
LogTracker: Learning Log Revision Behaviors Proactively from
Software Evolution History

Shanshan Li
National University of Defense

Technology
Changsha, China

shanshanli@nudt.edu.cn

Xu Niu
National University of Defense

Technology
Changsha, China

niuxu16@nudt.edu.cn

Zhouyang Jia
National University of Defense

Technology
Changsha, China

jiazhouyang@nudt.edu.cn

Ji Wang
National University of Defense

Technology
changsha, China
wj@nudt.edu.cn

Haochen He
National University of Defense

Technology
Changsha, China

hehaochen13@nudt.edu.cn

Teng Wang
National University of Defense

Technology
Changsha, China

wangteng13@nudt.edu.cn

ABSTRACT
Log statements are widely used for postmortem debugging. Despite
the importance of log messages, it is difficult for developers to es-
tablish good logging practices. There are two main reasons for this.
First, there are no rigorous specifications or systematic processes
to guide the practices of software logging. Second, logging code
co-evolves with bug fixes or feature updates. While previous works
on log enhancement have successfully focused on the first problem,
they are hard to solve the latter. For taking the first step towards
solving the second problem, this paper is inspired by code clones
and assumes that logging code with similar context is pervasive
in software and deserves similar modifications. To verify our as-
sumptions, we conduct an empirical study on eight open-source
projects. Based on the observation, we design and implement Log-
Tracker, an automatic tool that can predict log revisions by mining
the correlation between logging context and modifications. With an
enhanced modeling of logging context, LogTracker is able to guide
more intricate log revisions that cannot be covered by existing tools.
We evaluate the effectiveness of LogTracker by applying it to the
latest version of subject projects. The results of our experiments
show that LogTracker can detect 199 instances of log revisions. So
far, we have reported 25 of them, and 6 have been accepted.

CCS CONCEPTS
• Software and its engineering → Software reliability; Soft-
ware evolution; Maintaining software;

KEYWORDS
Log revision, software evolution, failure diagnose

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196328

ACM Reference Format:
Shanshan Li, Xu Niu, Zhouyang Jia, Ji Wang, Haochen He, and Teng Wang.
2018. LogTracker: Learning Log Revision Behaviors Proactively from Soft-
ware Evolution History. In ICPC ’18: ICPC ’18: 26th IEEE/ACM International
Confernece on Program Comprehension , May 27–28, 2018, Gothenburg, Swe-
den. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3196321.
3196328

1 INTRODUCTION
Log statements are inserted by developers to record the runtime
status of software. Since log messages are both informative and
convenient to collect, they have commonly been adopted to aid
in postmortem failure diagnosis. Despite the importance of log-
ging code, it is challenging for developers to establish good logging
practices as software evolves. There are two main reasons for this.
First, there are no rigorous specifications and systematic processes
to guide the practices of software logging [15, 29, 36]. Hence, the
means by which developers make log placement decisions is both
subjective and arbitrary. Second, logging code co-evolves with bug
fixes or feature updates. This problem is illustrated in Figure 1.
Figure 1a displays a patch that inserted preliminary validation of
sensitive data. In addition to the validation code, the developers
also inserted new log statements to make exception handling easier.
In Figure 1b, the developers committed a patch to make the soft-
ware work well on 64-bit platform. This patch also modified log
variables of the original log statement. In both cases, log revisions
are committed in response to bug fixes or feature updates.

There are alreadymanyworks that focused on improving logging
practices. Errlog [35] and LogAdvisor [39] help to insert missing
log statements for given code snippets. LogEnhancer [37] appended
informative variables to log messages in order to resolve the ambi-
guity in failure diagnosis. Loд2 [8] and Log20 [38] decided what log
messages to output by seeking a balance between informativeness
and overhead. Although the abovementioned works are partly able
to handle the first problem, it is difficult for them to predict log
revisions that are related to bug fixes or feature updates (see Figure
1). This is because they ignored the impact that software evolution
has on logging code.

It is challenging to improve logging practices during software
evolution. First, evaluation of the same log statements may vary in

178

2018 ACM/IEEE 26th International Conference on Program Comprehension

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Shanshan Li, Xu Niu et al.

Bug 2674 in Squid:
Crash occur if the safety limits on individual request/reply header
length are changed upwards. MUST remain at or under 64KB.

Revision 9070 in Squid-3.0, client_side.cc:
+ /*NP: don't be tempted to move this down or remove again.
+ *It's the only DDoS protection old-String has against long URL*/
+ if (hp->bufsiz <= 0) {
+ debugs(33,5,"Incomplete request,waiting for end of request line");
+ return NULL; }
+ else if ((size_t)hp->bufsiz >= Config.maxRequestHeaderSize
+ && headersEnd(hp->buf, Config.maxRequestHeaderSize) == 0){
+ debugs(33, 5, "parseHttpRequest: Too large request");
+ return parseHttpRequestAbort(conn, "error:request-too-large");}

(a) Insert new log statement along with bug fixes

Bug 35616 in MySQL:
Memory overrun on 64-bit linux on setting large values for
keybuffer-size.

Revision 2715 in MySQL-5.6, mysys/safemalloc.cc:
if (file){
- fprintf(file,"Warning:Memory that was not free'ed (%ld bytes):\n",
- sf_malloc_cur_memory);
+ fprintf(file,"Warning:Memory that was not free'ed (%lu bytes):\n",
+ (ulong) sf_malloc_cur_memory);

(b) Update log statement along with feature updates

Figure 1: Log revision examples in software evolution

versions1 of software. In Figure 1b, the original log statement was
thought to be correct in the initial version. However, it required
modifying in the new version, where new feature was introduced.
Second, log statements cannot always provide sufficient clues when
diagnosing unpredictable bugs. This point is supported by mas-
sive after-thought updates of log statements [2, 36, 37]. Figure 2a
shows a real log enhancement patch in Squid. Here, the developers
appended a new variable into an existing log statement in order
to pinpoint the location of the null character. Third, verbose log
messages may interfere with the understanding of failure causes,
thus decreasing the efficiency of failure diagnosis. In Figure 2b,
users complained about the confusing log messages. This prob-
lem was discussed with the developers for over 150 days. Making
reference to related documents, they finally established that this
log statement was a verbose message. Its verbosity was bumped
down from level-0 (critical) to level-1 (important) to release inter-
ference. In addition, excessive log messages also increase runtime
overhead and detrimentally affect software performance [1, 8, 33].
Consequently, it is reasonable to remove or suppress verbose log
messages in order to avoid unwanted interference and unnecessary
overhead.

Facing the abovementioned challenges, this paper intends to
learn log revision behaviors from software evolution. Motivated
by code clones, we assume that log statements that share seman-
tically similar context are pervasive in software. As such, they
ought to undergo similar modifications if they are revised. In or-
der to verify our hypothesis, we conduct an empirical study us-
ing real-world log revisions. Figure 3 shows one pair of context-
similar log statements which were modified similarly. They both
printed the second reference argument of apr_dir_open() and the

1Here "version" means the internal version number (not the release version). This may
be incremented many times in one day.

Bug 2830 in Squid:
Show the NULL byte more clearly in future releases.

Revision 9142 in Squid-3.0, HttpHeader.cc:
- if(memchr(header_start,'\0', header_end- header_start)) {
+ char *nulpos;
+ if((nulpos=(char*)memchr(header_start,'\0',
+ header_end-header_start)))
{ debugs(55,1,"WARNING: HTTP header contains NULL characters {"<<
- getStringPrefix(header_start, header_end)<<"}");
+ getStringPrefix(header_start, nulpos)<<"}\nNULL\n{"<<
+ << getStringPrefix(nulpos+1, header_end)<<"}");

(a) Enhance existing log statement

Bug 2787 in Squid:
The message saying why is confusing and can quite probably be
discarded completely. Adjust the message, bumping it down out
of warnings completely.

Revision 9157 in Squid-3.0, http.cc:
default: /* Unknown status code */
- debugs(11,0,HERE<<
- "HttpStateData::cacheableReply:unexpected http status code"
+ debugs(11,DBG_IMPORTANT,"WARNING:Unexpected http status code"

<<rep->sline.status);

(b) Suppress misleading log statement

Figure 2: Examples of improving logging practices

Httpd-2.4.7 vs Httpd-2.4.9, file:htcacheclean.c,
function:remove_directory, line:1090

rv=apr_dir_open(&dirp, dir, pool);
if(APR_STATUS_IS_ENOENT(rv)){ return rv;}
if(rv!=APR_SUCCESS){
- char errmsg[120];
apr_file_printf(errfile,"Could not

- open directory %s: %s" APR_EOL_STR, dir,
- apr_strerror(rv,errmsg, sizeof errmsg));
+ open directory %s: %pm" APR_EOL_STR, dir,&rv);

(a) Modify log statement similarly to Figure 3b

Httpd-2.4.7 vs Httpd-2.4.9, file:htcacheclean.c,
function:find_directory, line:1154

rv=apr_dir_open(&dirp, base, pool);
if(rv!=APR_SUCCESS){
- char errmsg[120];
apr_file_printf(errfile, "Could not

- open directory %s: %s" APR_EOL_STR,base,
- apr_strerror(rv, errmsg, sizeof errmsg));
+ open directory %s: %pm" APR_EOL_STR, base, &rv);

(b) Modify log statement similarly to Figure 3a

Figure 3: Example of similar modifications on log state-
ments with similar logging context

return value of apr_strerror() when apr_dir_open() did not return
APR_SUCCESS. And the log variable which expressed the return
value of apr_strerror() was updated to the pointer of return value
of apr_dir_open(). Based on this observation, we design and imple-
ment LogTracker to mine the correlation between logging context
and modifications from historical log revisions. Since we propose
logging context description model (LCDM) as an enhanced model of
logging context, LogTracker can predict more intricate log revisions
(see Table 5) that cannot be covered by existing tools (see section
2.3). In summary, this paper makes the following contributions:

179

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

LogTracker: Learning Log Revision Behaviors Proactively from Software Evolution HistoryICPC ’18, May 27–28, 2018, Gothenburg, Sweden

• Empirical study on log revisions. The results of this study
show that around 80.3% of context-similar log revisions be-
long to similar modifications. This observation has validated
the guiding significance of historical log revisions.

• A proactive log revision tool. Due to an enhanced modeling
of logging context, LogTracker can predict intricate log re-
visions with the log revision rules 2 mined from software
evolution.

• Validation of the effectiveness of LogTracker. By applying
generated rules to the latest version of subject projects, Log-
Tracker identifies 199 instances of log revisions. So far, we
have reported 25 of them, and 6 have been accepted.

The rest of paper is organized as follows. Section 2 summarizes
the findings of the empirical study. Section 3 illustrates the design
overview and implementation details of LogTracker. Section 4 eval-
uates the effectiveness, precision and recall of LogTracker. Section
6 presents the related work. Lastly, we conclude our work in section
7.

2 MOTIVATION
In this section, we conduct an empirical study on eight open-source
projects. In order to verify our hypothesis, we answer the following
three research questions (RQ).

RQ1. How pervasive are log revisions? It is acknowledged
that software projects evolve with bug fixes and feature updates
[28, 31]. Due to the high log density, it is unavoidable that logging
code co-evolves with bug fixes or feature updates. This research
question targets at quantitatively evaluating the proportion of log
revisions in software evolution.

RQ2. What are the characteristics of log revisions? Log re-
visions can be classified into multiple sub-categories according
to edit types (e.g., insert, delete, update) and edited components
(e.g., function name, variable, static content). We propose this re-
search question to characterize the distribution of different revision
scenarios.

RQ3. How many context-similar log revisions are modi-
fied similarly? Previous study [23] indicated that around 10% to
30% of the code in large projects belongs to clone code, and that 36%
to 38% of clone genealogies consist of clone instances that have been
systematically modified. Motivated by this observation, we assume
that context-similar log statements are pervasive in software and
deserve similar modifications if they are revised. In order to verify
our hypothesis, this research question is proposed to measure the
proportion of context-similar log revisions in evolution and how
many context-similar log revisions are modified similarly.

2.1 Experimental Setup
This empirical study is conducted on eight open-source projects in
C/C++ languages. They are Httpd [14], Git [6], Mutt [22], Rsync
[7], Collectd [5], Postfix [34], Tar [11], Wget [12]. Each of these has
a development history of more than 13 years. This improves the
reliability and validity of this research study.

Table 1 lists several metrics of these subject projects. Among
these indicators, the line of code (LOC) is measured using SLOC-
Count [26] in order to eliminate comments and empty lines. The
2In the following sections, we will call these "rules" for simplicity.

Table 1: Subject Software

Software Description LOC LLOC LOC/
LLOC

Httpd 2.4.27 Web server 188,360 12,960 15
Git 2.9.5 Version control system 429,166 7,318 59
Mutt 1.9.1 E-mail client 93,527 1,430 65
Rsync 3.1.2 File synchronization 47,720 200 239
Collectd 5.8.0 Perfomance collector 97,475 817 119
Postfix 3.2.4 E-mail server 118,219 8,265 14
Tar 1.3 Archive management 77,310 822 94
Wget 1.19.2 File retriever 84,678 1,642 52
Total 1,136,455 33,454 34

line of logging code (LLOC) is the total number of lines occupied
by log statements3. The final metric evaluates the ratio of LOC to
LLOC and is inversely proportioned to log density. On average, one
line of logging code appears for every 34 lines of code. This result is
consistent with the findings of previous study [2, 36] and indicates
a high log density. In addition, the diversity of these indicators
(especially log density) increases the universality of our research.

In order to collect as many log revisions as possible, we crawl
all available versions of subject projects and generate patches au-
tomatically by running Diffutils [10] on neighboring versions. For
each patch, its containing hunks 4 are roughly filtered using regex
to select hunks that contain log statements. The regex pattern used
here is based on log functions that are recognized by traditional
methods [35, 39]. All selected hunks are then passed to GumTree
[9, 17] which generates the syntactical edit scripts. We use these
edit scripts to identify hunks that modified log statements (i.e., log
hunks) rather than empty lines or comments. The above processes
produce the final syntactical revisions of the log statements, which
serve as the input for this data research.

The study methodology and main findings of our three RQs are
explained in the following three subsections.

2.2 RQ1: How Pervasive are Log Revisions?
In order to capture the pervasiveness of log revisions in software
evolution, we evaluate one indicator that have been commonly used
by previous studies [2, 36].

We measure the relative churn rate of the logging code in com-
parison to the entire code. The formula for this is as follows.

Relative churn rate =
Churn rate o f the loддinд code

Churn rate o f the entire code

Churn rate o f the loддinд code =
Churned LLOC

LLOC

Churn rate o f the entire code =
Churned LOC

LOC

(1)

As shown in Figure 4, the average churn rate of the logging code
is 1.8 times over the churn rate of the entire code. This data is
consistent with previous studies [2, 36] and indicates that logging
code is modified at least as frequently as the entire code. This

3Logging statements are recognized by regex patterns which are explained in next
paragraph
4Ahunk is the basic unit in a patch. It begins with range information and is immediately
followed with the line additions, line deletions, and any number of the contextual
lines.

180

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Shanshan Li, Xu Niu et al.

Figure 4: Churn rate of logging code and entire code

Figure 5: Distribution of modifications of log variables (left)
and modifications of static content (right)

finding emphasizes the demand for improving logging practices
and reveals the potential offered by learning log revision behaviors
from historical modifications.

2.3 RQ2: What are the Characteristics of Log
Revisions?

One log statement (e.g., print("value of variable a is %d", variable_a))
consists of three components: log function (e.g., print), variables
(e.g., variable_a) and static content (e.g., "value of variable a is
%d"). In a similar fashion to previous works [2, 36], we divide log
revisions into five categories by combining edit types with edited
components. These categories are log insertion, log deletion, update
of log function, modification of log variables and modification of
static content.

To identify the category for given log revisions, we design and
implement a simple classifier. This utilizes syntactical edit scripts
that are generated by GumTree to decide what components of the
log statements have been modified. We sample 100 log revisions
and manually justify the correctness of automatic classification. As
it turns out, the accuracy of this classifier is 94.0%. With the help
of this classifier, we characterize the distribution of log revisions
among the five categories and display it in Table 2.

Generally speaking, the insertion, deletion, and update of log
statements happen relatively frequently during software evolution.
Among the five categories, the deletion of log statements occurs
most infrequently, while the modifications of variables and static
content happenmost frequently. As such, we refine themodification
of variables and static content into eight sub-categories, whose
distribution characteristics are shown in Figure 5. Almost half of the
modifications made to variables and static content are deletions and
updates, which have not been covered by previousworks [35, 37, 39].
This proves the necessity of mining rules from software evolution.

Figure 6: Pervasiveness of similar modifications among
context-similar log revisions

2.4 RQ3: How Many Context-Similar Log
Revisions are Modified Similarly?

To capture the pervasiveness of context-similar log revisions, we
evaluate the proportion of context-similar log revisions to all log
revisions. As a prerequisite, we automatically classify log revi-
sions that share semantically similar context to produce context-
similar log revision groups. Following this, we compute the number
of context-similar log revisions by summarizing all instances in
context-similar log revision groups. Table 3 displays the detailed data.
On average, 51.0% of historical log revisions share semantically
similar logging context. That is to say, a comprehension of log revi-
sion behaviors may allow us to predict half of the revisions to log
statements. This result indicates the potential effectiveness of rules
that are mined from software evolution history.

Additionally, we measure the proportion of similar modifications
in context-similar log revisions. We first classify log revisions that
not only share similar logging context, but also belong to similar
modifications, thus generating modifications-similar log revision
groups. From this, it is obvious that the modifications-similar log
revision groups are a subset of context-similar log revision groups,
and that the ratio of the former to the latter is positively related
to the proportion of similar modifications in context-similar log
revisions.

As shown in Figure 6, on average, 80.3% of the context-similar
log revision groups show similar modifications. This result validates
our assumption that log statements with semantically similar con-
text deserve similar modifications. Hence, it is reasonable to apply
modifications that are learned from historical log revisions to log
statements that share semantically similar context with historical
revision behaviors.

3 DESIGN AND IMPLEMENTATION
3.1 Overview
In order to guide log revisions, this paper designs and implements
LogTracker, which can mine the correlation between logging con-
text and log modifications. In this section, we detail the implemen-
tation of LogTracker.

As shown in Figure 7, LogTracker consists of two main phases.
The first phase involves mining rules from software evolution.
When given one log revision, LogTracker should first analyze the
semantics of the logging context and retrieves log modifications.
These then serve as input when generating rules. In the second
phase, LogTracker suggests log modifications for code by applying

181

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

LogTracker: Learning Log Revision Behaviors Proactively from Software Evolution HistoryICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Table 2: Distribution of log insertion, log deletion, update log function, variables and static content

Software Total Log Insertion Log Deletion Update of
log function

Modification
of variables

Modification
of static content

Httpd 5,347 1,140 (21.3%) 553 (10.3%) 579 (10.8%) 4,252 (79.5%) 3,725 (69.7%)
Git 2,002 405 (20.2%) 224 (11.2%) 550 (27.5%) 1,768 (88.3%) 588 (29.4%)
Mutt 322 71 (22.0%) 44 (13.7%) 91 (28.3%) 179 (55.6%) 128 (39.8%)
Rsync 557 78 (14.0%) 27 (4.8%) 192 (34.5%) 312 (56.0%) 73 (13.1%)
Collectd 635 133 (20.9%) 46 (7.2%) 310 (48.8%) 277 (43.6%) 158 (24.9%)
Postfix 2,222 913 (41.1%) 219 (9.9%) 269 (12.1%) 1,222 (55.0%) 909 (40.9%)
Tar 429 116 (27.0%) 58 (13.5%) 108 (25.1%) 270 (62.9%) 198 (46.1%)
Wget 730 216 (29.6%) 43 (5.9%) 102 (14.0%) 564 (77.3%) 300 (41.1%)
Total 12,244 3,072 (25.1%) 1,214 (9.9%) 2,201 (18.0%) 8,844 (72.2%) 6,079 (49.7%)

Table 3: The ratio of context-similar log revisions (T: Total
log revisions, C: Context-similar log revisions)

Software T C Ratio Software T C Ratio

Httpd 5,347 2,733 51.1% Collectd 635 424 66.8%
Git 2,002 868 43.4% Postfix 2,222 1,200 54.0%
Mutt 322 103 32.0% Tar 429 184 42.9%
Rsync 557 393 70.6% Wget 730 338 46.3%
Total 12,244 6,243 51.0%

rules. In summary, there are four modules in LogTracker, detailed
below.

Extracting the semantics of logging context. This module
analyzes the semantics of logging context for log statements. Since
LogTracker aims to suggest modifications for log statements that
share similar logging context, the accuracy of this module seriously
affects the accuracy of the whole tool. In section 3.2, we illustrate
the design and implementation details of this module.

Retrieving log modifications. This module generates both
syntactical and textual edit scripts in order to represent log modifi-
cations. Section 3.3 explains how we generate these edit scripts.

Mining log revision rules. In this module, historical log revi-
sions are classified into multiple groups according to their logging
context and log modifications. One group is treated as one rule. One
rule consists of two elements: logging context and modifications.
This indicates that those log statements that fall under the logging
context deserve such modifications. The details of how the rules
are produced are illustrated in section 3.4.

Applying log revision rules. This module applies the learned
rules to code snippets by detecting semantically similar logging
context. More details are provided in section 3.5.

3.2 Extracting the Semantics of Logging
Context

As mentioned above, the understanding of the semantics of logging
context seriously affects the accuracy of any recommendations. This
subsection illustrates how LogTracker extracts logging context.

3.2.1 Semantics of Logging Context. It is worth noting that un-
derstanding the semantics of logging context is challenging. First,
Logging context with similar semantics may correspond to sev-
eral syntactical representations. In Figure 8a and 8b, the two log
statements both print messages when the return value of select()

Phase 1: Mine log revision rules

Phase 2: Apply log revision rules

Extract semantics of
logging context

Retrieve log
modifications

Extract semantics of
logging context

Mine log
revision rules

Log revisions
in evolution

New code
snippet

Log revision
rules

Apply log
revision rules

New log
modifications

Figure 7: Architecture of LogTracker

is negative and errno is not EINTR. That is to say, the semantics
of these two logging context are similar, but differ in syntactical
structures. In this case, traditional algorithms [16, 19, 20] that ap-
proximate semantics using syntactics may fail to recognize some
semantically similar logging context. Second, the length of logging
context is usually so short that traditional algorithms [16, 19, 20]
may raise false alarms. While the two log statements in Figure 8c
and 8d share similar syntactical structures, their semantics vary
a great deal. Specifically, the log statement in Figure 8c prints log
messages when the return value of gfi_unpack_entry() is false while
the log statement in Figure 8d prints messages when the return
value of loopup_object_buffer() is false.

In summary, traditional algorithms that describe the semantics
of context of functional code fail when used on logging context. To
overcome this challenge, we design LCDM to accurately describe
the semantics of logging context.

3.2.2 Logging Context Description Model. Logging context is
generally made up of twomain components: branch statements that
indicate under what conditions the log message should be printed,
and log statements that describe what variables to output. In this
case, the task of understanding the semantics of logging context
can be split into a comprehension of the branch statements and
the log statements. Consequently, we define the Logging Context
Description Model as a 2-tuple m=<c,v>, where c models the check
conditions and v models the log variables.

We notice that both branch statements and log statements consist
of variables. These variables usually relate to functions according to
data dependence. There are three types of data dependence in total.
We call them type 1, type 2 and type 3 for simiplicity, and assign
corresponding postfixes. Type 1 dependence expresses write depen-
dence through the return value of functions (e.g., rv=fun()) and its
postfix is "ret". Type 2 indicates write dependence on function by

182

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Shanshan Li, Xu Niu et al.

Software: Postfix, File: util/poll_fd.c
switch (select(fd + 1, read_fds, write_fds, &except_fds, tp)) {
case -1:
if (errno != EINTR)
msg_fatal("select: %m");

(a) One log statement that shares similar logging context with Figure 8b

Software: Postfix, File: util/events.c
event_count = select(event_max_fd + 1, &rmask, &wmask, &xmask, tvp);
if (event_count < 0) {
if (errno != EINTR)
msg_fatal("event_loop: select: %m");

(b) One log statement that shares similar logging context with Figure 8a

Software: Git, File: fast-import.c
buf = gfi_unpack_entry(myoe, &size);
if(!buf)
die("Can't load tree %s", sha1_to_hex(sha1))

(c) One log statement that shares different logging context with Figure 8d

Spftware: Git, File: builtin/unpack-objects.c
obj_buf = lookup_object_buffer(obj);
if(!obj_buf)
die("Whoops! Cannot find object '%s'", sha1_to_hex(obj->sha1));

(d) One log statement that shares different logging context with Figure 8c

Figure 8: Real-world log statements used to explain chal-
lenges in extracting semantics of logging context

reference parameter (e.g., fun(&a)) and its postfix is "arg_index_ret"
5. Type 3 represents read dependence on function by parameter (e.g.,
fun(a)) with the postfix as "arg_index". For example, the variable
buf in Figure 8c has a type 1 dependence on gfi_unpack_entry().

Since the semantics of these related functions (i.e., f) indicates
the semantics of variables contained by branch statements or log
statements, LCDM utilizes these related functions to express the se-
mantics of the check conditions and the log variables. Each variable
of c and v is represented as the concatenation of related function
name and a postfix that indicates the dependence type.6

In order to aid understanding, we illustrate LCDM with the ini-
tial code snippet of the patch in Figure 3b as an example. Its initial
code snippet is:
rv = apr_dir_open(&dirp, base, pool);
if(rv!=APR_SUCCESS){ ...
apr_file_printf(errfile,"Could not open directory %s: %s"

APR_EOL_STR, base, apr_strerror(rv, errmsg, sizeof errmsg));

The LCDM of this logging context equals to <[apr_dir_open_ret],
[apr_strerror_ret, null, apr_dir_open_arg_2_ret] >. It indicates that
this log statement will output a return value of apr_strerror() and
the second reference argument of apr_dir_open() if the return value
of apr_dir_open() is not APR_SUCCESS.

3.2.3 Extracting LCDM. The primary taskwhen extracting LCDM
is to identify c and v. We extract the related functions of branch
statements and log statements to express the semantics of the check
condition (i.e., c) and log variables (i.e., v). Algorithm 1 explains
how we extract related functions for one statement (i.e., branch
statement or log statement).
5"Index" means the index of this parameter in function. For example, in fun(a, b), the
index of a is 1 and the index of b is 2.
6The variable is represented as null if there is no related functions.

Algorithm 1 Extracting related functions for one statement
Require: AST of this statement, PDG of function body
Ensure: list of related functions F={ f | f is related f unction}
1: F = []
2: for each node n in statement s do
3: f = NULL
4: if n invokes a function f

′

then
5: f =concat(name of f

′

, ret); goto line14;
6: from s traverse upward PDG
7: if n has type 1 dependence on function f

′

then
8: f =concat(name of f

′

, ret); goto line 14
9: if n has type 2 dependence on function f

′

then
10: f =concat(name of f

′

, arд_index_ret); goto line 14
11: from s traverse downward PDG
12: if n has type 3 dependence on function f

′

then
13: f = concat(name of f

′

, arд_index); goto line 14
14: F .add(f)
15: return

We break down the extraction of related functions for one state-
ment into the extraction of related functions for its descendant
nodes. Given the syntactical structure of one statement (AST7 in
this paper), this algorithm processes each node in breadth-first or-
der. For nodes that indicate an invocation of functions, invoked
functions are identified as type 1 related to the statement. For other
nodes, the program dependence graph (PDG) of the function body
is traversed upward from the input statement to search for type
1 or type 2 dependence. If it succeeds, program exits with related
functions; otherwise, it traverses downward the PDG to search for
type 3 dependence. If type 3 dependence is not found, the related
function of this node is marked as null.

We explain the extraction of LCDM with the same instance in
section 3.2.2. The branch statement and its dependent statement
are:
rv = apr_dir_open(&dirp, base, pool);
if(rv != APR_SUCCESS)

This branch statement only contains one variable node. It has a
type 1 dependence on function apr_dir_open(). Thus, the value of c
is [apr_dir_open_ret]. The log statement is:
apr_file_printf(errfile, "Could not open directory %s: %s"
APR_EOL_STR, base, apr_strerror(rv, errmsg, sizeof errmsg));

This log statement consists of two variable nodes and one node
that invokes function. The node that invokes function indicates a
type 1 dependence between the log statement and apr_strerror().
The variable node with text base corresponds to type 2 dependence
on the second reference parameter of apr_dir_open(). The related
function of the variable node with text errfile is regarded as null
since we cannot find any related functions. Thus, the value of v is
[apr_strerror_ret, null, apr_dir_open_arg_2_ret].

The extraction of LCDM demands two inputs: the syntactical
structure of the statement and PDG of the function body. The first
of these is generated by srcML [4] which translates incomplete
code into a syntactical unit. In order to retrieve PDG of the function
body, we should first trace back to the function body of modified log

7Abstract Syntax Tree

183

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

LogTracker: Learning Log Revision Behaviors Proactively from Software Evolution HistoryICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Httpd-2.0.64 vs Httpd-2.0.65, file:
modules/arch/netware/mod_nw_ssl.c, line: 668

if (!found) {
ap_log_perror(APLOG_MARK, APLOG_WARNING, 0, plog,

- "No Listen directive ... listener %s:%d",slu->addr,slu->port);
+ "No Listen directive ... listener %s:%d",
+ slu->addr, slu->port);}

Figure 9: Patch that inserted empty line in log statement

statement. To do this, we identify the location of the log statement
in the source file by analyzing the range information in the hunk.
Then, we extract the function body by traversing the ancestor nodes
of log statement. We then process the syntactical structure of the
function body to build a partial PDG, which illustrates function-
related dependencies.

3.3 Retrieving Log Modifications
Retrieving log modifications is another prerequisite when learning
log revision behaviors. This paper represents log modifications
using syntactical and textual edit scripts. The first of these is used
to select log revisions that syntactically modify log statements,
while the second represents log modifications using differential
token lists to make digitalization easier.

3.3.1 Syntactical Edit Scripts. Syntactical edit scripts express the
differences between the syntactical structures of two code snippets.
They are used to eliminate the interference from comments or
empty lines. For example, the patch in Figure 9 inserted an empty
line among the static content and log variables, but did not modify
the syntactics of the log statement.

In this paper, we generate these differences using GumTree that
implement a state of art tree differentiating algorithm. The syntac-
tical edit scripts for the log statement in Figure 3b are shown as
follows.

Delete a node that invokes apr_strerror().
Insert a variable node whose text is &rv.
Update text of one literal node from "...%s" to "...%pm".

3.3.2 Textual Edit Scripts. To aid in numeralization, this paper
approximates syntactical edit scripts using textual edit scripts. Dur-
ing implementation, old and new log statements are first split into
lists of string tokens through a widely used method [21, 25]. Then,
common tokens are eliminated to generate differential lists from
two token lists. Here, we name these differential lists as textual
edit scripts. It is then easy to digitalize these tokens with hash
algorithms [13].

The textual edit scripts for the patch shown in Figure 3b are [s,
apr_strerror, errmsg, sizeof, errmsg] and [pm]. For this example, the
textual edit scripts approximate syntactical edit scripts well. We
have manually verified the accuracy of this approximation through
sampling. The result indicates that textual edit scripts work well
in most of the time, but are inaccurate when the modifications
contain the movement of syntactical nodes. Fortunately, movement
of log variables or static content seldom happens according to the
distribution characteristics shown in Figure 5.

3.4 Mining Log Revision Rules
One rule consists of two parts: logging context and log modifica-
tions. By combining LCDM and edit scripts, we can define the rule

as 3-tuple r = <c,v,e >, where c, v composes LCDM, which describes
the semantics of logging context, and e is edit scripts (including
syntactical edit scripts and textual edit scripts). One rule indicates
that, when given a log statement, if its context is similar to <c,v >,
it deserves modifications represented by e.

In order to mine rules, we run a cluster algorithm [32] on histori-
cal log revisions with a feature vector consisting of LCDM and edit
scripts. Each generated group is recognized as one rule. Every in-
stance in a group can be treated as supporters of this rule, which is
positively related to its reliability. Conservatively, we select groups
that have at least two voters as effective rules (In the following
sections, we take effective rules as "rules" for simplicity).

3.5 Applying Log Revision Rules
Asmentioned in section 2.3, log revisions during software evolution
fall under a number of categories. As such, generated rules also
involve various types of log modifications, such as log insertion, log
deletion, and update of log function. Specifically, rules that modify
existing log statements (i.e., "M" in Tables) and rules that insert new
log statements (i.e., "I" in Tables) vary in application procedures.

Rules that modify existing log statements indicates that log state-
ments whose logging context is similar to their rule context (i.e.,
<c,v >) deserve the specified modifications (i.e., e). When given
code, to apply this sort of rules, we first recognize the inner log
statements, and extract their logging context. Then, when deciding
which rule should be applied to which log statement, we pairwise
calculate the similarity between the candidate logging context and
the rule context. For each candidate pair, we further manually val-
idate the feasibility of these modifications on the log statement
before recommending it to the developers.

In contrast, rules that insert new log statements only indicate that
there should be one log statement under the rule context (i.e.,<c,v
>). When applying these rules to code, we judge whether all related
functions in the rule context are contained in the call set, which
consists of all functions invoked in code. If true, we further validate
the necessity of inserting new log statements before informing the
developers.

4 EVALUATION
This section evaluates the performance of LogTracker from three
aspects. Section 4.1 measures its effectiveness on suggesting missed
log revisions. Section4.2 evaluates its precision and recall when
predicting log revisions. In section 4.3, we measure the accuracy of
LCDM by locating context-similar log revisions with LogTracker.
In addition, we compare LCDM with DECKARD+ [16, 18].

4.1 Effectiveness of LogTracker
As mentioned by previous work [3, 28, 31], developers may miss
some systematic edits. By learning log revision behaviors from
historical log revisions, LogTracker can detect missed log revisions
that share similar logging context with rules. This section evaluates
how effective LogTracker is at detecting log revisions that are
missed by developers.

First, we train LogTracker with historical log revisions to gener-
ate rules (i.e., 871 rules shown in Table 4 and 5) Then, those rules
are applied to the latest version of the eight subject projects to

184

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Shanshan Li, Xu Niu et al.

Table 4: Rules learned by LogTracker

Software M I Total Software M I Total

Httpd 234 66 300 Collectd 78 23 101
Git 20 123 143 Postfix 128 84 212
Mutt 17 2 19 Tar 17 5 22
Rsync 35 1 36 Wget 25 13 38
Total 214 657 871

Table 5: Distribution of rules among five categories

Category Rule Ratio Category Rule Ratio

Log insertion 250 28.7% Log deletion 111 12.7%
Update of
log function 176 20.2% Modification

of variables 471 54.1%

Modification
of static content 258 29.6%

Table 6: Recommendations proposed by LogTracker

Software M I Total Software M I Total

Httpd 25 74 99 Collectd 8 22 30
Git 32 9 41 Postfix 14 15 29
Total 79 120 199

detect missed log revisions. At last, by manually validating the cor-
rectness of recommended results, we summarize 199 true positives
(see Table 6) from four software.

We are in the process of reporting those recommendations to
developers for feedback. Up to now, we have reported 25 instances.
6 (24.0%) instances have been accepted by developers, 5 (20.0%)
instances are under discussion, 1 (4.0%) instance has been rejected
for too many dependent modifications, 13 (52.0%) instances (10
instances are detected by the same rule) has been rejected due to
the out-date rules.

Here, we illustrate an accepted instance. This instance is detected
by the rule generated from four log revisions in Git-2.3.10. One is
from file builtin/merge-tree.c with code as follows.
- xdi_diff(&src, &dst, &xpp, &xecfg, &ecb);
+ if (xdi_diff(&src, &dst, &xpp, &xecfg, &ecb))
+ die("unable to generate diff");
free(src.ptr);

This revision inserted check of the return value of xdi_diff() and
one log statement. Hence, LogTracker learns a rule that xdi_diff()
should be checked and logged. By applying this rule, LogTracker
detects the missed log revision in Git-2.14.2 builtin/rerere.c. The
initial code is as follows.
ret = xdi_diff(&minus, &plus, &xpp, &xecfg, &ecb);
free(minus.ptr);

xdi_diff() is invoked without validating the return value. We re-
port this to the mailing list of Git and the developer accepted this
instance.

There are two main reasons for the rejected instances. First, log
revisions are related to other code and may cause too many depen-
dent modification ("That’s much bigger than a single-line change,
since groups of dependent functions need to be converted.").

Second, rules learned from reverted log revisions are out of
date. In a similar fashion to other commitments, log revisions may
be reverted during software evolution. As such, the reverted log

Table 7: Precision and recall of LogTracker

Software train:test = 5:5 train:test = 8:2

P R F P R F

Httpd 96.1% 17.4% 29.5% 88.2% 33.6% 48.7%
Git 92.2% 19.1% 31.7% 84.9% 37.2% 51.8%
Collectd 95.0% 25.8% 40.6% 64.4% 55.3% 59.5%
Postfix 92.7% 25.1% 39.6% 83.5% 47.2% 60.3%
Total 93.3% 19.7% 32.5% 84.9% 38.1% 52.6%

revisions are not suitable to latest software. For example, two re-
visions in Postfix-2.3.18 updated log function from msg_panic() to
msg_warn() when return value of dict_handle() is 0. These revision
was reverted in Postfix-2.4.0. LogTracker learns one rule from the
former revisions and detects two missed revisions in the latest ver-
sion of Postfix. Although the learning and applying phases work
well, these revisions are rejected for the out-date rule 8("It would be
a mistake to replace panic calls with warning calls").

4.2 Precision and Recall of LogTracker
The aim of LogTracker is to guide intricate log revisions by learning
from software evolution. This section evaluates the precision (P)
and recall (R) of LogTracker when predicting log revisions. For ease
of comparison, we calculate the value of Fscore (F).

We randomly split historical log revisions into train and test data
with a ratio of 5:5 and 8:2. Then LogTracker learns revision rules
from the train data and predicts log revisions by applying these
rules. We compare the predicted log revisions with train and test
data, thus calculating the value of precision, recall and Fscore with
following formulas.

Precision =
Predicted loд revisions in test data

Predicted loд revisions
(2)

Recall =
Predicted loд revisions in test data

Loд revisions in test data
(3)

Fscore =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

Above process is repeated five times to get the average value.
Table 7 displays the precision and the recall of four subject

projects9 in response to two ratios of train data. Generally speaking,
the precision is high in both cases and indicates that LogTracker is
a reliable tool when guiding log revisions. Comparatively, the recall
of LogTracker is lower. LogTracker predicts 19.7% log revisions
with half historical log revisions. In addition, as the ratio of train
data increases, the recall rises from 19.7% to 38.1%. Thus, this result
is acceptable as a first step towards guiding intricate log revisions.

There are two main reasons for the low recall. First, as we men-
tioned in section 2.4, only 51.0% of historical log revisions share
similar logging context. That is to say, for our methods, the theoret-
ical value of recall is 51.0%. Second, in this experiment, LogTracker
is trained with partial historical data, it is unavoidable to miss some
rules and generate a lower recall.

8Here "out-date rule" indicates one rule that is out of date.
9As shown in Table 3 and 4, log revisions and rules of other four projects are so few
that we do not show data of the four software in this experiment.

185

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

LogTracker: Learning Log Revision Behaviors Proactively from Software Evolution HistoryICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Table 8: Groups of similar log revisions

Software M I Total Software M I Total

Httpd 38 15 53 Collectd 20 5 25
Git 24 14 38 Postfix 34 11 45
Mutt 7 0 7 Tar 5 1 6
Rsync 7 0 7 Wget 8 4 12
Total 143 50 193

Table 9: Accuracy of locating context-similar log revisions

Software M I Software M I

Httpd 97.4% 86.7% Collectd 90.0% 80.0%
Git 91.7% 92.9% Postfix 94.1% 72.7%
Mutt 100.0% - Tar 100.0% 100.0%
Rsync 100.0% - Wget 100.0% 75.0%
Total 95.1% 84.0%

4.3 Accuracy of LCDM
As the key technology, the accuracy of LCDM seriously affects
the precision of LogTracker. In order to evaluate the accuracy of
LCDM, we measure how accurate LogTracker is at locating the
context-similar log revisions, and take a comparison experiment
between LCDM and DECKARD+.

4.3.1 Accuracy of Locating Context-Similar Log Revisions. We
build an oracle test suit from eight subject projects. One author of
this paper manually selects groups of log revisions that were simi-
larly modified from all historical log revisions. It takes the author
almost 600 hours to select these groups out. Then another expert
who does not participate in the design and implementation of Log-
Tracker validates the similarity of log revisions that belong to the
same group. We finally identify 193 groups of similar log revisions
(see Table 8). Each group of similar log revisions corresponds to
a test case. The input is one instance of this group, while the test
oracles are the other instances.

For generating rules, we randomly select one instance from each
group to train LogTracker. We then apply these rules to historical
versions of subject software, and collect candidates detected by
LogTracker. By comparing candidates with test oracles and manual
validation, we calculate the accuracy 10 when locating context-
similar log revisions.

Table 9 displays the accuracy for two sorts of rules in eight
subject projects. For rules that modify existing log statements, the
accuracy is 95.1%. This is consistent with the high precision in
section 4.2, and indicates that LCDM is accurate when describing
the semantics of logging context.

These false positives are caused by related functions that are
widely used. That is because related functions (e.g., strcmp) that
are widely used cannot express the semantics of logging context
effectively. The inaccurate comprehension of logging context raises
further false alarms when locating context-similar log revisions.

In addition, the accuracy for rules that insert new log statements
is evidently lower than the accuracy for rules that modify existing
log statements. We manually check all the false positives and work
out that there are two main cases.

10As mentioned in section 4.1, developers may miss log revisions. As such, recall of
this experiment is not reliable and we do not mention it here.

Httpd-2.2.34, file: worker.c
static apr_status_t create_wakeup_pipe(apr_pollset_t *pollset){
...
return apr_pollset_add(pollset,&pollset->wakeup_pfd);}

(a) False positive caused by return statement

Httpd-2.2.34, file: pollset.c
static void *listener_thread(apr_thread_t *thd, void * dummy){
...
for(lr=ap_listeners;lr!=NULL;lr=lr->next){ ...
(void)apr_pollset_add(pollset, &pfd);} ...}

(b) Flase positive caused by loop

Figure 10: False positives in application of rules that insert
new log statements

Figure 11: Accuracy of LogTracker and LogTracker-
DECKARD

First, the related functions whose return value should be checked
and logged, are invoked in the return statement. In Figure 10a, the
related function, apr_pollset_add(), is called in the return statement.
Hence, the necessity of checking and logging the return value
is switched to the caller (i.e., create_wakeup_pipe()). Thus, this
candidate is recognized as one false positive, if the caller is more
possible to be checked and logged. The possibility of being logged
for one function is measured using log rate. Its formula is as follow.

Loд rate =
Times o f beinд loддed

Times o f beinд invoked
(5)

Second, the related function is invoked inside the loop structure. In
Figure 10b, the related function, apr_pollset_add(), is called inner
the "for" structure. It is too time-consuming to check and log one
non-fatal exception in every iteration. Hence, the candidate is rec-
ognized as one false positive if the exception is not fatal (e.g., The
verbosity is information or warning). The severity of one exception
depends on the verbosity of historically inserted log statements.

4.3.2 Comparison Experiment. As the algorithm in DECKARD+
is widely used to depict the semantics of code context. This section
compares LCDM with the algorithm in DECKARD+ to evaluate the
accuracy of LCDM when describing logging context. To do this, we
implement LogTracker-DECKARD by extracting the semantics of
logging context with the algorithm in DECKARD+.

We calculate the accuracy of LogTracker-DECKARD using the
oracle test suit and methods in section 4.3.1, and compare this accu-
racy with that of LogTracker. Figure 11 indicates that the accuracy
of LogTracker is higher. This result is consistent with the discus-
sion in section 3.2.3 and validates the statement that LCDM is more

186

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Shanshan Li, Xu Niu et al.

suitable to describe the semantics of logging context in comparison
to traditional algorithms.

5 THREATS TO VALIDITY
In this section, we will discuss threats to the validity of LogTracker.

Quality of Log Revisions in Software Evolution LogTracker
recommends proactive log revisions by applying rules that are
learned from historical log revisions. Consequently, the effective-
ness of LogTracker depends on the quality of log revisions in soft-
ware evolution. In fact, it is unavoidable that developers will commit
false log revisions that may adversely impact the effectiveness of
LogTracker. Thus, to assure the quality of historical log revisions,
we have selected eight open-source projects that are popular in
their respective fields and have a long development history.

Accuracy of Fuzzy Parsing Techniques Patches (incomplete
code snippets) are the main inputs for learning log revision behav-
iors. Thus, traditional static analysis techniques, which are based on
compilers, fail to effectively analyze patches. To solve this problem,
we employ fuzzy parsing techniques. Specifically, we use srcML
to generate a syntactical structure for the incomplete code and
GumTree to produce edit scripts for the two syntactical structures.
Consequently, the accuracy of LogTracker is closely related to that
of fuzzy parsing techniques. Section 4.2 has evaluated the precision
of LogTracker and indicates that the deviation is acceptable.

Accuracy of Oracle Construction For lack of benchmark, the
oracle data set used in section 4.3 is built manually. In this way,
the accuracy of that experiment is seriously affected by the cor-
rectness of manual analysis. To be conservative, we choose one
expert who has not participated in the design and implementation
of LogTracker to validate the correctness of oracle.

6 RELATEDWORK
There are three areas of research that are closely related to our
work: empirical studies on logging practices, improving logging
practices, and detecting and managing code clones.

Empirical Studies on Logging Practices Despite the impor-
tance of log statements, there are no rigorous specifications and sys-
tematic processes to guide practices of software logging [15, 29, 37].
As a prerequisite, many researchers have devoted to summarizing
the characteristics of existing logging practices. Yuan et al. [36]
quantitatively studied the logging practices of four open-source
subjects in C/C++ languages. They concluded ten impressive find-
ings and built a verbosity checker to validate the effectiveness of
their findings. Additionally, Chen et al. [2] performed a replication
study on 21 Java-based open source software and concluded several
unique characteristics of logging practices in Java-based systems.
To characterize log placements in industry, Fu et at. [15] conducted
an empirical study on two industrial software and a questionnaire
survey on 54 experienced developers. In this paper, we also perform
an empirical study on logging practices, but our focus is on the
characteristics of context-similar log revisions. In this case, our
work is supplementary of the above works.

Improving Logging PracticeWhen it comes to improving log-
ging practices, previous works mainly have addressed three main
problems, as follows. 1) Where to log. This problem concerns where
to place log statements. Errlog and LogAdvisor suggested whether

to place log statements in one code by summarizing or learning
log patterns. Loд2 and Log20 quantitatively represented the infor-
mativeness and overhead of logging practices. They recommended
runtime log placements by seeking a balance between informative-
ness and overhead. 2) What to log. This problem concerns what
variables should be output in one log statement. LogEnhancer de-
tected uncertainty variables through back-slicing and constraint
solving and appended them to log statements . 3) How to log. This
problem is about improving quality of logging code. Chen et al. [3]
summarized six anti-patterns from historical log revisions, and de-
tected logging code that belongs to anti-patterns. We diverge from
this work as we automatically mine rules from evolution history
instead of manually summarizing anti-patterns. Li et al. [24] identi-
fied whether new commitments require log modifications to reduce
after-thought updates. They mined the correlation between log
revisions and other revisions, while we aim to mine the correlation
between logging context and modifications from log revisions.

Detecting and Managing Code Clones In order to resolve
code smell and improve code practices, researchers have proposed
many clone detection and management techniques. Among clone
detection tools, CCFinder [21] and CPMiner [25] detected code
clones with token vectors that are generated by lexical parser.
DECKARD [19], DECKARD+ and CloneDetective [20] detected
code clones with features that are generated by syntactical struc-
tures. Among clone management tools, SysEdit [27] generated sys-
tematic edits by learning from historical modifications on clone
code. It recommended how to modify code, but cannot locate where
to be modified. LASE [28] automatically located and applied sys-
tematic edits by learning from at least two historical modifications
on clone code. The algorithm of describing code context in LASE de-
pended on syntactical structures, and could not accurately describe
the semantics of logging context (see examples in Figure 8a and 8b).
Thus, it is difficult to predict systematic log revisions with LASE.
REFAZER [31] utilized program synthesis [30] to automatically
locate and generate systematic edits by learning from historical
modifications. Without consideration of code context, REFAZER
is hard to recommend systematic log revisions. Above researches
on clone detection and management have motivated our design of
LogTracker which detects and manages logging code under similar
context.

7 CONCLUSIONS
Previous works ignored that logging code co-evolves with bug fixes
or feature updates. To release this problem, we propose to learn
log revision proactively from software evolution. The empirical
study figure out that logging code with similar logging context
deserves similar modifications. This finding motivates the design
and implementation of LogTracker. With an enhanced modeling of
logging context, LogTracker is able to guide intricate log revisions
that cannot be handled by existing tools.

ACKNOWLEDGEMENT
Thework described in this paper was supported by National Natural
Science Foundation of China (Project No.61690203 and U1711261);
National Key R&D Program of China (Project No.2017YFB1001802
and 2017YFB0202201).

187

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

LogTracker: Learning Log Revision Behaviors Proactively from Software Evolution HistoryICPC ’18, May 27–28, 2018, Gothenburg, Sweden

REFERENCES
[1] Matthew Arnold and Barbara G. Ryder. 2001. A framework for reducing the

cost of instrumented code. ACM SIGPLAN Notices 36, 5 (2001), 168–179. https:
//doi.org/10.1145/381694.378832

[2] Boyuan Chen and Zhen Ming (Jack) Jiang. 2017. Characterizing logging practices
in Java-based open source software projects - a replication study in Apache
Software Foundation. Empirical Software Engineering 22, 1 (2017), 330–374.
https://doi.org/10.1007/s10664-016-9429-5

[3] Boyuan Chen and Zhen Ming Jiang. 2017. Characterizing and Detecting Anti-
Patterns in the Logging Code. Proceedings - 2017 IEEE/ACM 39th International
Conference on Software Engineering, ICSE 2017 (2017), 71–81. https://doi.org/10.
1109/ICSE.2017.15

[4] Michael L. Collard, Michael John Decker, and Jonathan I. Maletic. 2013. SrcML:
An infrastructure for the exploration, analysis, and manipulation of source code:
A tool demonstration. In IEEE International Conference on Software Maintenance,
ICSM. IEEE, 516–519. https://doi.org/10.1109/ICSM.2013.85

[5] Collectd. 2017. Start page - collectd - The system statistics collection daemon.
(2017). http://collectd.org/

[6] Software Freedom Conservancy. 2018. Git. (2018). https://git-scm.com/
[7] Wayne Davison. 2018. rsync. (2018). https://rsync.samba.org/
[8] Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei Lin, Qiang

Fu, Dongmei Zhang, and Tao Xie. 2015. Log 2: a cost-aware logging mechanism
for performance diagnosis. Proceedings of the 2015 USENIX Conference on Usenix
Annual Technical Conference - USENIX ATC ’15 (2015), 139–150.

[9] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Montperrus. 2014. Fine-grained and accurate source code differencing. Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering - ASE ’14 (2014), 313–324. https://doi.org/10.1145/2642937.2642982

[10] Free Software Foundation. 2016. Diffutils - GNU Project - Free Software Founda-
tion. (2016). https://www.gnu.org/software/diffutils/

[11] Free Software Foundation. 2017. Tar - GNU Project - Free Software Foundation.
(2017). https://www.gnu.org/software/tar/

[12] Free Software Foundation. 2017. Wget - GNU Project - Free Software Foundation.
(2017). https://www.gnu.org/software/wget/

[13] Python Software Foundation. 2018. Built-in Functions-Python 2.7.14 documenta-
tion. (2018). https://docs.python.org/2/library/functions.html

[14] The Apache Software Foundation. 2017. httpd - Apache Hypertext Transfer
Protocol Server - Apache HTTP Server Version 2.4. (2017). http://httpd.apache.
org/docs/2.4/programs/httpd.html

[15] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. 2014. Where do developers log? an empirical study
on logging practices in industry. Proceedings of the 36th International Conference
on Software Engineering - ICSE ’14 (2014), 24–33. https://doi.org/10.1145/2591062.
2591175

[16] Mark Gabel, Lingxiao Jiang, and Zhendong Su. 2008. Scalable detection of
semantic clones. Proceedings of the 30th international conference on Software
engineering - ICSE ’08 (2008), 321. https://doi.org/10.1145/1368088.1368132

[17] Github. 2018. GitHub - GumTreeDiff/gumtree: A neat code differencing tool.
(2018). https://github.com/GumTreeDiff/gumtree

[18] GitHub. 2018. skyhover/Deckard: Code clone detection; clone-related bug detec-
tion; semantic clone analysis. (2018). https://github.com/skyhover/Deckard

[19] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stéphane Glondu. 2007.
DECKARD: Scalable and accurate tree-based detection of code clones. Proceedings
of the 29th International Conference on on Software Engineering - ICSE ’07 (2007),
96–105. https://doi.org/10.1109/ICSE.2007.30

[20] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. 2009. CloneDe-
tective - A workbench for clone detection research. Proceedings of the 31th
International Conference on Software Engineering - ICSE ’09 (2009), 603–606.
https://doi.org/10.1109/ICSE.2009.5070566

[21] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670. https:
//doi.org/10.1109/TSE.2002.1019480

[22] kevin8t8. 2018. The Mutt E-Mail Client. (2018). http://www.mutt.org/
[23] Miryung Kim, Vibha Sazawal, and David Notkin. 2005. An empirical study of

code clone genealogies. ACM SIGSOFT Software Engineering Notes 30, 5 (2005),
187. https://doi.org/10.1145/1095430.1081737

[24] Heng Li, Weiyi Shang, Ying Zou, and Ahmed E. Hassan. 2017. Towards just-in-
time suggestions for log changes. Empirical Software Engineering 22, 4 (2017),
1831–1865. https://doi.org/10.1007/s10664-016-9467-z

[25] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner
: A Tool for Finding Copy-paste and Related Bugs in Operating System Code.
Proceedings of the 6th conference on Symposium on Opearting Systems Design &
Implementation - OSDI ’04 (2004), 20. https://doi.org/10.1109/TSE.2006.28

[26] Slashdot Media. 2018. SLOCCount download | SourceForge.net. (2018). https:
//sourceforge.net/projects/sloccount/

[27] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Systematic editing.
Proceedings of the 32nd ACM SIGPLAN conference on Programming language
design and implementation - PLDI ’11 (2011), 329. https://doi.org/10.1145/1993498.
1993537

[28] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE : Locating and
Applying Systematic Edits by Learning from Examples. Proceedings of the 35th
International Conference on Software Engineering - ICSE ’13 (2013), 502–511.

[29] Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico Cotroneo.
2015. Industry Practices and Event Logging: Assessment of a Critical Software
Development Process. Proceedings of the 37th IEEE International Conference on
Software Engineering - ICSE ’15 (2015), 169–178. https://doi.org/10.1109/ICSE.
2015.145

[30] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework for
inductive program synthesis. ACM SIGPLAN Notices 50, 10 (2015), 107–126.
https://doi.org/10.1145/2858965.2814310

[31] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Bjorn Hartmann. 2017. Learning syntactic
program transformations from examples. Proceedings of the 39th International
Conference on Software Engineering - ICSE ’17 (2017), 404–415. https://doi.org/10.
1109/ICSE.2017.44

[32] Warren S. Sarle, Anil K. Jain, and Richard C. Dubes. 1990. Algorithms for Clus-
tering Data. Technometrics 32, 2 (1990), 227. https://doi.org/10.2307/1268876
arXiv:tesxx

[33] Benjamin H Sigelman, Luiz Andr, Mike Burrows, Pat Stephenson, Manoj Plakal,
Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper , a Large-Scale
Distributed Systems Tracing Infrastructure. Technical Report. California, USA.
https://doi.org/dapper-2010-1

[34] Wietse Venema. 2013. The Postfix Home Page. (2013). http://www.postfix.org/
[35] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, and Mm Lee. 2012. Be conserva-

tive: enhancing failure diagnosis with proactive logging. Proceedings of the 10th
USENIX conference on Operating Systems Design and Implementation - OSDI ’12
41, 6 (2012), 293–306.

[36] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. 2012. Characterizing logging prac-
tices in open-source software. In Proceedings of the 34th International Conference
on Software Engineering - ICSE ’12. 102–112. https://doi.org/10.1109/ICSE.2012.
6227202

[37] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2012.
Improving Software Diagnosability via Log Enhancement. ACM Transactions on
Computer Systems 30, 1 (2012), 1–28. https://doi.org/10.1145/2110356.2110360

[38] Xu Zhao, Kirk Rodrigues, and Michael Stumm. 2017. Log20 : Fully Automated
Optimal Placement of Log Printing Statements under Specified Overhead Thresh-
old. Proceedings of the 26th Symposium on Operating Systems Principles - SOSP
’17 (2017), 565–581. https://doi.org/10.1145/3132747.3132778

[39] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei
Zhang. 2015. Learning to log: Helping developers make informed logging deci-
sions. Proceedings of the 37th International Conference on Software Engineering -
ICSE ’15 (2015), 415–425. https://doi.org/10.1109/ICSE.2015.60

188

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:26:07 UTC from IEEE Xplore. Restrictions apply.

