update of log
function (i.e., Tables 3 and 6). Specifically, given one rule, if it modifies existing log state-
ment, then log statements whose context is similar to <c,v> deserve e. If it inserts new log
statement, then code snippets that meet with similar <c,v> may also need new log statements.

In order to mine rules, we run the agglomerative hierarchical clustering algorithm
(Defays 1977) on historical log revisions with a feature vector consisting of LCDM and edit
scripts. Each generated group is recognized as one rule. Every instance in a group can be
treated as supporters of this rule, which is positively related to its reliability. Conservatively,

12Given one revision, if its category is “log deletion”, the new log statement is marked as empty string.
Similarly, if its category is “log insertion”, the old log statement is empty string.
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Table 5 Rules learned from historical log revisions and candidates detected in the latest releases (L-Rules:
learned rules, W-Rules: learned rules that recommend candidates)

Software Studied versions Modify existing log statements Insert new log statements

L-Rules W-Rules Candidate L-Rules W-Rules Candidate

Httpd 2.0.40-2.4.27 465 18 52 122 11 61

Git 2.0.0-2.9.5 146 9 28 42 7 29

Mutt 1.4.2.3-1.9.1 20 1 3 5 0 0

Rsync 0.1-3.1.2 79 1 1 12 1 1

Collectd 1.7.0-5.8.0 106 7 16 49 9 27

Postfix 1.1.13-3.2.4 161 6 21 125 14 41

Tar 1.11.8-1.30 27 2 3 9 2 3

Wget 1.5.3-1.19.2 37 1 6 23 3 3

OpenDDS 1.0-3.13 248 7 24 47 0 0

Ice 2.1.0-3.7.1 181 4 15 60 1 4

GIMP 2.0.0-2.10.10 298 7 12 114 3 6

Wireshark 2.0.0-3.0.2 362 5 8 4 5

Total 2,130 68 189 705 55 180

we select groups that have at least two voters as effective rules (In the following sections,
we take effective rules as “rules” for simplicity).

In addition, as pointed out by our previous work (Li et al. 2018), some log revisions may
be reverted during evolution, which causes “out-of-date” rules. For ease of this problem,
we first identify rules that work on the same log statement by comparing their edit scripts
and source file information. Then, we erase the older one by comparing their version infor-
mation. This promises a smaller rejection ratio in the experiment Section 4.1 and a higher
precision in Section 4.2.1.

3.5 Applying Log Revision Rules

This module applies learned rules by first locating candidate code snippets (see
Section 3.5.1) and then recommending corresponding syntactical log modifications (see
Section 3.5.2) for them.

3.5.1 Locating Candidate Code Snippets

Rules that modify existing log statements indicates that log statements whose logging con-
text is similar to their rule context (i.e., <c,v>) deserve the specified modifications (i.e., e).
Given code snippet, we first recognize all the inner log statements and extract their logging
context. Then, to decide which rule should be applied to which log statement, we pairwise
calculate the similarity between the candidate logging context and the rule context. For each
candidate pair with a high similarity,13 we further validate the feasibility of these modifica-
tions on the log statement before recommending it to the developers by simply checking the
existence of modified components.

13For reducing false alarms, we only recommend revisions if the similarity of candidate pair is 100%.
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In contrast, rules that insert new log statements only indicate that there should be one
log statement under the rule context (i.e.,<c,v>). When locating candidates for these rules,
we judge whether all related functions in the rule context are contained in the functions
invoked in given code snippets.14 If true, we further validate the necessity of inserting new
log statements before informing the developers. For example, if there already exists log
statement under that rule context, we do not need to log. To do this, we compare the rule
context with the logging context of existing log statements and only make suggestion when
there is no matching.

3.5.2 Generating Candidate Log Modifications

In order to recommend instructive log modifications when applying rules, this paper aims
to generate candidate syntactical edit scripts for candidate code snippets based on historical
syntactical edit scripts mentioned in Section 3.3.

For rules that modify existing log statements, we first identify which syntactical nodes
to be modified by mapping the modified nodes to candidate log statements that are located
in Section 3.5.1. Then, modified nodes in the syntactical edit scripts are substituted with
corresponding ones in candidate log statements to generate candidate syntactical log mod-
ifications. For example, when applying the rule learned from log revision in Fig. 3a,
LogTracker will locate following candidate log statement (i.e., the one in Fig. 3b) since it
shares similar logging context with the rule.

Then, by analyzing the mapping relationship generated by GumTree, LogTracker real-
ized that historically modified variable oldrefname corresponds to the refname in the
candidate log statement. After substituting the oldrefname with refname, the candidate
syntactical log modifications turn to be:

Insert a name node whose semantics expression is <REFERENCE ARGUMENT,
lock ref sha1 basic, 7> after a variable whose text is refname.

Update text of one literal node from “...” to “...: %s”.

As for rules that insert new log statements, they just indicate there should be one log
statement under given logging context. Thus, we inform developers that log statements are
needed in candidate code snippets (i.e., the one located in the Section 3.5.1) and directly
recommend historical syntactical edit scripts as references for what kinds of log statements
should be inserted.

4 Evaluation

This section evaluates the performance of LogTracker from three aspects. Section 4.1 mea-
sures its effectiveness on learning log revision rules and suggesting missed log revisions.

14For rules that insert new log statements, we split code snippets on basis of function.
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Section 4.2 evaluates its precision and recall when locating log revisions as well as the qual-
ity of recommended syntactical log modifications. In Section 4.3, we measure the precision
of LCDM by locating context-similar log revisions with LogTracker. Besides, we compare
LCDM with DECKARD+ (Gabel et al. 2008; GitHub 2018b) to prove the advantages of
LCDM over traditional context modeling algorithms.

4.1 Effectiveness of LogTracker

The aim of LogTracker is to guide intricate log revisions by learning from software evo-
lution. Thus, this section first studies the usefulness of rules learned by LogTracker (see
Section 4.1.1), including the quantity of rules learned in subject projects, the distributions
of these rules among different categories of log revisions, the trivialness of these rules, and
their dispersion among files. After that, we further study whether LogTracker is able to
detect missed log revisions in the latest releases (see Section 4.1.2).

4.1.1 Usefulness of Log Revision Rules Learned by LogTracker

To evaluate the ability of LogTracker on mining log revision behaviors, this subsection
characterizes log revisions rules which are learned by LogTracker. Specifically, we train

Table 6 Distribution of learned rules among different categories of log modifications

Software Total Log
Insertion

Log
Deletion

Update of log
function

Modification
of variables

Modification of
static content

Httpd 587 122
(20.8%)

70
(11.9%)

64
(10.9%)

386
(65.8%)

350
(59.6% )

Git 188 42
(22.3%)

30
(16.0%)

36
(19.1%)

121
(64.4%)

38
(20.2%)

Mutt 25 5
(20.0%)

4
(16.0%)

9
(36.0%)

9
(36.0%)

7
(28.0%)

Rsync 91 12
(13.2%)

2 (2.2%) 8 (8.8%) 69
(75.8%)

4 (4.4%)

Collectd 155 49
(31.6%)

13
(8.4%)

54
(34.8%)

43
(27.7%)

44
(28.4%)

Postfix 286 125
(43.7%)

33
(11.5%)

27
(9.4%)

103
(36.0%)

100
(35.0%)

Tar 36 9
(25.0%)

5
(13.9%)

12
(33.3%)

17
(47.2%)

19
(52.8%)

Wget 60 26
(43.3%)

2 (3.3%) 4 (6.7%) 34
(56.7%)

23
(38.3%)

OpenDDS 295 47
(15.9%)

22
(7.5%)

8 (2.7%) 290
(98.3%)

203
(68.8%)

Ice 241 60
(24.9%)

49
(20.3%)

85
(35.3%)

112
(46.5%)

72
(29.9%)

GIMP 412 114
(27.7%)

32
(7.8%)

119
(28.9%)

264
(64.1%)

137
(33.3%)

Wireshark 459 97
(21.1%)

51
(11.1%)

145
(31.6%)

146
(31.8%)

156
(34.0%)

Total 2,835 708
(25.0%)

313
(11.0%)

571
(20.1%)

1,594
(56.2%)

1,153
(40.7%)
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LogTracker with all historical log revisions of the 12 subject systems to generate log revision
rules. Table 5 displays the detailed number of log revision rules. In general, LogTracker
mines 2130 pieces of rules that modify existing log statements and 705 rules that insert new
log statements. This improves our previous data (Li et al. 2018) since the syntactical edit
scripts model log modifications in a more general manner.

With a summary of 2835 pieces of rules mined, this paper concludes that LogTracker is
able to automatically mine log revision behaviors from software evolution history. Despite
the quantity of learned rules, in order to discuss the usefulness of these rules, we further
study whether learned rules can cover different categories of log revisions, how many of
them are non-trivial ones which have impacts on software behaviors, and how many remain
in various files which are difficult for manual location.

What are the characteristics of the learned rules? As shown in Table 3, log revisions
may involve multiple categories of log modifications, such as log deletion, update of log
functions, and modification of log variables and so on. In order to tell whether LogTracker
is able to understand diverse types of log revisions in evolution history, we calculate the
distribution of learned rules among the five categories of log modifications.

Similar to Section 2.3, we classify log revision rules into five categories on basis of
syntactical edit scripts and display the result in Table 6. Generally speaking, LogTracker
successfully cover five categories of log revisions.

Furthermore, we would like to know whether revision rules and historical log revisions
share similar distribution characteristics. To do this, we show their distribution vividly in
Fig. 11. In general, except Rsync and Wget, other ten subject systems share nearly the
similar distributions.

Are learned rules trivial or not? Previous works (Mondai et al. 2018; Kawrykow and
Robillard 2011) pointed out that trivial modifications are less meaningful, including
rename-inducing modifications, local variable extractions, and whitespace updates. As

Fig. 11 Distribution characteristics of historical revisions and learned log revision rules (For each software,
left column is distribution of log revisions and right column is distribution of rules.)
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Fig. 12 Example of trivial log revisions and candidate detected by the rule learned from trivial log revisions

shown in Fig. 12a, some log revisions may be trivial ones and have no impacts on soft-
ware behaviors. In this case, rules mined from trivial log revisions are less valuable. Thus,
we measure the proportion of trivial log revision rules which only involve with trivial log
revisions to evaluate the usefulness of learned rules.

In detail, we randomly sample 510 pieces15 of log revision rules from the 12 projects
and identify whether one rule is a trivial one by manually checking whether the involved
log revisions are trivial modifications on log statements.

As displayed in Table 7, on average, only 13.3% of learned rules are trivial ones and
86.7% of them are meaningful and have influences on software behaviors. This indicates
the potential usefulness of LogTracker to mine non-trivial revision behaviors from software
evolution history.

Are the rules learned from different files? Comparing with revisions in the same file,
revisions which reside in different files are much more difficult to track. Thus, this paper
evaluates how many rules are learned from revisions which reside in different files to judge
the usefulness of learned rules.

15Confidence interval is 3.93 with a confidence level as 95%. This is calculated with Sample Size Calculator
(Systems CR 2019).
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Table 7 Proportion of rules that are learned from different files and proportion of trivial revision rules (D-
Rules: rules that are learned from different files)

Software Groups D-Rules Ratio of D-rules Sample rules Trivial rules Ratio of Trivial rules

Httpd 587 257 43.8% 50 10 20.0%

Git 188 85 45.2% 50 11 22.0%

Mutt 25 2 8.0% 10 2 20.0%

Rsync 91 66 72.5% 50 3 6.0%

Collectd 155 101 65.2% 50 7 14.0%

Postfix 286 172 60.1% 50 6 12.0%

Tar 36 14 38.9% 20 2 10.0%

Wget 60 20 33.3% 30 4 13.3%

OpenDDS 295 117 39.7% 50 8 16.0%

Ice 241 112 46.5% 50 6 12.0%

GIMP 412 144 35.0% 50 5 10.0%

Wireshark 459 212 46.2% 50 4 8.0%

Total 2,835 1,302 45.9% 510 68 13.3%

As for implementation, given one rule, we collect all of its corresponding historical
log revisions. With location information of each historical log revision, it is easy to judge
whether the rule is learned from revisions that spreads in different files or not.

As displayed in Table 7, despite the diversity among software, averagely speaking, 45.9%
of rules are learned from log revisions which reside in different files. With near half of rules
involved with revisions that spread in various files, it turns more important to automatically
mine rules with LogTracker which can provide guidances on locating and modifying these
log revisions.

In summary, LogTracker is able to learn 2,835 pieces of revision rules from the 12 subject
systems. Meanwhile, rules learned by LogTracker is proved to be useful. First, they cover
a variety categories of log revisions. Second, average speaking, 86.7% of the learned rules
involve non-trivial modifications on log messages. Third, 45.9% of them are learned from
revisions in different files which are difficult for manually tracking.

4.1.2 Ability to Detect Missed Log Revisions

As mentioned by previous works (Meng et al. 2013; Rolim et al. 2017; Chen and Jiang
2017b), developers may miss some systematic edits. By learning log revision behaviors
from historical log revisions, LogTracker can detect missed log revisions that share similar
logging context with rules. This section evaluates how effective LogTracker is at detecting
log revisions that are missed by developers.

To do this, rules listed in Table 5 are applied to the latest versions of the 12 subject
projects to detect missed log revisions. Then, we manually validate the feasibility and rea-
sonableness of recommended revisions16 and summarize 369 true positives (see Table 5)
from 12 software.

16As mentioned in Section 3.5.1, LogTracker automatically filters infeasible log revisions, while for
considering of accuracy, we also manually verify the correctness of automatic filtering.

Empirical Software Engineering (2020) 25:2302–2340 2325



We are in the process of reporting those recommendations to developers for feedback. Up
to now, we have reported 79 instances. 52 (65.8%) instances have been accepted by devel-
opers, 8 (10.1%) instances are under discussion,17 19 (24.1%) instances has been rejected.
As we have discussed in Section 3.4, erasing of rules that are learned from the reverted log
revisions decreases the rejection ratio of our work.

Here, we illustrate one accepted instance. This instance is detected by the rule generated
from four log revisions in Git-2.3.10. One is from file builtin/merge-tree.c with code as
follows.

This revision inserted check of the return value of xdi diff() and one log statement. Hence,
LogTracker learns a rule that xdi diff() should be checked and logged. By applying this rule,
LogTracker detects the missed log revision in Git-2.14.2 builtin/rerere.c. The initial code is
as follows.

xdi diff() is invoked without validating the return value. We report this to the mailing list of
Git and the developer accepted this instance.

As for the rejected instances, there are mainly three reasons. First, log revisions are
related to other code and may cause too many dependent modification (“That’s much bigger
than a single-line change, since groups of dependent functions need to be converted.”).

Second, log revisions are trivial ones so that developers do not want to modify code
for something have no impacts on software behaviors. For example, candidate shown in
Fig. 12b is rejected for this reason (“These other changes that just combine multiple lines
aren’t necessary.”).

Third, recommended log revisions are not suitable for some special cases despite the
correctness of learned rules. For example, LogTracker learns one rule that the return value of
setsockopt() should be checked and logged from two revisions in Wget-1.18 src/connect.c.
One of them is listed as below.

17We found that candidates posted in Github are more possible to be replied. In fact, 29 candidates detected
in OpenDDS, Ice and GIMP are both replied in time since their issues are managed with Github.
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With this rule, we find one missed spot in Wget-1.19.2 lib/setsockopt.c.

Developer agreed with the reasonableness of our finding but pointed out this invocation
should not be checked or logged because “rpl setsockopt is a replacement function for
systems where setsockopt doesn’t behave in a sane manner”.

4.2 Accuracy of LogTracker

As a tool for guiding log revisions, the accuracy of LogTracker matters when putting it
into practice. In this section, we evaluate the accuracy of LogTracker from two aspects.
First, the precision and recall is calculated to test how accurate LogTracker can be when
locating candidate code snippets. Second, we manually compare recommended edit scripts
generated by LogTracker against historical log revisions to evaluate how many candidate
log modifications are acceptable.

4.2.1 Precision and Recall when Locating Candidate Code Snippets

This section evaluates the precision and recall of LogTracker when locating candidate code
snippets. For ease of comparison, we calculate the value of Fscore.

We randomly split historical log revisions into train and test data with a ratio of 5:5 and
8:2. Then LogTracker learns revision rules from the train data and locates candidate code
snippets by applying these rules. We compare the located code snippets with log revisions in
train and test data, thus counting howmany log revisions in test data are successfully located
(i.e., Located code snippets in test data in the formulas). Based on this, we further cal-
culate the value of precision, recall and Fscore with following formulas. Above process is
repeated five times to get the average value.

Precision = Located code snippets in test data

Located code snippets
(5)

Recall = Located code snippets in test data

Log revisions in test data
(6)

Fscore = 2 ∗ Precision ∗ Recall

P recision + Recall
(7)

Table 8 displays the precision and the recall of the eight subject projects18 in response
to two ratios of train data. Generally speaking, the precision is high (i.e., averagely 83.5%
or 95.1%) in both cases and indicates that LogTracker is a reliable tool when guiding log
revisions. Comparatively, the recall of LogTracker is lower. LogTracker locates 17.3% log
revisions with half historical log revisions. In addition, as the ratio of train data increases,

18As shown in Tables 4 and 5, log revisions and rules of other four projects are so few that we do not show
data of the four software in this experiment.
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Table 8 Precision and recall of LogTracker when locating candidate code snippets

Software Train:test = 5:5 Train:test = 8:2

Precision Recall Fscore Precision Recall Fscore

Httpd 98.4% 15.0% 26.1% 90.4% 31.0% 46.2%

Git 97.2% 12.4% 22.0% 87.5% 29.3% 43.9%

Collectd 93.4% 24.8% 39.2% 69.7% 52.0% 59.6%

Postfix 100.0% 13.2% 23.3% 88.9% 33.1% 48.2%

OpenDDS 91.1% 17.1% 28.8% 85.1% 37.1% 51.7%

Ice 89.0% 25.1% 39.2% 73.7% 43.4% 54.7%

GIMP 95.1% 15.5% 26.7% 85.1% 30.3% 44.6%

Wireshark 96.7% 15.2% 26.3% 87.9% 31.8% 46.7%

Average 95.1% 17.3% 29.3% 83.5% 36.0% 50.3%

the recall rises from 17.3% to 36.0%. Thus, this result is acceptable as a first step towards
guiding intricate log revisions.

There are two main reasons for the low recall. First, as we mentioned in Section 2.4,
only 57.0% of historical log revisions share similar logging context. That is to say, for our
methods, the theoretical value of recall is 57.0%. Second, in this experiment, LogTracker is
trained with partial historical data, it is unavoidable to miss some rules and generate a lower
recall. Besides, comparing with the previous work (Li et al. 2018), this paper has a lower
recall and a higher precision mainly because it erases rules that are reverted in evolution
history.

Considering 45.9% of rules are learned from revisions that spreads in various files, we
further evaluate whether LogTracker can locate candidate code snippets accurately for rules
involved with different files. As for implementation, we preprocess the input data of afore-
mentioned experiment and only keep historical log revisions which are members of rules
that are learned from different files. Then, with a ratio of 5:5, we split train and test data and
calculate the precision and recall with the same method as aforementioned.

Figure 13 display the precision and recall when locating candidate code snippets for
rules that are involved with different files. On average, the recall increases to 34.8% while
the precision decreases to 81.9%. This indicates that LogTracker works well when locating
candidates for rules that are learned from various files.

4.2.2 Quality of Candidate Log Modifications

Despite the ability of locating candidate code snippets, LogTracker also recommends log
modifications which is presented in a manner of syntactical edit scripts (explained in
Section 3.5.2). In this section, we evaluate the quality of these syntactical log modifications
generated by LogTracker.

To do this, we randomly sample 800 (100 from each software) instances from the true
positives (i.e., located code snippet in test data). Since these log revisions belong to test
data which have already taken place in evolution history (see the definition of test data in
Section 4.2.1), it is easy to judge the correctness of recommended log modifications by
manually comparing them with the historical log revisions.

Empirical Software Engineering (2020) 25:2302–23402328



Fig. 13 Comparison of the precision and recall when LogTracker locates candidate code snippets for two
types of rules (Recall-Cross: recall of LogTracker when locating candidate code snippets for rules learned
from different files, Precision-Cross: precision when locating candidate code snippets for rules learned from
different files.)

Specifically, according to the helpfulness of recommended log modifications, we clas-
sify them into three categories: accept , change need , reject . For ease of understanding,
Fig. 14 shows examples of candidate log modifications that belong to the three categories.
Similar to the one in Fig. 14a, candidate log modifications are accepted unless LogTracker
has successfully recommend the demanded edit scripts which transform the candidate code
snippet in the same way as the historical patch. Figure 14b displays a representative instance
of candidate log modifications that need manual changes. In this case, LogTracker fails
to recognize the differences of static content between the historical patch and candidate
log statement and suggests the wrong static content (i.e., “cannot open %s” instead of
“can’t write crash report %s”). Fortunately, it is feasible for user to correct this mistake
by checking historical patches. Candidate log modifications are rejected when LogTracker
misunderstands the historical log revisions, and hence suggests unreasonable log revisions.
In Fig. 14c, LogTracker recommends to update msg fatal to msg warn without figuring out
the need of adding one more log statement.

As the results listed in Table 9, the average ratio for accepted edit scripts is 86.4%. Mean-
while, only 5.3% of recommended log modifications are totally wrong and unacceptable.
This points out the usefulness of LogTracker on guiding logging revisions.

4.3 Precision of LCDM

As the key technology, the precision of LCDM seriously affects the precision of Log-
Tracker. In order to evaluate the precision of LCDM, we measure how accurate LogTracker
is at locating the context-similar log revisions, and take a comparison experiment between
LCDM and DECKARD+.

Empirical Software Engineering (2020) 25:2302–2340 2329



Fig. 14 Examples of candidate log modifications that belong to accept , change need and reject categories
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Table 9 Quality of candidate log
modifications recommended by
LogTracker (A: ratio of accepted
modifications, C: ratio of
change needed modifications, R:
ratio of rejected modifications)

Software A C R

Httpd 87.0% 11.0% 2.0%

Git 83.0% 10.0% 7.0%

Collectd 88.0% 6.0% 6.0%

Postfix 84.0% 8.0% 8.0%

OpenDDS 89.0% 6.0% 5.0%

Ice 84.0% 10.0% 6.0%

GIMP 86.0% 12.0% 2.0%

Wireshark 90.0% 4.0% 6.0%

Total 86.4% 8.4% 5.3%

4.3.1 Precision when Locating Context-Similar Log Revisions

We build an oracle test suit from 12 subject projects. One author of this paper manually
selects groups of log revisions that have similar logging context from all historical log
revisions.19 It takes the author almost 800 hours to select these groups out. Then another
expert who does not participate in the design and implementation of LogTracker validates
the similarity of logging context among log revisions that belong to the same group. We
finally identify 316 groups of similar log revisions, including 226 groups of similar log revi-
sions that modify existing log statements and 90 groups that insert new log statements (see
Table 10). Each group of similar log revisions corresponds to a test case. The input is one
instance of this group, while the test oracles are the other instances.

For generating rules, we randomly select one instance from each group to train Log-
Tracker.20 We then apply these rules to historical versions of subject software, and collect
candidates detected by LogTracker. By comparing candidates with test oracles, we calcu-
late the precision21 when locating context-similar log revisions as the ratio of candidates
supported by the test oracles to all candidates.

Table 10 displays the precision for two sorts of rules in 12 subject projects. For rules
that modify existing log statements, the precision is 93.4%. This is consistent with the high
precision in Section 4.2, and indicates that LCDM is accurate when describing the semantics
of logging context.

For rules that modify existing log statements, false positives are mainly caused by log-
ging context described by related functions that are widely used. That is because related
functions (e.g., strcmp) that are widely used cannot express the semantics of logging con-
text effectively. The inaccurate comprehension of logging context further raises false alarms
when locating context-similar log revisions.

As shown in Table 10, the precision for rules that insert new log statements is even lower.
We manually check all the false positives and work out that there are two main cases.

19This process is done by searching historical log revisions that share the same keywords in contextual lines.
20In this case, each of the generated similar revision group consists of only one train instance. Considering
the limited input, they are taken as effective rules.
21As mentioned in Section 4.1, developers may miss log revisions. Besides, the process of manually building
oracle test suit may also miss some context-similar log revisions. As such, recall of this experiment is not
reliable and we do not mention it here.
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Table 10 Precision of LCDM
(Modify: rules that modify
existing log statements; Insert:
rules that insert new log
statements; G: groups of similar
log revisions; P: precision)

Software Modify Insert

G P G P

Httpd 38 97.4% 15 86.7%

Git 24 91.7% 14 92.9%

Mutt 7 100.0% 0 −
Rsync 7 100.0% 0 −
Collectd 20 90.0% 5 80.0%

Postfix 34 94.1% 11 72.7%

Tar 5 100.0% 6 100.0%

Wget 8 100.0% 12 75.0%

OpenDDS 21 90.5% 8 87.5%

Ice 18 88.9% 10 90.0%

GIMP 30 90.0% 13 76.9%

Wireshark 14 92.9% 9 88.9%

Total 226 93.4% 90 84.4%

First, the related functions whose return value should be checked and logged, are invoked
in the return statement. In Fig. 15a, the related function, apr pollset add(), is called in the
return statement. Hence, the necessity of checking and logging the return value is switched
to the caller (i.e., create wakeup pipe()). Thus, this candidate is recognized as one false
positive, if the caller is more possible to be checked and logged. The possibility of being
logged for one function is measured using log rate. Its formula is as follow.

Log rate = T imes of being logged

T imes of being invoked
(8)

Second, the related function is invoked inside the loop structure. In Fig. 15b, the related
function, apr pollset add(), is called inner the “for” structure. It is too time-consuming to
check and log one non-fatal exception in every iteration. Hence, the candidate is recognized
as one false positive if the exception is not fatal (e.g., The verbosity is information or warn-
ing). The severity of one exception depends on the verbosity of historically inserted log
statements.

Fig. 15 False positives in application of rules that insert new log statements
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4.3.2 Comparison Experiment

As the algorithm in DECKARD+ is widely used to depict the semantics of code con-
text. This section compares LCDM with the algorithm in DECKARD+ to evaluate
the precision of LCDM when describing logging context. To do this, we implement
LogTracker-DECKARD by extracting the semantics of logging context with the algorithm
in DECKARD+.

We calculate the precision of LogTracker-DECKARD using the same oracle test suit
and method in Section 4.3.1, and compare this precision with that of LogTracker. Figure 16
indicates that the precision of LogTracker is higher by 12.6%. This result is consistent with
the discussion in Section 3.2.1 and validates the statement that LCDM is more suitable to
describe the semantics of logging context in comparison to traditional algorithms.

5 Threats to Validity

In this section, we will discuss threats to the validity of LogTracker.

Quality of Log Revisions in Software Evolution Since LogTracker recommends proac-
tive log revisions by applying rules that are learned from historical log revisions, its
effectiveness is closely related to the quality of log revisions in software evolution. For
example, false log revisions committed by developers will also be learned by LogTracker.
Besides, as proved in Section 4.2, LogTracker can only provide guidances on log revi-
sions which share similar logging context. That is to say, the ratio of context-similar log
revisions limit the effectiveness of our tool. Despite the dependence on historical log revi-
sions, LogTracker turns out to be useful by recommending 17.3% to 36.0% of historical
log revisions when applied to the eight widely-used open source software.

Accuracy of Fuzzy Parsing Techniques Patches (incomplete code snippets) are the
main inputs for learning log revision behaviors. Thus, traditional static analysis tech-
niques, which are based on compilers, fail to effectively analyze patches. To solve this

Fig. 16 Precision of LogTracker and LogTracker-DECKARD
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problem, we employ fuzzy parsing techniques. Specifically, we use srcML to generate
a syntactical structure for the incomplete code and GumTree to produce edit scripts for
the two syntactical structures. Consequently, the effectiveness of LogTracker is closely
related to that of fuzzy parsing techniques. Section 4.2.1 has evaluated the precision of
LogTracker and indicates that the deviation is acceptable.

Accuracy of Manually Evaluation and Oracle Construction For lack of benchmark,
the validation of recommended log revisions in Section 4.1.2 and the building of ora-
cle data set in Section 4.3 both depend on manual analysis. In this case, the accuracy of
manual analysis affects the accuracy of our experiments result. To release this problem,
we have asked one expert developer who does not participate in the design and imple-
mentation of LogTracker to evaluate and correct our analysis results. This decreases the
subjectivity of manual analysis in a way.

6 FutureWork

This section discusses our future work on improving the performance and usability of
LogTracker from three aspects.

How to improve the precision of LogTracker when predicting candidate log revisions?
As a proactive log revision tool, the precision of LogTracker seriously affect its usabil-
ity. As discussed in Section 4.1.2, candidate log revisions would be rejected for too
trivial modifications on log statements. Thus, it is important to study how to automat-
ically pre-check the trivialness of log revision rules. As far as we are concerned now,
rename-inducing trivial log modifications can be identified by checking the semantics
of renamed variables since renaming of variables does not affect their semantics.

How to improve the quality of candidate log modifications? Instructive candidate log
modifications can guide developers on log revisions, while incorrect ones may mislead
developers. Pointed out in Section 4.2.2, candidate log modifications need to be changed
because it can not handle the modifications of static content well and are wrong if it can
not recognize the correlation between log revisions. For the first problem, we think it can
be released a bit by treating static content as groups of words and refining the modifica-
tions of static content as the addition or deletion of these groups. For example, the one in
Fig. 14b should be modeled as “delete ‘:%s\n’ from the end of static content”. As for the
second problem, we wonder it is due to the inaccurate separation of log revisions. Cur-
rently, LogTracker split log revisions in unit of log statements without considering the
inner correlations. Thus, separation of log revisions with a larger unit (e.g., basic block)
may partially release this problem.

How to use LogTracker in practice? At present, LogTracker is developed as one inde-
pendent command line tool. To use it, developers should first run ‘–generate’ to mine
log revision rules from input versions of source code and then run ‘–apply’ command to
generate candidate log revisions by applying previous rules into input version of source
code. Obviously, the working scenarios of LogTracker is independent from daily soft-
ware development and should be further improved. We plan to integrate LogTracker
with existing IDE (e.g., Eclipse or Visual Studio Code) as one code-intelligence plu-
gin which aims to improve logging practices. In this case, once one stable version is
released, LogTracker can incrementally learn from it, and once developers write one
new log statement, LogTracker can check it against existing rules to provide real-time
suggestions.
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7 RelatedWork

There are three areas of research that are closely related to our work: empirical studies on
logging practices, improving logging practices, and detecting and managing code clones.

Empirical Studies on Logging Practices Despite the importance of log statements,
there are no rigorous specifications and systematic processes to guide practices of soft-
ware logging (Fu et al. 2014; Yuan et al. 2012c; Pecchia et al. 2015). As a prerequisite,
many researchers have devoted to summarizing the characteristics of existing logging
practices. Yuan et al. (2012b) quantitatively studied the logging practices of four open-
source subjects in C/C++ languages. They concluded ten impressive findings and built a
verbosity checker to validate the effectiveness of their findings. Additionally, Chen and
Jiang (2017a) performed a replication study on 21 Java-based open source software and
concluded several unique characteristics of logging practices in Java-based systems. To
characterize log placements in industry, Fu et al. (2014) conducted an empirical study
on two industrial software and a questionnaire survey on 54 experienced developers.
Hassani et al. (2018) carefully studied the characteristic of issues related to logging prac-
tices (i.e., log-related issues) and manually summarized seven root causes which imply
the opportunity of detecting log-related issues automatically. In this paper, we also per-
form an empirical study on logging practices, but our focus is on the characteristics of
context-similar log revisions. In this case, our work is supplementary of the above works.

Improving Logging Practice When it comes to improving logging practices, previous
works mainly have addressed three main problems, as follows. 1) Where to log. This
problem concerns where to place log statements. Errlog and LogAdvisor suggested
whether to place log statements in one code by summarizing or learning log patterns.
Log2 and Log20 quantitatively represented the informativeness and overhead of logging
practices. They recommended runtime log placements by seeking a balance between
informativeness and overhead. 2) What to log. This problem concerns what variables
should be output in one log statement. LogEnhancer detected uncertainty variables
through back-slicing and constraint solving and appended them to log statements . 3)
How to log. This problem is about improving quality of logging code. Chen and Jiang
(2017b) summarized six anti-patterns from historical log revisions, and detected logging
code that belongs to anti-patterns. We diverge from this work as we automatically mine
rules from evolution history instead of manually summarizing anti-patterns. Li et al.
(2017) identified whether new commitments require log modifications to reduce after-
thought updates. They mined the correlation between log revisions and other revisions,
while we aim to mine the correlation between logging context and modifications from log
revisions. Hassani et al. (2018) designed and implemented four checkers to detect log-
related issues automatically, including typo in static content, incorrect log level guard,
missing log statements. Essentially speaking, this work depended on statistical informa-
tion summarized from single version of source code, while LogTracker aims to guide log
revisions with knowledge implicated in software evolution.

Detecting and Managing Code Clones In order to resolve code smell and improve code
practices, researchers have proposed many clone detection and management techniques.
Among clone detection tools, CCFinder (Kamiya et al. 2002) and CPMiner (Li et al.
2004) detected code clones with token vectors that are generated by lexical parser.
DECKARD (Jiang et al. 2007), DECKARD+ and CloneDetective (Juergens et al. 2009)
detected code clones with features that are generated by syntactical structures. Among
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clone management tools, SysEdit (Meng et al. 2011) generated systematic edits by learn-
ing from historical modifications on clone code. It recommended how to modify code,
but cannot locate where to be modified. LASE (Meng et al. 2013) automatically located
and applied systematic edits by learning from at least two historical modifications on
clone code. The algorithm of describing code context in LASE depended on syntacti-
cal structures, and could not accurately describe the semantics of logging context (see
examples in Fig. 9a and b). Thus, it is difficult to predict systematic log revisions with
LASE. REFAZER (Rolim et al. 2017) utilized program synthesis (Polozov and Gulwani
2015) to automatically locate and generate systematic edits by learning from historical
modifications. Without consideration of code context, REFAZER is hard to recommend
systematic log revisions. Although above researches on clone detection and manage-
ment could not successfully handle context-similar logging code, they have motivated
our design of LogTracker which makes a step toward solving this problem.

8 Conclusions

Despite the importance of log messages, it is difficult to reach good logging practices. This
is mainly caused by two reasons. First, there are no well-established specifications on reach-
ing good logging practices. Second, logging code evolves with bug fixes or feature updates
during software evolution. Due to the bad logging practices, several log revisions may be
missed by developers. Related works mainly targeted at the first reason and ignored the
impacts of software evolution on logging code.

To fill this gap, we propose to learn log revision proactively from software evolution. We
first conduct an empirical study on 12 open-source projects which figures out that logging
code with similar logging context deserves similar modifications. This finding motivates the
design and implementation of LogTracker. With an enhanced modeling of logging context,
LogTracker is able to guide intricate log revisions that cannot be handled by existing tools.
In addition, for better instruction on log revisions, we provide syntactical modifications for
each candidate code snippet. The experiments turn out that LogTracker is able to predict
17.3% to 36.0% historical log revisions and correctly generates 86.4% of candidate log
modifications. When applying LogTracker to the latest version, it successfully detects 369
instances of log revisions. Up to now, 79 log revisions were posted and 52 have already been
accepted.
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