
Tuning Backfired? Not (Always) Your Fault
Understanding and Detecting Configuration-Related Performance Bugs

Haochen He

National University of Defense Technology

Changsha, China

hehaochen13@nudt.edu.cn

ABSTRACT

Performance bugs (PBugs) are often hard to detect due to their non

fail-stop symptoms. Existing debugging techniques can only detect

PBugs with known patterns (e.g. inefficient loops). The key reason

behind this incapability is the lack of a general test oracle. Here, we

argue that the configuration tuning can serve as a strong candidate

for PBugs detection. First, prior work shows that most performance

bugs are related to configurations. Second, the tuning reflects users’

expectation of performance changes. If the actual performance be-

haves differently from the users’ intuition, the related code segment

is likely to be problematic.

In this paper, we first conduct a comprehensive study on config-

uration related performance bugs(CPBugs) from 7 representative

softwares (i.e., MySQL, MariaDB, MongoDB, RocksDB, PostgreSQL,

Apache and Nginx) and collect 135 real-world CPBugs. Next, by fur-

ther analyzing the symptoms and root causes of the collected bugs,

we identify 7 counter-intuitive patterns. Finally, by integrating the

counter-intuitive patterns, we build a general test framework for

detecting performance bugs.

CCS CONCEPTS

• Software and its engineering→ Software performance.

KEYWORDS

performance bugs detection, configuration, empirical study

ACM Reference Format:

Haochen He. 2019. Tuning Backfired? Not (Always) Your Fault: Under-

standing and Detecting Configuration-Related Performance Bugs. In Pro-

ceedings of the 27th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),

August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3338906.3342498

1 INTRODUCTION

Performance bugs (PBugs) are notorious for their severe impacts

on user experiences and financial losses [6]. However, unlike crash

bugs (e.g. stack overflow), performance bugs usually only cause

slowdowns, thereby hard to be captured or logged. As a result, it can

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5572-8/19/08.

https://doi.org/10.1145/3338906.3342498

MySQL #21727

Description: A query of the type: "SELECT a, b, (SELECT x
FROM t2 WHERE y=b ORDER BY z DESC LIMIT 1) c FROM
t1" will get much slower as sort_buffer_size is increased.
Related Configuration: sort_buffer_size(Session that

needs to perform a sort will be allocated a buffer with this

amount of memory.)

Root Cause: Allocation of memory for the sort buffer at each

evaluation of a subquery may take a significant amount of time

if the buffer is rather big.

In this case, memory accesses are implemented with compli-

cated address manipulation (e.g. system calls and address calcu-

lations), and the bug only manifest under large configuration

vales (sort_buffer_size).

Figure 1: A CPBug in MySQL

be difficult to expose PBugs via conventional testing approaches

(e.g., unit test).

Previously, two groups of works have made significant progress

in understanding and fixing PBugs [3, 7–10]. The first group focuses

on using profiling tools to identify test input with notable time

consumption (e.g., GA-Prof [3]). The other group checks suspicious

code patterns or memory accesses to detect potential PBugs (e.g.,

LDoctor [8], LOADSPY [9], Toddler [7], [10]). While effective, both

approaches do not offer general detection methodology due to their

limited scopes. For instance, as shown in Figure 1, this MySQL

bug [1] may not necessarily be sensitive to inputs nor does it exist

certain code or memory access patterns.

In this paper, we argue that configuration tuning can be lever-

aged as a general test oracle for detecting PBugs. First, recent stud-

ies [4] suggest that more than half (59%) of performance bugs can

be related to configurations. This implies the potentials of using

configurations to trigger latent PBugs. Second, when tuning the

configuration, users usually have expectations of the possible per-

formance changes. For instance, relaxing the ACID (Atomicity, Con-

sistency, Isolation and Durability) requirement of database should

at least maintain the performance, if not better. If, however, the

actual performance is against the expectation, it is possible that a

PBug exists in the related code segment [2]. Finally, modern soft-

wares are often equipped with rich amount of configurations which

indicates a wide coverage of the code segments.

Therefore, to validate practicality of using configuration tuning

as PBug test oracle, we first conduct an extensive PBug study on 7

well-maintained softwares including MySQL, MariaDB, MongoDB,

RocksDB, PostgreSQL, Apache and Nginx. Through the study, we

collect 135 Configuration-related Performance Bugs (CPBugs) from

the field. Then, by further analyzing collected CPBugs, we conclude

7 counter-intuitive CPBugs patterns and two findings regarding the

1229

https://doi.org/10.1145/3338906.3342498
https://doi.org/10.1145/3338906.3342498
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3338906.3342498&domain=pdf&date_stamp=2019-08-12


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Haochen He

root causes and triggering conditions. Based on our observations,

we propose our CPBug test framework, CP-Detector.

2 METHODOLOGY

Here, we refer configuration related performance bugs (CPBugs)

to both performance bugs caused by misconfigurations and ones

that can be manifested under specific configurations. We study 7

performance critical and highly-configurable softwares: MySQL,

MariaDB, MongoDB, RocksDB, PostgreSQL, Apache httpd and Ng-

inx, as shown in Table 1. These softwares have already been widely

used by existing performance bug characteristic studies [4, 5].

Table 1: Applications and bugs used in the study

Category Application Studied bugs

Database

MySQL Server 31

MariaDB Server 32

MongoDB Server 42

PostgreSQL 4

RocksDB 5

Web Server

Apache httpd 21

Nginx 1

Total 135

We first sift through the titles of issues and the software changel-

ogs using heuristic keywords filtering. Then, for each confirmed

bug, we further investigate the discussion and bug reports to iden-

tify the symptoms, triggering conditions, root causes and possible

fixes. Note that we only select bugs that are either confirmed or

already fixed by the developers.

By manually analyzing the collected information, first, we want

to figure out the relation between CPBugs’ symptoms and users’

expectation of tuning the configurations, thereby verifying if the

configuration intuitions(i.e. users’ expectations of the performance

changes in the configuration tuning process) can be further de-

signed to test oracle. Second, we want to understand why these

CPBugs happen and further answer if we can obtain general root

cause features to detect CPBugs. Third, we want to find out insights

to help us further build up a tool to detect real-world CPBugs.

3 CHARACTERISTIC STUDY RESULTS

We conclude 3 main findings from the results:

Finding 1: Configuration intuitions can be designed to test

oracle. As shown in Table 2, we conclude 7 counter-intuitive pat-

terns according to the configuration intuitions. The bug case in Fig-

ure 1 falls in the Resource Abuse because allocating more resource

results in worse performance.

Finding 2: Root causes of CPBugs varies. The studied CP-

Bugs is caused by manifold reasons including redundant opera-

tions(38%), configuration design issues(19%) , contention issues(18%),

and other problems(25%). Existing methods can only detect certain

kinds of PBugs (e.g. PBugs caused by redundancies [8]) because of

lacking general root causes features. Hence, this finding motivates

us to detect general PBugs by exposing them via testing rather than

straightly locating them in source codes.

Table 2: 7 counter-intuitive patterns

Patterns Description Cnt. %

Resource

Abuse

Allocating more resource re-

sults in worse performance.

21 16%

Ineffective

Tradeoff

Sacrificing reliability does not

result in better performance.

18 13%

Useless

Optimization

Turning on optimization

makes performance worse.

17 12%

Unexpected

Loss

Tuning performance insensitive

options degrades performance.

12 8%

More-than-

expected Loss

Opening a functional option

leads to too bad performance.

41 26%

Unnecessary

Waiting

A timeout is always triggered in

normal runs.

13 10%

Low

Parallelism

Jobs are implemented in single

thread in Multi-core CPU.

4 2%

Others

CPBugs that have no relationship

with configuration intuitions.

6 3%

Total 135

Finding 3: Nearly half(44%) of CPBugs can be triggered by

benchmark tools.This result is obtained bymanually reproducing

43 CPBugs using benchmark tools (e.g. sysbench, ab).

4 DETECTING CPBUGS

Based on the findings above, we propose CP-Detector, an ap-

proach to detect configuration related performance bugs via config-

uration variation. Overview of CP-Detector is shown in Figure 2.

Figure 2: Overview of CP-Detector. Each test case contains one

configuration option and a set of relevant workloads. If the results of

running certain workload violate the oracle during the configuration

variation, CP-Detector report it as a bug.

CP-Detector uses benchmark tools to generate workloads and

conducts performance tests under different values of target config-

urations. Previous study [4] has shown 72% of CPBugs are related

to only one configurations. Hence, each test case contains only

one configuration. Note that the intuitions (e.g. allocating more re-

sources won’t hurt performance) of the target configuration should

be given in advance (dashed line).

We randomly select 10 CPBugs from 43 reproduced ones, and

use CP-Detector to detect them. The result shows that our CP-

Detector can successfully detect 4 of them. The remained 6 escape

because CP-Detector is not able to generate their necessary work-

loads. Future work lies on detecting real-world CPBugs.

1230



Tuning Backfired? Not (Always) Your Fault ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] Mysql bug 21727. https://bugs.mysql.com/bug.php?id=21727.

[2] Mysql bug 77094. https://bugs.mysql.com/bug.php?id=77094.

[3] Du, S., Qi, L., Poshyvanyk, D., and Grechanik, M. Automating performance

bottleneck detection using search-based application profiling. In International

Symposium on Software Testing & Analysis (2015).

[4] Han, X., and Yu, T. An empirical study on performance bugs for highly con-

figurable software systems. In Proceedings of the 10th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (New York, NY,

USA, 2016), ESEM ’16, ACM, pp. 23:1–23:10.

[5] Jin, G., Song, L., Shi, X., Scherpelz, J., and Lu, S. Understanding and detecting

real-world performance bugs. In Proceedings of the 33rd ACM SIGPLAN Conference

on Programming Language Design and Implementation (New York, NY, USA, 2012),

PLDI ’12, ACM, pp. 77–88.

[6] Mayer, M. A 500 ms latency increase could cause 20% traffic loss for google.

http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf.

[7] Nistor, A., Song, L., Marinov, D., and Lu, S. Toddler: Detecting performance

problems via similar memory-access patterns. In 2013 35th International Confer-

ence on Software Engineering (ICSE) (Los Alamitos, CA, USA, may 2013), IEEE

Computer Society, pp. 562–571.

[8] Song, L., and Lu, S. Performance diagnosis for inefficient loops. In Proceedings

of the 39th International Conference on Software Engineering (Piscataway, NJ, USA,

2017), ICSE ’17, IEEE Press, pp. 370–380.

[9] Su, P., Wen, S., Yang, H., Chabbi, M., and Liu, X. Redundant loads: A software

inefficiency indicator. In Proceedings of the 41th International Conference on

Software Engineering (2019), ICSE ’19.

[10] Yang, J., Yan, C., Subramaniam, P., Lu, S., and Cheung, A. How not to structure

your database-backed web applications: A study of performance bugs in the wild.

In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)

(May 2018), pp. 800–810.

1231


	Abstract
	1 Introduction
	2 Methodology
	3 characteristic study results
	4 Detecting CPBugs
	References

