Check for
Updates

Automatically Detecting Missing Cleanup for Ungraceful Exits

Zhouyang Jia*
Shanshan Li
College of Computer Science,
National University of Defense
Technology, China
{jiazhouyang,shanshanli}@nudt.edu.cn

ABSTRACT

Software encounters ungraceful exits due to either bugs in the in-
terrupt/signal handler code or the intention of developers to debug
the software. Users may suffer from "weird" problems caused by
leftovers of the ungraceful exits. A common practice to fix these
problems is rebooting, which wipes away the stale state of the
software. This solution, however, is heavyweight and often leads
to poor user experience because it requires restarting other normal
processes. In this paper, we design SafeExit, a tool that can automat-
ically detect and pinpoint the root causes of the problems caused
by ungraceful exits, which can help users fix the problems using
lightweight solutions. Specifically, SafeExit checks the program
exit behaviors in the case of an interrupted execution against its
expected exit behaviors to detect the missing cleanup behaviors
required for avoiding the ungraceful exit. The expected behaviors
are obtained by monitoring the program exit under a normal execu-
tion. We apply SafeExit to 38 programs across 10 domains. SafeExit
finds 133 types of cleanup behaviors from 36 programs and detects
2861 missing behaviors from 292 interrupted executions. To predict
missing behaviors for unseen input scenarios, SafeExit trains pre-
diction models using a set of sampled input scenarios. The results
show that SafeExit is accurate with an average F-measure of 92.5%.

CCS CONCEPTS

« Software and its engineering — Software reliability; Soft-
ware testing and debugging; Dynamic analysis.

KEYWORDS

Ungraceful exit, Software signal, Missing cleanup

ACM Reference Format:

Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, and Ji Wang. 2019.
Automatically Detecting Missing Cleanup for Ungraceful Exits. In Pro-
ceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26-30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338938

*Also with Department of Computer Science, University of Kentucky, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 19, August 26-30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5572-8/19/08...$15.00
https://doi.org/10.1145/3338906.3338938

Tingting Yu
Department of Computer Science,
University of Kentucky, USA
tyu@cs.uky.edu

751

Xiangke Liao
Ji Wang
College of Computer Science,
National University of Defense
Technology, China
{xkliao,wj}@nudt.edu.cn

Normal execution (Graceful exit)

I

Signals, Hardware failures

Interrupted execution (Graceful exit) i

I

Signals, Hardware failures

Interrupted execution (Ungraceful exit)

Figure 1: Different types of executions and exits.

1 INTRODUCTION

An interrupted execution is defined as a program execution inter-
rupted by a software signal (e.g., a sigterm signal issued by a user or
a sigsegv signal triggered by a program bug) or a hardware failure
(e.g., power off). This is different from a normal execution, where the
program terminates naturally without experiencing an internal or
external abnormal event. A graceful exit is the ability to terminate
the program at the end of interrupted execution, leaving the system
in a consistent state. To achieve this, programs usually perform
some cleanup behaviors at the exit stage, such as terminating chil-
dren processes, releasing resources, and writing state files. Graceful
exit is advocated in many operating systems, because if it is not
correctly done, the consequence would be data corruption of pro-
gram and operating system files, which can negatively impact the
stability or the correctness of the system. In contrast, an ungrace-
ful exit represents a program exit under an interrupted execution
and that the program does not perform any or part of the cleanup
behaviors. Figure 1 illustrates the types of executions and exits.
An ungraceful exit can be caused by 1) software bugs in signal
handlers, in which developers do not correctly clean up the system
state; 2) developers intentionally retain certain system resources
(e.g., processes) after program terminations in order to attach a
debugger or collect important information, such as a core dump or
stack trace, for diagnosing the software failure [43]; 3) hardware
failure, which means the program has no chance to clean up. In any
case, users may suffer from "weird" problems due to the ungraceful
exits. Taking Nginx [28], a server program, as an example, if a fatal
error (e.g., dereference of a null pointer) happens in its main process,
Nginx will exit ungracefully because the children processes are not
cleaned up and thus become orphan processes. As a result, users
may encounter the following problems: 1) Nginx and any other web
server using the same networking port fail to start because the port
is occupied by an orphan process; 2) Nginx fails to stop because
the main process does not exist anymore. We refer to the problems

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3338906.3338938&domain=pdf&date_stamp=2019-08-12

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

caused by ungraceful exits (UE) as UE problems. To fix UE problems,
the most common advice from technical supporters is rebooting the
computer [27, 35, 36]. This is because a reboot wipes away the stale
state of the software [20, 21]. However, sometimes simply rebooting
the computer may still not fix the problems, such as when files are
left inconsistent in the computer’s hard drive during an ungraceful
exit [17]. In these cases, a "hard reset" is required — users have to
reset the computer to its factory default state or even reinstall the
operating system.

The above solutions (e.g., reboot, reset) to UE problems are often
heavyweight and thus lead to poor user experience, because other
normal processes have to restart at the same time, especially for the
server programs, such as web servers or database servers [32]. The
main reason for using the heavyweight solutions is that users do not
understand the cause of the problems and thus not able to fix them
specifically. For example, to fix the UE problems of Nginx, instead
of rebooting the operating system, users can manually kill the
orphan processes if they know where the root cause is. Therefore,
techniques on identifying the causes of UE problems are needed.

There has been much research on addressing problems involving
software interruptions or hardware failures. For examples, many
techniques are targeted at studying and detecting exception han-
dling bugs [3, 5, 8, 10, 14, 18, 29-31, 41, 42], such as checking if
an exception handler is correctly implemented with respect to the
specification. However, these techniques cannot detect UE prob-
lems that may or may not be handled by exception handlers. There
have been some works focusing on preventing and detecting per-
sistency bugs in storage systems, such as file systems and database
systems [1, 6, 7, 11, 16, 38, 45, 46]. For example, if a storage system
crashes during the process of writing data, the system has to care-
fully roll back the operation to avoid data corruption. However, roll-
back aims to recover the data in storage system but does not target
at cleaning up the system state in the case of ungraceful exit. Other
works have studied the crash recovery mechanism [12, 13, 15, 39],
especially in distributed systems, such as recovering failed nodes.
These techniques target at addressing problems during system re-
covery, but not the exit of programs.

In this paper, we design and implement SafeExit, a tool that can
automatically detect and pinpoint the root causes of UE problems,
which can help users to fix the problems with lightweight solutions
without having to reboot the system. SafeExit focuses on detecting
and localizing UE problems instead of recovering the system or
rollback. The key insight of SafeExit is to check the program exit
behaviors in the case of an interrupted execution against expected
exit behaviors. A behavior consists of a sequence of system calls
because a program interacts with the operating system through
system calls, which can change the state of the system and influ-
ence other programs. We assume that the expected exit behaviors
can be obtained by monitoring the behaviors of the program exit
in a normal execution (i.e., an execution without interrupts). The
intuitions are that 1) developers often carefully test the program
under normal execution, and 2) it does not require reserving system
resources for debugging under normal execution. Thus, we assume
all necessary cleanup operations are performed when a program
exits normally. For example, when Nginx exits normally, the main
process will notify its children processes, who will stop listening
to the 80 port and exit, then the main process deletes the nginx.pid

752

Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, and Ji Wang

file and exits. Finally, any inconsistencies between the actual and
expected behaviors are reported as the causes of UE problems.
SafeExit involves two phases: offline learning and online moni-
toring. Given a program, the offline learning phase first generates a
diverse set of input scenarios (i.e., combinations of configuration
options and workload values). For each input scenario, SafeExit
obtains one normal execution and multiple interrupted executions
by simulating different interruption triggers (e.g., a particular soft-
ware signal). From each normal and interrupted execution, SafeExit
traces its exit state and extracts the cleanup behaviors from the
trace. After that, SafeExit selects the expected behaviors for each in-
terrupted execution from the behaviors of the normal execution. It
then compares the actual and expected behaviors of the interrupted
execution to determine if any missing behaviors are detected. The
output of the comparison is a behavior vector in a binary format,
where each element in the vector indicates a normal behavior. The
behavior vector is initialized with all zero values and whenever a
missing behavior for a particular interrupted execution is detected,
the corresponding behavior is set to 1. Therefore, SafeExit learns
a behavior vector for each interrupted execution. Finally, SafeExit
builds a prediction model, which can predict the missing cleanup
behaviors for an unseen input scenario and an interruption trigger.
In the online monitoring phase, SafeExit is deployed in the pro-
duction environment, such that given a real input scenario. SafeExit
monitors the state of the target program, and once an interruption
is detected, it predicts if an ungraceful exit occurs and reports the
missing cleanup behaviors to users. Based on the reported behav-
iors, users can manually clean up the system state (e.g., delete a file,
change an option, or kill a process) without rebooting the system.
To evaluate SafeExit, we conduct experiments on 38 widely used
programs from 10 software domains. All programs are open source,
mature, active and written in C/C++. The results showed that Safe-
Exit identifies 133 types of cleanup behaviors from the normal
executions of 36 programs under default configurations, while 2
programs do not perform any cleanup behavior when exiting nor-
mally. Next, SafeExit simulates 12 interruption triggers for the 36
programs (i.e., 432 interrupted executions), and detects 2861 miss-
ing behaviors from 292 interrupted executions. The results also
showed that SafeExit is effective and efficient in training prediction
models for detecting missing cleanup behaviors in ungraceful exits
given unseen input scenarios. On average, it samples only 93.2
input scenarios in the learning phase and achieves 92.5% accuracy
in terms of F-measure.
In summary, the contributions of this paper are as follows:

e We conduct the first research to define and study ungraceful
exit (UE) problems. The study builds a taxonomy of cleanup
behaviors, which helps people better understand UE prob-
lems and design tools to handle them.

e We design and develop SafeExit, an automated tool to de-
tect ungraceful exits and pinpoint the root causes of the UE
problems. SafeExit provides lightweight solutions for users
to fix UE problems.

e We evaluate SafeExit on 38 widely-used programs from 10
software domains. The results show that SafeExit is effective
and efficient in detecting and predicting missing behaviors
in ungraceful exits.

Automatically Detecting Missing Cleanup for Ungraceful Exits

$ sudo nginx
nginx: [emerg] bind() to *ip*:80 failed (98: Address already in use)

$ sudo nginx -s quit
nginx: [alert] kill(*pid*, 3) failed (3: No such process)

Figure 2: Users could neither start nor stop Nginx, after a
fatal signal is issued to the main process.

2 UNGRACEFUL EXIT PROBLEM

In this section, we first present two illustrative examples, then
introduce preliminaries and definitions of UE problems.

2.1 Ilustrative Examples

The first example is Nginx [28], a popular open-source web server.
When a fatal-bug signal (e.g. sigill, sigbus, sigfpe, sigsegv) is issued
to the main process, it causes an ungraceful exit. Specifically, a
few orphan processes are left when the program terminates. As a
consequence, users could neither start nor stop Nginx. As shown
in Figure 2, Nginx fails to start since the port is used by the orphan
processes and fails to stop since the main process does not exist
anymore. At the same time, any other web server using the same
port will fail to start too. To fix these problems, users need to restart
the operating system, or kill the orphan processes manually.

Another example is an industrial proxy program. The program
turns on a system configuration option, i.e., SOCKS Proxy, at the
startup stage. In a normal execution, the program will turn off
this option at the exit stage. But when the program is killed by
users through the system monitor (this often happens when users
suffer from performance issues), the option will still be "on", and
the operating system will be in a corrupted state. As a result, users
cannot access the Internet anymore. To fix this problem, users
can either set the configuration option back to "off", or reset the
computer to its factory default state. The problem is with the files
on hard drive, thus can not be fixed by restarting.

For problems in both examples, users can solve them by restart-
ing the computer or resetting the computer to its factory default
state. At the same time, however, the problems can also be solved
by simply killing some processes or changing a configuration op-
tion. The latter solutions are obviously more lightweight for users
compared with the former ones. Motivated by these examples, we
design an automated tool that pinpoints the root causes of the prob-
lems caused by ungraceful exits, and helps users to fix the problems
with lightweight solutions.

SafeExit’s solution. In the case of Nginx, SafeExit first gener-
ates a set of input scenarios for Nginx. Each scenario contains a
combination of configuration options (e.g., worker_processes) and
workload values (e.g., http request). For each input scenario, Safe-
Exit uses the command "nginx -s quit" to get the normal execution,
and uses software signals (e.g., sigsegv, sigterm, sigkill) to trigger
the interrupted executions. SafeExit then extracts exit behaviors
from the normal execution (e.g., deleting pid file and terminating
children processes) as the expected behaviors. For each interrupted
execution, SafeExit selects the expected behaviors from the normal
behaviors according to the interruption trigger (i.e., software signal).
After that, SafeExit extracts exit behaviors from the interrupted

753

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 1: Category of interruption triggers.

Category Interruption triggers

SIGILL, SIGABRT, SIGBUS, SIGFPE,

Fatal bug SIGSEGY, SIGPIPE, SIGXCPU, SIGXFSZ

User termination | SIGHUP, SIGINT, SIGQUIT, SIGTERM

Non-term. signal | SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOT, SIGCHLD

SIGKILL, kernel panic, hard restart,

Hard exit .
ard ext hardware failure, power failure

SIGTRAP, SIGUSR1, SIGUSR2, SIGALRM,

Other signal | ¢/ ~VTALRM, SIGPROF, SIGPOLL

execution, and compares them against the expected ones. For each
input scenario and each interruption trigger, SafeExit outputs a vec-
tor of missing behaviors. Finally, SafeExit builds a prediction model,
in which the features are the input scenarios and the interruption
triggers and the labels are the missing behavior vectors.

Challenges. There are three main challenges in the design of
SafeExit. First, it is non-trivial to extract the cleanup behaviors
from a system-call trace, since one behavior may consist of multiple
system calls, and there can be a number of noisy system calls. To
address this challenge, we use a combination of static and dynamic
approach. Specifically, SafeExit first extracts dynamic system-call
sequences according to the resources used by the calls then clusters
sequences according to static source-code semantics.

The second challenge is that program behaviors are often affected
by environments, such as configurations and workloads. SafeExit
needs to predict the missing behaviors in production environments.
In this regard, we apply machine learning techniques to predict the
missing behaviors for an unseen input scenario.

Third, the expected behaviors of an interrupted execution may
not be exactly the same as the ones in a normal execution. SafeExit
has to select the necessary behaviors in interrupted executions.
To achieve this, we study real-world cleanup behaviors from 38
programs and build a taxonomy (Section 3), which helps to design
heuristic rules for selecting expected behaviors.

2.2 Triggers of Program Interruptions

An interruption can be triggered by various reasons, which often
require different cleanup behaviors at the exit stage. These triggers
can be summarized into five categories: 1) Fatal bug, e.g., derefer-
ence of a null pointer. The operating system notifies programs of
the bugs in the form of signals; 2) User termination, e.g., an user
input ctrl+c will lead to a sigint signal; 3) Non-termination signal.
The signals that do not terminate the programs, e.g., sigstop; 4)
Hard exit, which means the exit situation can not be handled by
programs, e.g., hard restart or sigkill signal; 5) Other signal, signals
for specific purposes, e.g., sigtrap is often used for debug, while si-
gusrl is used for program-specific purpose. Table 1 shows different
types of triggers. SafeExit focuses on the types of user termination,
fatal bug and hard exit. The other types of triggers do not require
cleanup because the other signals are issued for specific purposes,
while the non-termination signals will not terminate the programs.

For interruptions caused by user terminations and hard exits,
a program can use the exit behaviors of its normal execution to
clean up the stale states. Suppose the stale state set at the time of
interruption is S, and the exit behavior set of the normal execution is

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, and Ji Wang

Table 2: Taxonomy of cleanup behaviors.

ID Behavior type Abbreviation Impact of missing behavior Fix advise

1 Delete PID filef D-PID The users or other programs believe the program is still running Delete the .pid file

2 Delete sock/fifo files D-SOCK The next startup may fail since failing to create the file Delete the files

3 Delete temp file’ D-TMP The silent consuming of disk resource Delete the temp file

4 Delete shared memory" D-SHM The silent consuming of memory resource Delete the shared memory
5 Delete lock file" D-LCK The other programs may fail since failing to obtain the lock Delete the lock file

6 Unlock lock file U-LCK The next startup may fail since failing to obtain the lock Unlock the lock file

7 Kill child process’ K-CHLD The child process does not properly exit and consumes resources Kill the child process

8 Write program config file W-PCFG The program config is in corruption state Change the program config
9 Write system config filet W-SCFG The system config is in corruption state Change the system config
10 Write program state file W-PSTAT The next startup may encounter feature failures Delete the state file

11 Write system state file" W-SSTAT The other programs may encounter feature failures Warning

12 Write log filef W-LOG The log file is incomplete, affecting users or log analyzing tools Warning

13 Sendmsg to child process S-CHLD The target process may fail Warning

14 Sendmsg to other program’ S-PROG The target program may fail Warning

15 Sendmsg to network socket! S-NET The target socket may fail Warning

T Cleanup behaviors of this type can potentially affect other programs or the operating system.

B. If we assume that a normal exit command is issued at the time of
interruption, the behavior set B is enough to clean up the state set S.
Therefore, we regard the exit behaviors of the normal execution as
expected behaviors of user-termination and hard-exit interruptions.
For user-termination interruptions, we also need to extract their
actual behaviors, which are used to compare against the expected
behaviors. For hard-exit interruptions, the expected behaviors are
regarded as missing behaviors directly, since the program can not
handle these interruptions.

For interruptions caused by fatal bugs, we can not regard the exit
behaviors of the normal execution as expected behaviors, since the
program is in an error and unknown state at the time of interruption.
For example, a database program may sync its data in the exit stage
of a normal execution. When fatal bugs happen, the data may be
corrupted and should not be synced. In this regard, we need to
select necessary behaviors from the exit behaviors of the normal
execution as expected behaviors of fatal-bug interruptions.

2.3 Definitions

For the ease of presenting the design of SafeExit, we introduce some
key concepts that will be used throughout the rest of the paper.

Normal/interrupted execution. A normal execution (NE) is a
program execution ended with a normal exit, such as clicking an
exit button of a graphical user interface (GUI) program, or issuing
an exit command of a command line interface (CLI) program. In
contrast, an interrupted execution (InE) is ended by one of the trigger
listed in Table 1. An InE can be either graceful or ungraceful.

Normal/interrupted trace. A trace is the sequence of system
calls of a program execution. A normal trace (NT) is from a NE,
while an interrupted trace (InT) is from an InE.

Normal/interrupted behavior. A behavior is a sequence of
syscall calls that are together to perform a high-level task. A normal
behavior (NB) is a sub-sequence of a NT, while a interrupted behavior
(InB) is a sub-sequence of an InT.

3 EXPECTED CLEANUP BEHAVIORS

To detect ungraceful exits and localize their root causes, we need
to obtain the expected behaviors at the exit states of interrupted

754

executions. As discussed in Section 2.2, interrupted executions may
require different cleanup behaviors at the exit stages according to
the categories of the interruption triggers. For interrupted execu-
tions triggered by user terminations and hard exits, SafeExit uses
all cleanup behaviors of the normal execution as expected behav-
iors. For interrupted executions triggered by fatal bugs, SafeExit
select the expected behaviors from the cleanup behaviors of the
normal execution. We use the following heuristic rule to determine
the expected behaviors — in fatal-bug cases, the program at least
cannot affect other programs or the operating system. According
to this rule, SafeExit needs to select the behaviors that can poten-
tially affect other programs or operating system as the expected
behaviors.

To achieve this, we study the real-world cleanup behaviors and
classify them into different types. These behavior types are defined
once and broadly applicable to any interrupted executions. Then,
we manually select the behavior types that can potentially affect
other programs or operating system. Finally, SafeExit automatically
classifies each normal behavior into one of the types. The behaviors
belong to the selected types will be regarded as expected behaviors
for fatal-bug executions.

The target programs of the study include 38 widely used real-
world programs across 10 software domains. The programs have
different types, i.e., GUI and CLI server and client. All programs are
open source, mature (about 10 years or longer development history),
active (released in the last year, committed in the last month), and
written in C/C++. The full list is shown in Table 4. The process to
automatically extract cleanup behaviors is in Section 4.1.3.

We totally summarize 15 behavior types according to their sys-
tem calls and resource types. The result is shown in Table 2, as well
as their impact and fix suggestions. For example, a program may
delete a PID file (Type 1) or send a message to the Xorg daemon
(Type 14) at its exit stage. We find 10 out of the 15 types can po-
tentially affect other programs or operating system. For example,
if a program fails to delete the PID file when exits, users or other
programs may believe the program is still running (Type 1). If a
program does not kill its children processes properly, the processes
would still occupy the system resources (Type 7).

Automatically Detecting Missing Cleanup for Ungraceful Exits

Algorithm 1 Pseudo-code of learning prediction models.

Require: input scenario variables V, interruption triggers I, taxonomy of
cleanup behaviors T

Ensure: M (MsB) «— Sx1I
1: S = SamplesInputScenario(V)
2: for each iin [1, |S|] do
3 NT; = TraceSystemCall(S;, NULL)
4 N B; = ExtractBehaviorsFromTrace(N T;)
5: for each jin [1, |I|] do
6 InT; j = TraceSystemCall(S;, I;)
7 InB;, ;j = ExtractBehaviorsFromTrace(InT;, ;)
8 end for
9: end for

1. UNB=NB,UNB,U...UNBs

11: for each i in [1, |S|] do

12: for each jin [1, |I|] do

13: ExB;,; = FilterExpectedBehaviors(N B;, I, T)

14: MsB; j = [0,0, .., 0], where [MsB; ;| = [UNB]|
15: for each k in [1, [UNB|] do

16: if UNBy € ExB; jand UNBy ¢ InB; ; then
17: MSBi,j[k'] =1

18: end if

19: end for

20: end for

21: end for

22: M = TrainPredictionModel(S X I, MsB; ;)

4 SAFEEXIT APPROACH

SafeExit contains two phases: offline learning, and online monitor-
ing. The first phase trains a missing behavior predictor that given
an input scenario, it can predict if an ungraceful exit occurs, as
well as the missing behaviors. In the second phase, the predictor is
deployed in the production environment to monitor the exit state
of an interrupted execution for detecting ungraceful exit and its
root cause (i.e., the missing behaviors).

4.1 Learning Prediction Models

In the first phase, SafeExit trains prediction models to predict un-
graceful exit and the associated missing behaviors with respect to
an input scenario and a particular trigger of interrupted execution
(e.g., SIGINT). The input scenario is modeled as <C, W, U>, where
C is a list of configuration options, W contains the workload values,
and U includes user input parameters.

Algorithm 1 summarizes the main steps of training prediction
models. To build the dataset for training, SafeExit first generates
a set of input scenarios S using a well-known N-wise sampling
method [44] (Line 1). It then runs each input scenario S; against
the program to collect a system call trace NT; at the exit stage of
the normal execution and extracts the normal cleanup behaviors
NB; (Lines 3-4). Next, for each interrupted execution with respect
to a signal type I; (e.g., SIGINT), SafeExit collects a system call
trace InT;,; at the exit state and extracts its interrupted cleanup
behaviors InB; j (Lines 5-8). SafeExit obtains a list of union cleanup
behaviors UNB from normal executions for all input scenarios.

After that, by using the taxonomy of cleanup behaviors (Sec-
tion 3), SafeExit extracts the expect behaviors (ExB) for each inter-
rupted execution with respect to an input scenario and a trigger

755

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Union Train decision tree;

Inqu Nomal normal Output
scenarios behaviors behaviors vector S, &I, > MsB,,[1]
S, &L, > MsB,[1]
(s J--+{NB,.NB, B e Sy &I; > MsBy,[1]
NBj }----] S, & I, = MsB,,[1]

Figure 3: Overview of the prediction model.

Train decision trees
S| &1, MsB,,[5]
S| &1, MsB,,[5]
S, & I;> MsBy [5]
S, & I, MsB,[5]

(Line 13). For each behavior in UNB, it will be regarded as a miss-
ing behavior (MsB) for the input scenario and the trigger, if it is
their expected behavior, and does not appear in the corresponding
interrupted behaviors (Lines 14-17). Finally, SafeExit collects the
variables of the input scenario and interruption triggers as features,
and the missing behavior vector as labels. The dataset is fed to deci-
sion trees implemented by scikit-learn [33] (Line 22). The overview
of the prediction model is shown in Figure 3. Each bit of the output
vector indicates a normal behavior, and SafeExit will train [UNB|
decision trees in total.

4.1.1 Input Sampling. The input scenario of a program contains
configuration options, workloads values and user input parameters.
An exhaustive search of all combinations of these variables will
lead to an exponential explosion problem. To avoid this, we sample
the combinations of the input variables. There are two factors that
will affect the sampling process: 1) the sampling method; 2) the
sampling density of one variable.

Sampling method. In combinatorial sampling, a well-known
method is pair-wise (or 2-wise) sampling. For each pair of input
parameters, the method uses carefully chosen samples to test all
possible combinations of those parameters. Similarly, N-wise sam-
pling can be considered as the generalized form of pair-wise sam-
pling [44]. We will compare different sampling methods in Sec-
tion 5.2, and apply the optimal method in SafeExit.

Sampling density of one variable. For integer-type variables,
SafeExit needs to sample certain values instead of enumerating
all possible values (e.g., the number of HTTP request may range
from 1 to 50000). The sampling density can also affect the predicting
accuracy and training efficiency. In this regard, we evaluate different
sampling density in Section 5.2, and apply the optimal parameter
in SafeExit.

The sampling process is implemented by the pict [26] tool. Users
need to provide the input variables and their value ranges. Users can
also input the constraints across variables, and SafeExit can avoid
the combinations that break the constraints. All the user inputs
are optional. In the case that no variable is provided, SafeExit only
generates one input scenario including the default configuration
and an empty workload.

4.1.2 Exit Stage Tracing. An ungraceful exit potentially affects
the system state, which can in turn affect the execution of other
program processes. Since the interaction between programs and the
system is often performed by system calls, SafeExit traces system

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

calls of the target program to extract cleanup behaviors at the exit
stage for both the normal execution and the interrupted executions,
and only focuses on the system calls happening after issuing the
exit command.

There are two problems in obtaining the exit traces. First, an exit
trace can be long, such as when the system is performing certain
repetitive actions (e.g., delete a large number of files). Therefore,
tracing all system calls can be expensive. The second is determin-
ing when to issue an interruption event (i.e., signals) to obtain an
interrupted execution, since exiting before the program reaches a
stable state (i.e., after the workload is processed) and after that may
significantly affect exit behaviors.

Tracing relevant system calls. To reduce the overhead of trac-
ing, SafeExit traces only the system calls that may affect the state
of the operating system, which is the root cause of UE problems.
Specifically, a relevant system call satisfies the following two prop-
erties: 1) the call has side effects beyond the current process, and 2)
the side effects are still effective after the process exits. For example,
the system call, read, can affect the variables inside the process,
while write can affect files or other processes, and the effects are
still effective after the process exits. Therefore, only write is a sys-
tem call of interest and thus traced. Another example is close. close
will delete a file descriptor, which will be deleted when the process
exits anyway. Failing to close cannot affect the operating system or
other processes after the process exits. SafeExit also considers the
arguments within a system call. For example, when calling open
with the argument "O_CREAT", it will create a new file, which is a
long-term side effect. Otherwise, open only creates a file descriptor,
which will be closed when the process exits. Another example is
futex, it will change the lock state when calling with "WAKE", and
do nothing when calling with "WAIT".

Toward this end, we use strace [37] to collect the system calls
of the 38 programs in Table 4, and find 147 system calls are used
in their exit stages. Finally, we summarize 37 out of 147 system
calls that as relevant system calls. SafeExit only traces the relevant
system calls with relevant arguments.

The points of exit. In general, there are three options for pro-
grams when exiting during workload. The simplest option is to exit
immediately, which means the program tries to quit quickly with-
out any operation on the current workload. Another option is to
exit after serving. In this situation, the program will first finish the
workload, then exit. For example, a web server will finish serving
the current request before exiting. The last option is to exit after
rollback. Typical examples are database servers, which can rollback
the current operation for some problem situations.

When exiting immediately, programs only perform some nec-
essary cleanup behaviors. When exiting after serving, programs
perform cleanup behaviors as well as workload behaviors. When
exiting after rollback, programs perform rollback behaviors before
cleanup behaviors. Among the above behaviors, the rollback be-
haviors have been well studied by existing works that focus on
persistency bugs. The task of SafeExit is to filter out the work-
load behaviors. This problem can be solved by simply issuing the
exit commands after the workload, so the workload behaviors are
wiped out naturally. In this case, all exit behaviors can be regarded
as cleanup behaviors for SafeExit.

756

Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, and Ji Wang

// Shutdown
ShutdownXLOG
// Perform a checkpoint

WalSndWaitStopping ShutdownCLOG
CreateCheckPoint

[Get\/irtualeDsDelayingChkptj // Flush all data | (X ogBeginlnsert
CheckPointGuts
CheckPointSUBTRANS | [/ Flush dirty pages CheckPointPredicate
CheckPointMultiXact

. [32: open(x) write(x) fsync(x), x:pg_multixact/offsets/OOOOj

Figure 4: Example of the task tree in PostgreSQL.

4.1.3 Extracting Cleanup Behaviors. Reporting missing system
calls is too low level to help users understand the root cause of UE
problems. SafeExit extracts high-level behaviors from the system
calls that perform the same task. For example, in the exit stage of
MySQL, there is the following sequence:

1. open (ib_buffer_pool.incomplete, O_CREAT..),

2. write (ib_buffer_pool.incomplete, ...);

3. unlink (ib_buffer_pool);

4. rename (ib_buffer_pool.incomplete, ib_buffer_pool).
The system call open creates a temp file, which will be written by
write. After that, unlink deletes the file ib_buffer_pool, to which the
temp file will be renamed. This is a common practice to write an
important file, since writing the file directly may lead to data loss if
the writing operation fails. There are two steps to extract behaviors.
First, SafeExit extracts the system-call sequence that have related
resources, e.g., the file names in above example. Second, multiple
system-call sequences may perform a higher level task, and SafeExit
needs to cluster the sequences.

Extract system-call sequence. Programs may have multiple
threads, of which the system calls may interleave. SafeExit first
classifies the system calls according to their threads identifiers
(TIDs). Second, for the trace of each thread, SafeExit splits it into
segments, each of which contains the same resources, e.g., file name.
Third, SafeExit scans the trace again and detect related resources,
e.g., ib_buffer_pool.incomplete and ib_buffer_pool and related since
they both are arguments of rename. Fourth, SafeExit joints the
serial segments that have related sources as a sequence. For above
example, SafeExit will get the sequence "(open x) (write x) (unlink y)
(rename x y)", where x=ib_buffer_pool.incomplete, y=ib_buffer_pool.
Finally, SafeExit removes loops in the sequences. For example, the
sequence "(creat x) (write x) (fsync x) (write x) (fsync x) (rename x
y)" will become "(creat x) (write x) (fsync x) (rename x y)"

Cluster sequences (optional). SafeExit clusters sequences that
perform a high-level task if provided the source code. For example,
in Figure 4, the system calls in the sequence s2 are invoked by
CheckPointMultiXact, which is further invoked by CheckPointGuts.
At the same time, both CheckPointSUBTRANS and CheckPointPredi-
cate are invoked by CheckPointGuts, and each of them invokes its
own sequence, i.e., sI and s3. In this situation, SafeExit clusters
sequences for different levels of tasks, and finally build a task tree.
For example, the higher level task of s2 is CheckPointMultiXact
which flushes dirty pages, while the higher level task of s1, s2 and
s3 is CheckPointGuts which flushes all data.

To build the task tree, SafeExit first collects the call stack of
each system call, and get the longest common call-stack prefix for

Automatically Detecting Missing Cleanup for Ungraceful Exits

Table 3: Examples of execution-specific information.

Before normalization After normalization

open(Chromium.vIwTTL..)
open(Chromium.rweDBR...)
writev(unix:[314384->314385]>...)
writev(unix:[428732->428733]>...)
kill(2391...)
kill(4891...)

ek kkkk)

open(Chromium.

writev(.X11-unix/X0...)

kill(PID_1...)

each sequence. Second, SafeExit finds the longest common prefix for
different sequences, and clusters the sequences that have a common
prefix. This process will be repeated recursively until the top task.
Third, for each node of the task tree, SafeExit records its function
name and comments as the semantics of this task.

4.1.4 Detecting Missing Cleanup Behaviors. SafeExit detects the
missing behaviors in an interrupted execution InE by comparing the
extracted cleanup from InE with the expected behaviors (Section 3)
in the normal execution NE. There are two main tasks to achieve
this. First, a program may not exit when an interruption trigger
happens. For example, MySQL will ignore the sigint signal. In this
case, MySQL will not cause any UE problem even all expected
behaviors are missing, since MySQL does not exit at all. SafeExit
needs to recognize the reactions of the programs for interruption
triggers. Second, the traces of two executions may be different even
under the same input scenario. For example, in the first example of
Table 3, the file names have random suffixes, which are different in
two executions. SafeExit needs to eliminate the execution-specific
information when comparing behaviors from two executions.

Program reactions of interruptions. We classify program re-
actions of interruptions into two categories: good practices and
bad practices. In good practices, the program may survive from the
situation, in this case, the main process of the program will still
exist after the trigger happens. Also, the program can recover from
the situation, which means all processes exit and new processes will
be generated instead. Another good practice is graceful exit, which
means all necessary behaviors have been performed successfully
before the program exits. On the other hand, the bad practice is
ungraceful exit, which means any or part of cleanup behaviors are
missing after the program exits. For the cases of survive and recover,
SafeExit does not report any missing behavior, which means all bits
of the missing behavior vector are zeroes.

System call normalization. SafeExit normalizes the following
execution-specific information when comparing the system calls
of interrupted behaviors and expected behaviors: (a) File name.
SafeExit keeps the common substring of the file names and changes
the random suffix into a string of *’ with the same length. (b)
Output target. In the second example of Table 3, the first argument
of writev is a Unix-type socket, whose target is an inode number.
SafeExit uses the utility Isof to get the responding file of the inode
number and replaces the number with a real file name. (c) Process
identifier. The PIDs always change in different executions. SafeExit
sorts the PIDs of each execution in ascending order, and normalizes
the PIDs to their ranks. In the last example, the PID of the first
argument in kill is normalized to ‘PID_1’, which means the process
with the smallest PID in the current program.

757

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

4.2 Online Monitoring and Predicting

The online-monitoring component is a system-level monitor, which
is implemented by the auditd [2] tool (used to record system calls
and signals). SafeExit does not do any form of program instrument,
thus the overhead is very limited. When an interruption is detected,
SafeExit predicts the missing behaviors by using the real input
scenario and detected interruption trigger. If the input scenario
variables are not provided in the offline training phase, SafeExit will
report the missing behaviors of default configuration and empty
workload. Otherwise, SafeExit can report the predicted missing
behaviors to users.

5 EVALUATION

To evaluate SafeExit, we consider three research questions:
RQ1: What behaviors are done when programs exit normally?
RQ2: What are the root causes of ungraceful exits?

RQ3: How accurate does SafeExit predict missing behaviors?

In SafeExit, there are two main functions. The first is detecting
missing behaviors for a given input scenario. This includes two
steps: recognize normal behaviors (RQ1) and detect missing be-
haviors (RQ2). The second is predicting missing behaviors for an
unseen input scenario (RQ3). In this section, we evaluate SafeExit
on 38 mature and active programs across 10 domains shown in
Table 4.!

5.1

5.1.1 RQI: Exit Behaviors in Normal Executions. The insight of
SafeExit is to extract behaviors that are done during the exit stage
of normal execution and use these behaviors as oracles for detect-
ing the missing behaviors in the interrupted executions so as to
localize the root causes of ungraceful exits. Therefore, we need
to know what have been done when programs exit normally. We
run the benchmark programs under the default configuration and
empty workload, then obtain the exit behaviors from the normal
executions using the approach described in Section 4.1.3.

The results are shown in the fourth column of Table 4. For ex-
ample, Apache performs four types of behaviors at the exit stage
when exiting normally, i.e., deleting the PID file, killing children
processes, writing log files and sending messages to its children pro-
cesses. One program may perform multiple behaviors that belong
to the same behavior type. For example, Apache writes to different
log files (i.e., access_log and error_log).

In total, SafeExit detects 133 types of behaviors from the 38
programs (about 3.5 for each program). Besides, every program will
stop its main process at the exit stage, for space reason, we do not
list the behavior. Two out of the 38 programs do not perform any
cleanup behaviors at their exit stages, i.e., Bftpd and MPV. Most
programs with GUI will send messages to other daemons including
Xorg (23/23), dbus (15/23), and ibus (13/23), while most servers will
delete PID files (9/11).

These results indicate that most programs (36/38) have cleanup
behaviors at their exit stages, supporting our assumption that the
expected exit behaviors can be obtained from the behavior of the

Missing Behavior of a Given Input Scenario

! For ease of reproducing, the SafeExit source code and all data will be available in
https://github.com/ZhouyangJia/SafeExit.

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, and Ji Wang

Table 4: Exit behaviors of normal execution and reactions of interrupted executions.

Domain Program-version Type Exit behaviors of normal executions Program reactions’ g I\]ihssmg
ehaviors
Web Apache-2.4.37 CLI/Server | D-PID, K-CHLD, W-LOG, S-CHLD S/G/B/G B/B/B/B/B/S/B/S 58
Server Lighttpd-1.4.45 CLI/Server | D-PID, W-LOG S/G/B/G B/B/B/B/B/S/B/B 16
Nginx-1.15.6 CLI/Server | D-PID, S-CHLD S/G/G/G B/B/B/B/B/S/B/B 14
Brave-0.56.15 GUI/Client | D-SHM, D-LCK, U-LCK, K-CHLD, W-PCFG, W-PSTAT, S-CHLD, S-PROG | G/G/B/G B/B/B/B/B/S/B/B 493
Chromium-65.0.3325 GUI/Client | D-SHM, D-LCK, U-LCK, K-CHLD, W-PCFG, W-PSTAT, S-CHLD, S-PROG | G/G/B/G B/B/B/B/B/S/B/B 347
Broswer Firefox-59.0.2 GUI/Client | D-TMP, D-SHM, D-LCK, U-LCK, W-PCFG, W-PSTAT, S-PROG, S-NET B/B/B/B R/R/R/R/R/S/B/B 230
GnomeWeb-3.28.1 GUI/Client | D-TMP, D-SHM, U-LCK, W-PCFG, W-SCFG, W-PSTAT, S-PROG, S-NET B/G/B/G B/B/B/B/B/S/B/B 126
MonetDB-1.7 CLI/Server | D-PID, D-SOCK, U-LCK, W-LOG S/G/G/G B/B/B/B/B/S/B/B 48
Database MySQL-8.0.13 CLI/Server | D-PID, D-SOCK, D-TMP, D-LCK, W-PSTAT S/S/G/G B/B/B/B/B/S/B/B 182
PostgreSQL-11rcl CLI/Server | D-PID, D-SOCK, D-TMP, D-SHM, D-LCK, K-CHLD, W-PSTAT S/G/B/G B/B/B/B/B/S/B/S 149
SQLite3-3.22.0 CLI/Client | W-PSTAT B/S/B/B B/B/B/B/B/B/B/B 11
Geary-0.12-dev GUI/Client | S-PROG B/B/B/B B/B/B/B/B/S/B/B 11
Email OpenSMTPD-6.0.3 CLI/Server | D-PID, D-SOCK, S-PROG B/G/B/G B/B/B/B/B/S/B/B 25
Postfix-3.3.0-1 CLI/Server | S-PROG S/G/G/G G/B/G/B/G/S/B/B 4
Thunderbird-52.7.0 GUI/Client | D-TMP, D-LCK, U-LCK, W-PCFG, W-PSTAT, S-PROG, S-NET B/B/B/B_R/R/R/R/R/S/B/B 119
Bftpd-4.4 CLI/Server | - - -
FTP FileZilla-3.28.0 GUI/Client | D-TMP, U-LCK, W-PCFG, S-PROG B/B/B/B B/B/B/B/B/S/B/B 44
gCommander-1.4.8 GUI/Client | W-PCFG, S-PROG B/S/B/B B/B/B/B/B/S/B/S 54
ProFTPD-1.3.5¢ CLI/Server | D-PID, D-LCK, U-LCK, W-LOG, W-PSTAT S/G/G/G G/G/G/G/G/S/G/B 5
Pure-FTPd-1.0.46 CLI/Server | D-PID G/G/G/G B/B/B/B/B/S/G/B 6
Text Emgcs—25,2.2 GUI/Client D-TMP, W-PSTAT, S-PROG G/G/G/G G/G/G/G/G/S/GIG 0
Editor Gedit-3.28.1 GUI/Client | W-PCFG, W-SSTAT, S-PROG B/B/B/B B/B/B/B/B/S/B/B 41
Vim-8.0.1453 CLI/Client | D-TMP, W-PSTAT B/B/B/B _G/G/G/G/G/S/G/G 5
Darktable-2.4.2 GUI/Client | D-LCK, W-PCFG, S-PROG B/B/B/B B/B/B/B/B/S/B/B 55
Image GraphicMagick-1.3.28 ~ GUI/Client | S-PROG B/B/B/B B/B/B/B/B/B/B/B 12
Editor gThumb-3.6.1 GUI/Client | W-PCFG, W-SCFG, W-PSTAT, S-PROG B/B/B/B B/B/B/B/B/S/B/B 55
KolourPaint-17.12.3 GUI/Client | S-PROG B/B/B/B B/B/B/B/B/S/B/B 11
SynfigStudio-1.2.1 GUI/Client | D-SOCK, W-PCFG, W-PSTAT, S-PROG B/B/B/B_B/B/B/B/B/S/B/B 66
Audacious-3.9 GUI/Client | W-PSTAT, S-PROG G/G/G/G B/B/B/B/B/S/B/B 30
MPV-0.27.2 CLI/Client | - - -
Player Rhythmbox-3.4.2 GUI/Client | W-PCFG, W-PSTAT, S-PROG B/B/B/B B/B/B/B/B/S/B/B 66
SMPlayer-18.2.2 GUI/Client | D-TMP, D-LCK, U-LCK, W-PCFG, W-PSTAT, S-PROG B/B/B/B B/B/B/B/B/S/B/B 204
Totem-3.26.0 GUI/Client | W-PSTAT, S-PROG B/B/B/B B/B/B/B/B/S/B/B 37
VLC-3.0.1 GUI/Client | U-LCK, W-PCFG, W-PSTAT, S-PROG G/G/G/G B/B/B/B/B/S/B/B 41
Network Netsniff-ng-0.6.4 CLI/Client | W-SCFG S/G/G/G B/B/B/B/B/B/B/B 40
Monitor ~ Wireshark-2.4.5 GUI/Client | W-PSTAT, S-PROG B/B/B/B B/B/B/B/B/S/B/B 43
Office LibreOffice-6.0.3.2 GUI/Client | D-TMP, D-LCK, W-PCFG, W-PSTAT, W-LOG, S-PROG S/B/B/B B/R/R/R/R/S/B/B 168
Suite? OpenOffice-4.1.6 GUI/Client | D-TMP, D-LCK, W-PCFG, W-LOG, S-PROG S/B/B/B B/R/R/R/R/S/B/B 45

1 "S/R/G/B" mean the different reactions, where "S" for survival, "R" for recovery, "G" for graceful exit, and "B" for missing behaviors. The reactions of interrupted executions are listed in the order of
"sighup/sigint/sigquit/sigterm" (user terminations) and "sigill/sigabrt/sigbus/sigfpe/sigsegv/sigpipe/sigxcpu/sigxfsz" (fatal bugs).
2 Each office suit contains multiple programs, e.g., writer, calc, impress, whose exit behaviors are exactly the same. Therefore, we regard them as one program.

program exit in a normal execution. As for the other two programs,
SafeExit cannot determine whether there is an ungraceful exit.
There is no false positive or false negative with regard to detecting
exit behaviors, since the behaviors of a program are fixed for a
given input scenario (we do not consider the order of behaviors in
case of concurrency programs).

5.1.2 RQ2: Root Causes of Ungraceful Exits. The goal of RQ2 is to
evaluate whether SafeExit can detect ungraceful exits and the root
causes (i.e., missing behaviors) of the ungraceful exits. There are
four reactions when programs encounter interruptions (i.e., survive,
recover, graceful exit and ungraceful exit) according to Section 4.1.4.
SafeExit first detects the reactions of the programs, then reports
missing behaviors for ungraceful exits.

The results are shown in the rightmost two columns of Table 4.
In the table, “S/R/G/B" indicate the reactions of the program for dif-
ferent interruption triggers, where "S" for survival, "R" for recovery,
"G" for graceful exit, and "B" for missing behaviors (i.e., ungrace-
ful exit). The reactions are listed in the order of user terminations
(sighup, sigint, sigquit, sigterm) and fatal bugs (sigill, sigabrt, sigbus,
sigfpe, sigsegv, sigpipe, sigxcpu, sigxfsz). For hard exits, e.g., sigkill,
programs always exit ungraceful, thus we do not list them.

758

For example, Apache will read the configuration files and restart
the server (children processes) when receiving sighup. SafeExit re-
ports that Apache can survive from sighup, since the main process
still exist after the signal. For sigint and sigterm, all processes will
exit, and SafeExit detects all necessary behaviors are successfully
performed. As for some fatal signals and sigquit, SafeExit finds
Apache exit ungracefully and reports missing behaviors. For exam-
ple, the main process will send termination signals to its children
processes (K-CHLD) during normal exit. In interruptions triggered
by bugs like SIGSEGYV, the behavior is missing and the children
processes become orphan processes. For space reason, we do not
list the behaviors.

In the 36 programs that perform cleanup behaviors, SafeExit eval-
uates their reactions for 12 interruption triggers, i.e., 432 interrupted
executions. SafeExit finds 292 out of the 432 (or 67.6%) executions
exit ungracefully (about 8.1 on average for each program). Among
the ungraceful exits, SafeExit detects 2861 missing behaviors in
total (i.e., 9.8 for each ungraceful exit). Specifically, servers (i.e.,
web server, database server, FTP server, and email server) handle
user terminations (5/40=12.5%) better than other situations, includ-
ing clients for user terminations (76/104=73.1%), servers for fatal

Automatically Detecting Missing Cleanup for Ungraceful Exits

Table 5: Target programs for the accuracy evaluation.

Program # Var. Dep. H Program # Var. Dep.
Apache 11 Yes Gedit 12 No
Chromium 35 Yes gThumb 15 No
MySQL 29 Yes SMPlayer 38 Yes
Thunderbird 40 Yes Wireshark 29 No
FileZilla 13 No || LibreOffice 36 No

Var. = number of input-scenario variables: config options and workload variables.
Dep. = dependence: whether the exit behaviors are dependent on its input scenario.

bugs (58/80=72.5%), and clients for fatal bugs (153/208=73.4%). This
is because many server functions (e.g, start, stop, restart or up-
date config) are implemented by user-termination signals. There is
one program (i.e., Emacs) that handles all interruptions well, and
one program (i.e., GraphicMagick) that exits ungracefully for any
interruption. Most programs (33/36) survive a sigpipe signal.

These results suggest that ungraceful exit is the most common re-
action (67.6%) when programs encounter interruptions. SafeExit can
be widely used to help users to solve problems caused by ungraceful
exits. In SafeExit, the accuracy of detecting missing behaviors is
dependent on the quality of code in the normal exit. For example, if
developers perform an unnecessary behavior in normal exit code,
SafeExit will report a false positive when the behavior is missing. If
developers miss a necessary behavior in normal exit code, SafeExit
will report a corresponding false negative.

5.2 RQ3: Accuracy of Behavior Prediction

Program behaviors are affected by input scenarios like configura-
tions and workloads. For default configuration and empty workload,
SafeExit can precisely report the missing behaviors when ungrace-
ful exit happens, since the program behaviors are fixed. As for other
scenarios, SafeExit needs to sample input scenarios, build a pre-
diction model, and predict the missing behaviors. To achieve this,
SafeExit implements a script for each target program to execute its
input scenarios automatically. In general, for programs from one
domain, their input scenarios are similar. Therefore, we select one
highly configurable program from each domain to evaluate.

Table 5 shows the target programs. For each program, due to the
large input space, we manually choose some configuration options
and workload variables. During this process, we avoid choosing
configuration options that will not affect the exit behaviors of the
program. For example, in Apache, the configuration ServerName
gives the name and port that the server uses to identify itself, which
can not affect the exit behaviors. Nevertheless, the exit behaviors
of five programs are still independent of the chosen variables. In
these cases, SafeExit always achieves 100% prediction accuracy.
As for the programs whose exit behaviors are dependent on their
input scenarios, we evaluate the predicting accuracy and training
efficiency when using different sampling methods and sampling
densities as discussed in Section 4.1.1.

For each program, we randomly sample 100 input scenarios and
100 interruption triggers as the test set. Input scenarios in the test
set are different from the ones in the training phase. Then SafeExit
outputs a vector of missing behaviors for each test case, i.e., an
input scenario and an interruption trigger. We use two widely-used
metrics, i.e., precision and recall, to evaluate the prediction accuracy.

759

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 6: Accuracy and efficiency of different sampling meth-
ods and sampling densities.

Sampling method Sampling density
Program 1-wise 2-wise 3-wise | D=2 D=4 D=8
Avache 66.8% 85.7% 85.7% | 76.2% 85.7% 98.0%
P 6t 33 174 14 33 112
Chromium | 576% 676% 70.7% [665% 67.6% 751%
v 4 20 67 13 20 94
88.6% 92.9% 94.8% | 91.8% 92.9% 95.2%
MySQL 5 36 197 20 36 115
. 957% 96.1% 97.1% | 94.1% 96.1% 97.6%
Thunderbird 4 20 89 13 20 7
821% 958% 95.8% | 95.8% 95.8% 96.6%
SMPlayer 4 21 84 13 21 73
Averase 782% 87.6% 88.8% | 84.9% 87.6% 92.5%
& 4.6 26 1222 | 146 26 93.2

 Fecore of missing-behavior prediction. ¥ Number of training samples.

Suppose there are N behaviors in the vector, i.e., by, ba, ..., b . Let
X(i) denote the total number of test cases that miss b;, Y(i) denote
the number of test cases that SafeExit predicts b; will miss, and
Y’(i) denote the number of test cases that b; is truly missed. The
predicting precision of b;, P(i), is the ratio of Y’(i) to Y(i), while
the predicting recall, R(i), is the ratio of Y’(i) to X(i). We further
calculate the averaged precision P and recall R of all behaviors. If a
cleanup behavior is missed in the test set, but never happens in the
training stage, its precision and recall rates are regarded as zeroes.
For the ease of comparison, we finally calculate Fs¢ore, Which is
the harmonic mean of P and R.

As shown in Table 6, we evaluate three sampling methods, i.e.,
1-wise, 2-wise and 3-wise, and three sampling densities, i.e., D=2,
D=4, D=8. For an integer variable, SafeExit samples D values:
Max — Min

D-1
where Max and Min are the ranges of the variable. For example,
given a variable v € [1, 10], the sampled values are 1, 4, 7, 10 when
D=4.1In Table 6, we first evaluate the sampling methods (using D=4).
For each method, we provide the Fscore and the number of training
samples. In term of the averaged accuracy, the 2-wise (87.6%) is
much higher than 1-wise (78.2%), and the 3-wise (88.8%) is close
to 2-wise (87.6%). While the numbers of samples are increasing
linearly, thus the 3-wise takes much more time. Therefore, SafeExit
chooses 2-wise as the optimal method. Next, we evaluate different
sampling densities (using 2-wise). The accuracy improvements from
D=2 to D=4 and from D=4 to D=8 are similar. SafeExit uses D=8 as
the default density since its high accuracy, while users can choose
custom values according to their preference on predicting accuracy
or training efficiency.

These results show that the exit behaviors of a program may or
may not be dependent on its input scenarios. For programs whose
exit behaviors are dependent on their input scenarios, different
parameters (sampling method and sampling density) can affect
the predicting accuracy and training efficiency. Under the optimal
parameters (2-wise and D=38), SafeExit can achieve a high accuracy
(92.5%) on predicting missing behaviors while using limited input-
scenario samples (93.2 on average) in the training phase.

L *(i—1)] + Min,i € [1,D]

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

6 DISCUSSION

Bugs during normal exiting. In SafeExit, the key insight is to
learn the expected behaviors of ungraceful exits from normal exits.
We assume that developers carefully designed the workflow of
normal exit, and the behaviors during normal exiting can server as
oracles. In the cases that there are bugs during normal exit, SafeExit
cannot eliminate the effects of the bugs, resulting in false positives
or false negatives. In Section 5.1, we summarized several patterns
that what behaviors should be performed at the exit stage for a
certain type of programs. Inspired by these patterns, we can detect
the bugs of normal exit by mining exit rules across programs. We
leave this feature to further work.

Recover at the next startup. Some programs may exit ungrace-
fully when fatal situations happen and recover the corrupted states
at the next startup. For example, if there is a fatal bug in PostgreSQL,
the cleanup behaviors will be performed at the next startup (after
version 8.3). Another example is the office suite, which can recover
both user terminations and fatal bugs at the next startup. SafeExit
does not analyze the program behaviors of the startup stage, thus
still reports the missing behaviors in this situation. The results of
SafeExit are valid until the next startup, since the operating system
contains corrupted states between the time of the crash and the
next startup.

Long-term running programs only. SafeExit needs to learn
the behaviors that should be performed at the exit stage. The be-
ginning of the exit stage is the time when clicking an exit button of
GUI program, or issuing an exit command of a CLI program. This
exit mechanism is used in long-term running programs, meaning
there is an explicit exit action performed by users, the operating
system or other programs. For some programs, however, there is
no such exit action. Taking the compiler program as an example, a
compiler starts when issuing the start command, and exits when
finish compiling. In this case, there is no explicit exit action, thus
SafeExit cannot recognize the exit stage of a compiler.

7 RELATED WORK

Exception-handling bugs. There is a long line of research focus-
ing on exception-handling mechanisms [3-5, 8, 10, 14, 18, 19, 22,
25, 29-31, 41, 42]. For example, Ebert et al. [8] conducted a sur-
vey of 154 developers and an analysis of 220 exception handling
bugs. Oliveira et al. [29] presented an empirical study on the rela-
tionship between the usage of Android abstractions and uncaught
exceptions. Filho et al. [10] presented a study of the adequacy of
the Aspect] language for modularizing exception handling code.
Jakobus et al. [18] contrasted exception handling code across lan-
guages from 50 open source projects. Rahman et al. [31] proposed
a context-aware code recommendation approach that recommends
exception handling code examples. Barbosa et al. [3] presented a
tool to recommend repairs of exception handling violations with
aware of the global context. Weimer et al. [41, 42] presented a data-
flow analysis for finding exception-handling bugs in Java programs.
Exception handling does not always end up with an exit, for exam-
ple, programs may create a new file when the library function fopen
cannot find the target file. Therefore, existing work does not focus
on cleanup behaviors on the exit stage. SafeExit is a complementary
tool to the existing exception-handling techniques.

760

Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, and Ji Wang

Data corruption and crash recovery. Prior efforts on persis-
tent data consistency have looked at finding storage or distributed
system errors [1, 6, 7, 11-13, 15, 16, 38, 39, 45, 46]. Gao et al. [13]
presented a comprehensive study on 103 crash recovery bugs from
four distributed systems. Gunawi et al. [15] proposed a testing
framework for cloud recovery. Subramanian et al. [38] injected
faults into the MySQL DBMS, and found corruption can greatly
harm the system. Yang et al. [46] built a system, FiSC, for model
checking file systems. Ganesan et al. [12] analyzed how modern
distributed storage systems behave in the presence of file-system
faults. Wang et al. [39] presented a comprehensive study on 138
real-world data corruption incidents reported in Hadoop bug repos-
itories. Some works focus on persistency bugs in storage systems,
which help to clean data corruption caused by problem situations.
While SafeExit is designed to clean general states under ungraceful
exit conditions. Other works are targeting errors during recovery,
but can not help when programs try to exit. While we find the
majority programs will exit ungracefully in problem situations.

Other related work. There has been some other research re-
lated to SafeExit. Similar to SafeExit, many works [9, 23, 24] mined
software traces for various purposes, but few work focuses on
missing behaviors of ungraceful exits. Wang et al. [40] presented
an automated framework that can detect and validate race condi-
tions hardware interrupt. While SafeExit focuses on the ungrace-
ful exit problems caused by software interrupts. Shan et al. [34]
addressed the problems of data loss, failure to resume/restart or
resuming/restarting in the wrong state in Android applications.
These problems are caused by incorrect handling of instance data
and are easily triggered by just pressing the ‘Home’ or ‘Back’ but-
tons. While SafeExit is targeting the problems caused by ungraceful
exits in PC programs.

8 CONCLUSIONS

This paper presented SafeExit a tool that can automatically detect
and pinpoint the root causes of UE problems, which can help users
to fix the problems with lightweight solutions without having to
reboot the system. SafeExit learned the missing behaviors of inter-
rupted executions under different input scenarios and interruption
triggers, and built a prediction model to predict the missing behav-
iors of an unseen input scenario. During the learning phase, we
studied the real-world cleanup behaviors to help SafeExit select
the expected behaviors for different interrupted executions. Finally,
we evaluated SafeExit by using 38 widely used programs from 10
domains. The experimental results showed that SafeExit can effec-
tively extract the cleanup behaviors for normal executions, and
detect the missing behaviors for interrupted executions. We also
evaluated the effects of sampling method and sampling density for
the training efficiency and predicting accuracy, helping SafeExit to
choose the optimal parameters.

ACKNOWLEDGMENTS

This research was supported by National Key R&D Program of
China No. 2017YFB1001802; NSFC No. 61872373 and 61872375; NSF
grant CCF-1652149; High-End Generic Chips and Basic Software
under grants No. 2017ZX01038104-002; China Scholarship Council.

Automatically Detecting Missing Cleanup for Ungraceful Exits ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

REFERENCES

[1] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. 2015. Lineage-driven
Fault Injection. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’15). ACM, New York, NY, USA, 331-346.
https://doi.org/10.1145/2723372.2723711

[2] Auditd. 2018. The Linux Audit daemon. https://linux.die.net/man/8/auditd.

[3] Eiji Adachi Barbosa and Alessandro Garcia. 2018. Global-aware Recommenda-
tions for Repairing Violations in Exception Handling. In Proceedings of the 40th
International Conference on Software Engineering (ICSE '18). ACM, New York, NY, (21
USA, 858-858. https://doi.org/10.1145/3180155.3182539

[4] Eiji Adachi Barbosa, Alessandro Garcia, and Simone Diniz Junqueira Barbosa.

ISSRE.2015.7381812

Zhouyang Jia, Shanshan Li, Xiaodong Liu, Xiangke Liao, and Yunhuai Liu. 2018.
SMARTLOG: Place error log statement by deep understanding of log intention.
In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE Computer Society, Washington, DC, USA, 61-71.
https://doi.org/10.1109/SANER.2018.8330197

Dennis Kennedy. 2013. Why Rebooting Works So Well. https://www.
lawtechnologytoday.org/2013/11/why-rebooting-works-so-well/.

Thorin Klosowski. 2013. Why Rebooting Your Computer Fixes Problems. https:
/Nlifehacker.com/why-rebooting- your-computer-fixes-problems-1445670330.
Yan Lei, Chengnian Sun, Xiaoguang Mao, and Zhendong Su. 2018. How test

[19

[20

[22

2014. Categorizing Faults in Exception Handling: A Study of Open Source Projects.
In 2014 Brazilian Symposium on Software Engineering. IEEE Computer Society,
Washington, DC, USA, 11-20. https://doi.org/10.1109/SBES.2014.19

Eiji Adachi Barbosa, Alessandro Garcia, Martin P. Robillard, and Benjamin
Jakobus. 2016. Enforcing Exception Handling Policies with a Domain-Specific
Language. [EEE Trans. Softw. Eng. 42, 6 (June 2016), 559-584. https://doi.org/10.
1109/TSE.2015.2506164

Philip Bohannon, Rajeev Rastogi, S. Seshadri, Avi Silberschatz, and S. Sudarshan.
2003. Detection and Recovery Techniques for Database Corruption. IEEE Trans.
on Knowl. and Data Eng. 15, 5 (Sept. 2003), 1120-1136. https://doi.org/10.1109/
TKDE.2003.1232268

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. 2015. Using Crash Hoare Logic for Certifying the FSCQ
File System. In Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP ’15). ACM, New York, NY, USA, 18-37. https://doi.org/10.1145/2815400.
2815402

Felipe Ebert, Fernando Castor, and Alexander Serebrenik. 2015. An exploratory
study on exception handling bugs in Java programs. Journal of Systems and
Software 106 (2015), 82 — 101. https://doi.org/10.1016/].jss.2015.04.066

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon System for
Dynamic Detection of Likely Invariants. Sci. Comput. Program. 69, 1-3 (Dec. 2007),
35-45. https://doi.org/10.1016/j.s¢ic0.2007.01.015

Fernando Castor Filho, Nelio Cacho, Eduardo Figueiredo, Raquel Maranhao,
Alessandro Garcia, and Cecilia Mary F. Rubira. 2006. Exceptions and Aspects:
The Devil is in the Details. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (SIGSOFT '06/FSE-14). ACM,
New York, NY, USA, 152-162. https://doi.org/10.1145/1181775.1181794

Daniel Fryer, Kuei Sun, Rahat Mahmood, Tinghao Cheng, Shaun Benjamin,
Ashvin Goel, and Angela Demke Brown. 2012. Recon: Verifying File System
Consistency at Runtime. ACM Trans. Storage 8, 4, Article 15 (Dec. 2012), 29 pages.
https://doi.org/10.1145/2385603.2385608

Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2017. Redundancy Does Not Imply Fault Tolerance:
Analysis of Distributed Storage Reactions to File-System Faults. ACM Trans.
Storage 13, 3, Article 20 (Sept. 2017), 33 pages. https://doi.org/10.1145/3125497
Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui
Huang, Li Zhou, and Yongming Wu. 2018. An Empirical Study on Crash Recovery
Bugs in Large-scale Distributed Systems. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE 2018). ACM, New York, NY,
USA, 539-550. https://doi.org/10.1145/3236024.3236030

Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Jian Lii, and Zhendong Su. 2016.
Automatic Runtime Recovery via Error Handler Synthesis. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering (ASE
2016). ACM, New York, NY, USA, 684-695. https://doi.org/10.1145/2970276.
2970360

Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M. Hellerstein,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Koushik Sen, and Dhruba
Borthakur. 2011. FATE and DESTINI: A Framework for Cloud Recovery Testing.
In Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation (NSDI'11). USENIX Association, Berkeley, CA, USA, 238-252.
http://dl.acm.org/citation.cfm?id=1972457.1972482

Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2008. SQCK: A Declarative File System Checker.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI'08). USENIX Association, Berkeley, CA, USA, 131-146.
http://dl.acm.org/citation.cfm?id=1855741.1855751

Chris Hoffman. 2018. Why Does Rebooting a Computer Fix So Many Prob-
lems? https://www.howtogeek.com/173760/htg-explains-why-does-rebooting-
a-computer-fix-so-many-problems/.

Benjamin Jakobus, Eiji Adachi Barbosa, Alessandro Garcia, and Carlos
Jose Pereira de Lucena. 2015. Contrasting exception handling code across lan-
guages: An experience report involving 50 open source projects. In 2015 IEEE
26th International Symposium on Software Reliability Engineering (ISSRE). IEEE
Computer Society, Washington, DC, USA, 183-193. https://doi.org/10.1109/

suites impact fault localisation starting from the size. IET Software 12, 3 (2018),
190-205. https://doi.org/10.1049/iet-sen.2017.0026

David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, and Chengnian Sun. 2009.
Classification of Software Behaviors for Failure Detection: A Discriminative
Pattern Mining Approach. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD "09). ACM, New York,
NY, USA, 557-566. https://doi.org/10.1145/1557019.1557083

David Lo, Siau-Cheng Khoo, and Chao Liu. 2007. Efficient Mining of Iterative
Patterns for Software Specification Discovery. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
'07). ACM, New York, NY, USA, 460-469. https://doi.org/10.1145/1281192.1281243
Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014.
Slice-based Statistical Fault Localization. J. Syst. Softw. 89, C (March 2014), 51-62.
https://doi.org/10.1016/j.jss.2013.08.031

Microsoft. 2018. pict. https://github.com/Microsoft/pict/.

Rob Miles. 2016. Explained: why a reboot is the go-to computer fix.
http://theconversation.com/explained-why-a-reboot-is-the-go-to-computer-
fix-65261.

Nginx. 2019. Nginx. https://www.nginx.com/.

Juliana Oliveira, Deise Borges, Thaisa Silva, Nelio Cacho, and Fernando Castor.
2018. Do android developers neglect error handling? a maintenance-Centric
study on the relationship between android abstractions and uncaught exceptions.
Journal of Systems and Software 136 (2018), 1 - 18. https://doi.org/10.1016/j.jss.
2017.10.032

Juliana Oliveira, Nelio Cacho, Deise Borges, Thaisa Silva, and Fernando Castor.
2016. An Exploratory Study of Exception Handling Behavior in Evolving Android
and Java Applications. In Proceedings of the 30th Brazilian Symposium on Software
Engineering (SBES ’16). ACM, New York, NY, USA, 23-32. https://doi.org/10.
1145/2973839.2973843

Mohammad Masudur Rahman and Chanchal K. Roy. 2014. On the Use of Context
in Recommending Exception Handling Code Examples. In Proceedings of the
2014 IEEE 14th International Working Conference on Source Code Analysis and
Manipulation (SCAM ’14). IEEE Computer Society, Washington, DC, USA, 285-
294. https://doi.org/10.1109/SCAM.2014.15

Paul Randal. 2011. Survey results on rebooting - is it good or bad? https://www.
sqlskills.com/blogs/paul/survey-results-on-rebooting-is-it-good-or-bad/.
Scikit-learn. 2018. Scikit-learn: Machine Learning in Python. https://scikit-
learn.org/stable/.

Zhiyong Shan, Tanzirul Azim, and Iulian Neamtiu. 2016. Finding Resume and
Restart Errors in Android Applications. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2016). ACM, New York, NY, USA, 864-880. https:
//doi.org/10.1145/2983990.2984011

Tina Sieber. 2014. Why Does Rebooting Your Computer Fix So Many Issues?
https://www.makeuseof.com/tag/rebooting- computer-fix-many-issues/.

Tina Sieber. 2018. Why Does Restarting Seem to Fix Most Computer
Problems? https://www.lifewire.com/why-does-restarting-seem-to-fix-most-
computer-problems-2624569.

Strace. 2018. Strace: linux syscall tracer. https://strace.io.

Sriram Subramanian, Yupu Zhang, Rajiv Vaidyanathan, Haryadi S Gunawi, An-
drea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and Jeffrey F Naughton. 2010.
Impact of disk corruption on open-source DBMS. In 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010). IEEE Computer Society, Washington,
DC, USA, 509-520. https://doi.org/10.1109/ICDE.2010.5447821

Peipei Wang, Daniel J. Dean, and Xiaohui Gu. 2015. Understanding Real World
Data Corruptions in Cloud Systems. In Proceedings of the 2015 IEEE International
Conference on Cloud Engineering (IC2E °15). IEEE Computer Society, Washington,
DC, USA, 116-125. https://doi.org/10.1109/IC2E.2015.41

Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong Li. 2017.
Automatic Detection and Validation of Race Conditions in Interrupt-driven Em-
bedded Software. In Proceedings of the 26th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA,
113-124. https://doi.org/10.1145/3092703.3092724

Westley Weimer and George C. Necula. 2004. Finding and Preventing Run-
time Error Handling Mistakes. In Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA °04). ACM, New York, NY, USA, 419-431. https://doi.org/10.1145/

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, and Ji Wang

1028976.1029011 [45] Junfeng Yang, Can Sar, and Dawson Engler. 2006. EXPLODE: A Lightweight,
[42] Westley Weimer and George C. Necula. 2008. Exceptional Situations and Program General System for Finding Serious Storage System Errors. In Proceedings of
Reliability. ACM Trans. Program. Lang. Syst. 30, 2, Article 8 (March 2008), 51 pages. the 7th Symposium on Operating Systems Design and Implementation (OSDI 06).
https://doi.org/10.1145/1330017.1330019 USENIX Association, Berkeley, CA, USA, 131-146. http://dl.acm.org/citation.
[43] Wikipedia. 2017. Graceful exit. https://en.wikipedia.org/wiki/Graceful exit. cfm?id=1298455.1298469
[44] Wikipedia. 2019. All-pairs testing. https://en.wikipedia.org/wiki/All-pairs [46] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. 2006.
testing. Using Model Checking to Find Serious File System Errors. ACM Trans. Comput.
Syst. 24, 4 (Nov. 2006), 393-423. https://doi.org/10.1145/1189256.1189259

762

