
∗

∗

94

2020 IEEE/ACM 28th International Conference on Program Comprehension (ICPC)2020 IEEE/ ACM 28th International Conference on Program Comprehension (ICPC)

BugSum: Deep Context Understanding for Bug Report
Summarization

Haoran Liu, Yue Yu*, Shanshan Li, Yong Guo, Deze Wang, Xiaoguang Mao
{liuhaoran14, yuyue, shanshanli, yguo, wangdeze 14,xgmao }@nudt.edu.cn

College of Computer Science and Technology, National University of Defense technology

Changsha, Hunan, China

ABSTRACT

During collaborative software development, bug reports are dy­

namically maintained and evolved as a part of a software project.

For a historical bug report with complicated discussions, an accu­

rate and concise summary can enable stakeholders to reduce the

time effort perusing the entire content. Existing studies on bug re­

port summarization, based on whether supervised or unsupervised

techniques, are limited due to their lack of consideration of the re­

dundant information and disapproved standpoints among develop­

ers' comments. Accordingly, in this paper, we propose a novel un­

supervised approach based on deep learning network, called Bug­
Sum. Our approach integrates an auto-encoder network for fea­

ture extraction with a novel metric (believability) to measure the

degree to which a sentence is approved or disapproved within dis­

cussions. In addition, a dynamic selection strategy is employed to

optimize the comprehensiveness of the auto-generated summary

represented by limited words. Extensive experiments show that

our approach outperforms 8 comparative approaches over two

public datasets. In particular, the probability of adding controver­

sial sentences that are clearly disapproved by other developers dur­

ing the discussion, into the summary is reduced by up to 69.6%.

CCS CONCEPTS

• Software and its engineering --+ Software maintenance

tools; • Collaborative and social computing --+ Collaborative

and social computing systems and tools.

KEYWORDS

Bug Report Summarization, Deep Learning, Software Mainte­

nance, Mining Software Repositories

ACM Reference Format:
Haoran Liu, Yue Yu'. Shanshan Li. Yong Guo, Deze Wang. Xiaoguang Mao.

2020. BugSum: Deep Context Understanding for Bug Report Summariza­

tion. In 28th International Conference on Program Comprehension (ICPC

'20), October 5-6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3387904.3389272

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita­
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re­
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPC '20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7958-8/20/05 ... $15.00
https:/ /doi.org/1 0.1145/3387904.3389272

94

1 INTRODUCTION

There is a golden rule that originated in the open source movement,

i.e., given enough eyeballs, all bugs are shallow [44]. Inspired by this

rule, both open source and commercial projects [19] tend to man­

age their development tasks using bug repositories (e.g., Bugzilla 1)
or issue tracking system (e.g., Issue Tracker in GitHub 2) online. A

large number of bug reports and discussions have been accumu­

lated, which are valuable for software long-term maintenance [2]

and developer onboarding [7].

In modern software development, a bug report is usually orga­

nized in the form of as an open post with a discussion section akin

to those on social web sites [20]. When contributors find bugs in

the software, they submit bug reports asked for a basic descrip­

tion about the exposed issue using natural language [3, 1 1 , 53].

Then, other stakeholders, including project managers, maintainers

or external contributors, discuss and likely put forward different

standpoints to the issue in the form of comments. This process

evolves dynamically along with the development of the project,

i.e., the original bug report and all discussions can be read by any

stakeholder, who may evaluate and directly reply to those stand­

points with their own opinions based on the development status,

also in the form of comments. Thus, the scale of a bug report in­

creases rapidly through continuously iterative discussion [42]. Ac­

cording to our statistics, which are based on the dataset described

in Section 2, 25.9% ofbug reports contain more than 15 comments,

while each comment contains 39 words on average. Therefore, an

accurate and concise summary can effectively reduce the time con­

sumed in wading through all posted comments [42]. While modern

bug repositories (e.g., Debian 3) encourage contributors to manu­

ally write a summary for each bug report, only 2.80% of the bug

reports in our dataset were found to have been equipped with ar­

tifact summaries using 29 words on average, which is insufficient

to furnish stakeholders with the required information.

Bug summarization has been proven to be a promising

method [43] of auto-generating summaries by selecting salient sen­

tences based on supervised [17, 43] or unsupervised [22, 30, 52]

machine learning techniques. The performance of traditional su­

pervised approaches relies heavily on the quality of the train­

ing corpus [27] , which requires massive manual effort and an­

notators with certain expertise. Additionally, existing unsuper­

vised approaches rely excessively on word frequency, which tends

to introduce extra bias for two main reasons: 1) bug reports

are conversation-based texts with frequent evaluation behav­

iors [27], i.e., the discussions are cross-validated among different

1 https:/ /www.bugzilla.org/
2https://help.github.com/en/github/managing-your-work-on-github/about-issues
3 https :/ /www.de bian.org/B ugs/ server-control #summary

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

•

•

•

95

stakeholders according to their own experiences, and some com­

ments will be disapproved by other participators; 2) a group of com­

ments supporting the same standpoint have similar semantic fea­

tures, so word frequency-based approaches would be more likely

to introduce redundant sentences (i.e., sentences that are different

but represent a similar topic) into the auto-generated summary,

which will decrease its comprehensiveness due to the word length

limitation.

Accordingly, in this paper, we propose a novel unsupervised ap­

proach of bug report summarization, called BugSum. Firstly, we

use a trained auto-encoder network to extract semantic features by

converting the sentences to vectors. Meanwhile, we design a novel

metric (i.e., believability score) to measure the degree that a sen­

tence has been approved against disapproved among the interac­

tive discussions. Then, for each sentence, we merge the believabil­

ity score into the vector to reduce the possibility of controversial

sentences being selected into the summary. Finally, we optimize

the summary auto-generation process using a dynamic selection

strategy that considers both informativeness and comprehensive­

ness.

We compared BugSum with eight comparative summarization

approaches over two public datasets. Experimental results demon­

strate that our work outperforms comparative approaches in terms

of the metrics that have been widely used in previous studies.

The key contributions of this paper include:

• We proposed a novel unsupervised bug summarization ap­

proach by integrating the auto-encoder network, sentence

believability assessment and dynamic selection.

• The probability of adding controversial sentences, which are

clearly disapproved by other developers during discussion,

into the summary is reduced by up to 69.6% according to

our careful manual evaluation.

• We design extensive evaluations on two public datasets to

demonstrate that our approach achieves the state-of-the-art

performance. It outperforms 8 comparative approaches by

up to 0.166 and 0.117 in terms ofF-score and Rouge-1 metrics

respectively.

2 MOTIVATION

A high-quality bug report can comprehensively expose the soft­

ware bug per se, while also recording all participants' discussions

according to the following process. A contributor first describes

the issue and submits it as the description part of a bug report us­

ing natural language. Subsequently, other stakeholders, including

project managers, maintainers or external contributors, discuss the

proposed issue in the form of comments. The content of these dis­

cussions include aspects such as steps to reproduction, issue loca­

tion, and possible solutions. During the discussion, different stand­

points are likely to be proposed, e.g., comment#8 and comment#ll
in Fig. 1. These standpoints can be read by other stakeholders, who

may evaluate and directly reply to these standpoints to express

their own opinions (i.e., evaluation behaviors), also in the form

of comments. Such interaction structure has been referred to as

conversation-based text in previous work [17, 43]. Here, we refer

to a group of comments interconnected by evaluation behaviors

95

as a conversation. It has been proven that sentences in conver­

sations contain a large amount of important information such as

observed bug behaviours, steps to bug reproduction, and possible

solutions [1 , 27]. This information is not contained in the descrip­

tion, and need to be included into the summary.

In order to develop a thorough understanding of the conversa­

tions in bug reports, we analyzed 3 1 ,155 bug reports from 7 popular

OSS projects (6,954 Hadoop, 1 , 177 ZooKeeper, 5,705 Derby, 1 ,826

Yarn, 8,876 Flink, 3,710 HDFS and 2,907 Hive). To ensure the com­

plete life-circle information ofbug reports is included, all those bug

reports are selected with the status of"Closed". We summarize our

findings in the following two aspects, i.e., believability and redun­

dancy of the sentences among conversations.

2.1 Salience and believability

Typical summarization approaches focus on identifying salient

sentences from bug reports and conversations, based on word fre­

quency [40] , predefined structure [27] and so on. However, in our

dataset, we found that 7 1.5% of the bug reports contain evaluation

behaviors that express attitudes of approval or disapproval within

their conversations, covering over 36.4% of sentences on average.

It is a significant challenge to balance the salience and believability

of these highly discussed sentences for traditional approaches.

For example, as shown in Fig. 1, the report describes a sys­

tem bug reading "Resource temporarily unavailable" in the last sen­

tence. Subsequently, Comment#8 proposes a solution, which is ap­

proved by Comment#lO but disapproved by Comment#ll. More­

over, Comment#ll explains the reason for the disapproval and pro­

poses another solution, which is approved by Comment#l3. In brief,

the standpoint in Comment#8 is controversial in the conversation.

The more a standpoint (comment) is disapproved by others, the

lower believability it has, and vice versa. In addition, we define

such comments that are disapproved by at least one other comment

as controversial comments, and the sentences within these com­

ments as controversial sentences. Words and sentences related

to the controversial comments have a relatively high appearance

in the bug report, as stakeholders may discuss the standpoint being

proposed by the controversial comment for several rounds. Thus,

controversial sentences are highly preferred by previous word fre­

quency based approaches, e.g., Centroid [40] , which would intro­

duce a significant bias into the summary.

Thus, when we attempt to generate a high-quality summary, the

salience of a candidate sentence is determined by the information

it contains (i.e., informativeness) and the extent to which the stand­

point is believable (i.e., believability).

2.2 Redundancy in Sentences

Bug reports are conversation-based text. Sentences in the same

conversation that discuss relevant standpoints tend to contain re­

dundant semantic features, such as specific domain keywords re­

lated to the discussed standpoint.

Starting from our dataset, we vectorize sentences using the Bag­

of-Words strategy, and calculate the cosine similarity to measure

the semantic similarity between sentences. The result shows that,

on average, sentences in the same conversation are 17.4% more sim­

ilar than sentences spread in different conversation. This means

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

i Si

96

Description
Upgrading packages that use debconf sometimes fai l with the following error :
ddH:on 1 " : DhDr j ver N r:nn f " i gN : 1/varlt:adw/d<� hcon rycon r i g. dat i s I oc: k r�d by HJ1 o L h <� r

roce s s : Resource temporari ly unavai l ab l e

!Thomas! Zahredd i n : lComment #8l
ad the same problem, t h i s solved it for me :

udo rm -rf 1/var/cache/debconflh
sudo apt-geL i n s t.c� I I � r

Meng iao : Comment #10 !Thomas[s method fixed my problem �. ---------------------------�
Col in Watson : #11

recommend against Thomas' method i n fomrnent #8l
Whi l e it i s techn i c a l l y a cache, removing i t
removes a l l saved answers to debconf questions,
and you' 11 have to answer them all again on
future upgrade s !
Simply reuoo l iHg, whi l e iHel egaH L , would l>e mud1
less de struct ive.

GIANLUCA :
S i mpl y reboot i ng ,

much l e s s destruc t ive.
thanx so much ! !

®
Comment #13

i nc 1 cgant , wou l d h e

Figure 1: Evaluation behavior among sentences.

(Bug #349467 of deconf from launchpad, https://bugs.launchpad.net/debconf/+bug/349469/)

that sentences within the same conversation have relatively high

semantic redundancy. If one sentence in a conversation has been

assigned a relatively high salient weight (e.g., measured by word

frequency [22, 40]), the other sentences in the same conversation

may also have similar high scores due to the word similarity. Since

sentences with higher salience are more likely to be selected by pre­

vious approaches, the bug report summary generated by the sen­

tences in the same conversation would hardly conclude the entire

bug report because of the semantic redundancy [13].

3 BUGSUM DESIGN

We design a novel unsupervised approach BugSum. BugSum uses

an auto-encoder network to obtain the domain textual features in

sentences. An assessment is deployed to evaluate the believability

of sentences. Finally, Bug Sum generates summaries under certain

word amount limitation through a dynamic selection of informa­

tive and believable sentences, while considering the comprehen­

siveness of the selected sentences.

As shown in Fig. 2, Bug Sum consists of four steps: Bug Report
Pre-processing, Sentence Feature Extraction, Sentence Believability
Assessment, and Summary Generation. Bug report pre-processing

removes noises from bug reports and divides bug reports into sen­

tences. Sentence feature extraction further compresses sentences

into sentence vectors, while sentence believability assessment as­

signs believability scores to sentences. BugSum constructs a full­

text vector through weighted combining all sentence vectors in

the bug report. At last, the summary generation step dynamically

selects salient sentences from the bug report to form a summary.

3.1 Bug Report Pre-processing

Sentences in a bug report as real-world data contain a considerable

amount of noises [49] , meaning that a pre-processing step for noise

removal is required.

96

During pre-processing, BugSum divides a bug report into sen­

tences based on punctuation marks such as '.', ' ! ', '?', and ' ; ', apart

from when the punctuation is used as a part of a string. Function

names such as "book.find", which include the words "book" and

"find", are treated as new words. BugSum tokenizes these sentences

using the software-specific regular expression [27] to preserve the

majority of the function and variable names while correctly identi­

fying words. BugSum further stems these tokens using the poster

stemmer [39] and removes the stop words [10] . In this step, each

bug report is divided into sentences for further processing.

3.2 Sentence Feature Extraction

Sentence feature extraction is deployed to extract domain features

from sentences. In BugSum, we use a trained auto-encoder net­

work to generate sentence vectors with domain features. The struc­

ture of auto-encoder network is illustrated in Fig. 2(B). The auto­

encoder consists of an encoder and decoder. The basic principle of

the auto-encoder is that each sentence is encoded into a vector, af­

ter which it is decoded by the decoder to reconstruct the original

input sentence. The more consistent the input is with the output,

the more precisely the vector can express the textual features of

the sentence.

The encoder of the network processes one sentence at a time.

The words in the sentences are first embedded into word vectors,

after which these word vectors are recurrently processed by the

recurrent units of the encoder. Bug Sum uses the last state of the

encoder as the feature vector of the input sentence.

To preserve both the forward and backward contextual features

of each sentence, we employed bidirectional GRU (Bi-GRU) [51] as

the recurrent unit. Bi-GRU consists of a forward GRU and a back­

ward GRU, which takes the word embedded sequence forward and

backward, respectively. The encoder concatenates the last hidden

states of both the forward and backward GRU to form a sentence

vector. We denote the sentence vector of sentence i as S; .

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

i
EAdji

θ

i Bscorei

97

A. Bug Report Pre-processing

Bug Report

I ==&J

B. Sentence Feature Extraction

C. Sentence Bel i evabi l it y Assessment

Sentence

Opinion

Evaluation Behaviors SVM Cla�sifier

Descripti on_
(Ol!l[jent 1;8_1
C001111ent !ill
CUUII!t:llt !:11
C001111ent !ill

2

1
3
3

2

R 1
1 1 1 11 2 1 1 3

13 2

EvaluatiOn AdJacc:ncy L1st

Selected Sentences

D. Summary Generat ion

Figure 2: The framework of BugSum.

We pre-process the dataset we discussed in Section 2 to create

the training set. During the training process of the auto-encoder

network, we minimize the MSE loss [9] between the input sentence

and its corresponding decoded sentence. The parameters are opti­

mized using the widely used SGD optimizer [4] , and the learning

rate is set to 0.01 [21] . We continue this optimizing process until

the MSE loss is minimized and remains stable.

3.3 Sentence Believability Assessment

As was discussed in Section 2.1 , the importance of sentences in

the bug report is determined by their informativeness and believ­

ability. BugSum captures the evaluation behaviors in bug reports,

and computes sentence believability based on these evaluation be­

haviors. BugSum further uses the obtained believability scores as

weights and accumulates the weighted mean of the sentence vec­

tors to get the full-text vector. The full-text vector combines the

believability of the sentences and domain textual features in the

entire bug report.

3.3. 1 Evaluation Behaviors. There are different expressions of

evaluation behaviors in bug reports. Sentences in comments are

usually evaluated in the form of replies, while sentences in the de­

scription are usually evaluated in the form of domain word shar­

ing. BugSum captures these evaluation behaviors based on their

expressions.

As shown in Fig. 1, arrows 1, 2, and 3 demonstrate the evalua­

tion behaviors occurring within comments, which are usually ex­

plicit replies. These replies often clearly indicate the person's name

or the comment number of the evaluated comment, or quote the

sentences being evaluated. Same to the comments, the description

is evaluated by stakeholders. Sentences in the description may be

confirmed, discussed, or extended during the evaluation process.

97

As the description usually not be replied directly, evaluation be­

haviors between the description and comments usually take the

form of domain word sharing. As indicated by the arrow 4 in Fig. 1 ,

the description and comments sharing domain words will be con­

sidered as having evaluation behaviors.

When considering the evaluation behaviors among comments,

BugSum only focuses on the explicit replies. Ambiguous replies,

which do not have an explicit target, are ignored because we can­

not ensure the correctness of the deduction. We store the set of

sentences that evaluate sentence i in the evaluation adjacency list,

and denote this set as EAdj; . As for the evaluation behaviors be­

tween the description and comments, we use TF-IDF [41] as the

word assessment method in Bug Sum, and select words with the TF­

IDF scores higher than a threshold as domain words. The thresh­

old is denoted as e and will be tuned in Section 4.4.2. Sentences

in the description and comments that share domain words will be

considered as evaluation behaviors. BugSum takes such evaluation

behaviors and stores them in the evaluation adjacency list. Finally,

we obtain an evaluation adjacency list that contains evaluation be­

haviors in the bug report.

3.3.2 Believability Score Assignment. Sentences in the bug report

are supported or disapproved by other sentences during the discus­

sion, such evaluation behaviors cause sentences to have differing

believability. Sentences supported by other sentences are more be­

lievable, while controversial sentences are likely to be incorrect.

Bug Sum uses evaluation behaviors to assess how believable a sen­

tence is to be selected into the summary.

We denote the believability score of sentence i as Bscore; . The

believability scores of sentences are further modified based on

their related evaluation behaviors. Since we use multiplication

when calculating the believability of a sentence, the believability

score of each sentence is initialized to 1 so that it remains neutral

during the calculation.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

Bscorei =

{
1 +

∑
j ∈EAd ji

(Bscorej ∗OPscorej), |EAdji | > 0

1, |EAdji | = 0

i
|EAdji | |EAdji | = 0 i

|EAdji | > 0
i EAdji

i OPscorei

i j OPscorej
i j

i
Bscorei

Bscorei

j (Bscorej < 0)
(OPscorej < 0) i

Bscorej ∗OPscorej
Bscorei

Bscorei =max(Bscorei , 0)

DF

DF =
n∑
i=1

Bscorei ∗ Si

n Si
i DF

S DF b
θ

δ
Lnew ← ϕ Lold ← S LChosen ← ϕ

Lold
li Lold
sj S

sj � li
lnew ← li ∪ si

lnew len(lnew) < θ
δ ← D̃F DF

lnew
lnew LChosen
LChosen

δ

lnew Lnew
Lnew

δ

Lold ← Lnew
Lnew ← ϕ

LChosen δ

k
Chosen

d

D̃F

D̃F DF
δ

D̃F =
∑

i ∈Chosen

Bscorei ∗ Si

MSE =

d∑
i=1
(yi − ỹi)

2

d

δ = |MSE(DF , D̃F)|

δ

δ
θ

n 2n

98

{ 1 + L.: (Bscorej * OPscorej) ,
Bscore; = j EEAdj, 1, IEAdj; l > 0

IEAdj; l = 0
(1)

The number of sentences that evaluate sentence i is denoted as

IEAdj; 1. When IEAdj; I = 0, this indicates that sentence i is not eval­

uated by any other sentences, so its believability score remains 1.

When IEAdj; I > 0, the believability score of the evaluated sen­

tence i is modified by its evaluator sentences in EAdj; . The weight

of each evaluator sentence is decided by its believability score and

its opinion on the evaluated sentence. BugSum uses opinion scores

to assess the opinions of evaluator sentences towards the evaluated

sentences. We denote the opinion score of sentence i as OF score; .
Each opinion score is assigned via a pre-trained Support Vector

Machine (SVM) classifier [45]. We train the SVM classifier over

a dataset containing 3000 sentences, these sentences are collected

from the dataset mentioned in Section 2 and manually labeled. Half

of these sentences exhibit a negative opinions on the evaluated sen­

tences. The SVM classifier takes a sentence as an input and predicts

the possibility that it expresses a negative opinion, taking a value

between 0 and 1. To facilitate the calculation, we subtract the pos­

sibility from 0.5 and then multiply by 2, and use it as the sentence

opinion score, whose value is between -1 and 1. When the sentence

i is evaluated by sentencej, and the value ofOPscorej is less than 0,

it means that the sentence i is possibly disapproved by sentence j.

Therefore, sentence i is a controversial sentence, and its believabil­

ity score Bscore; will decrease according to Formula 1. Otherwise,

Bscore; will increase.

If sentences are disapproved by most of its evaluator sentences,

their believability scores may be lower than 0. Under these circum­

stances, we set their believability scores to 0. The reason is that,

if sentence j that has a low believability (Bscorej < 0) also has a

negative opinion (OPscorej < 0) regarding sentence i, the value

of formula Bscorej * OPscorej will be greater than 0, meaning that

Bscore; will increase according to Formula. 1. It is incorrect be­

cause a sentence disapproved by a incorrect sentence is not neces­

sarily correct.

Bscore; = max(Bscore; , 0) (2)

For each bug report, BugSum takes the sentences believability

scores as weights, and sums the weighted average of the sentence

vectors to obtain the full-text vector i.e., DF.

n
DF = I Bscore; * 5; (3)

i=l
where n is the amount of sentences in the bug report, and 5; is

the sentence vector of sentence i. Therefore, DF represents the do­

main features of the bug report, as it combines the domain textual

features with the believability scores of all sentences.

3.4 Summary Generation

Since it is simpler and more effective to apply the extractive tech­

nique [27], we apply this technique for Bugsum, which selects

salient sentences from the bug report to form a summary. The se­

lected sentences should be able to preserve the domain features

98

Algorithm 1 Beam Search.

Input: Sentences set 5, full-text vector DF, beam size b, word

amount limitation e
Output: A sentence set Chosen with the highest 8

1: Lnew <--- ¢, Laid <--- 5, Lchasen <--- ¢
2: while Laid is not empty do

3: for Each sentence set I; in Laid do

4: for Each sentence Sj in 5 do

5: if Sj f/_ I; then

6: lnew <--- I; U S;
7: if word amount of lnew lenUnew) < e then
8: 8 <--- Similarity between D F and D F

9: if lnew can't be further extended then

10: Append lnew to Lchasen
11: Update Lchasen to reserve top-b sen-

tences set with lowest 8
1� else

13: Append lnew to Lnew
14: Update Lnew to reserve top-b summary

set with lowest 8
15: end if
16: end if

17: end if

18: end for

19: end for
20: Laid <--- Lnew
21: Lnew <--- ¢
22: end while

23: Select Chosen from Lchasen with the lowest 8
24: return Chosen;

of the entire bug report as comprehensively as possible. Therefore,

during the selection, the informativeness of sentences should be

determined by their ability to improve the comprehensiveness

of the selected sentences.

If k sentences are selected from the bug report, we denote the

set consisting of selected sentences as Chosen and the dimension of

the feature vector as d. BugSum uses the selected sentences to re­

construct the full-text vector DF, and subsequently uses the Mean

Squared Error (MSE) between DF and DF to represent the recon­

struction loss, which is indicated as 8.

DF = I Bscore; * 5;

iEChasen
d L.: (y; - ij;)2

M5E =
i=l
------;-d--

8 = IM5E(DF, DF) I

(4)

(5)

(6)

A lower value of 8 indicates that, the selected sentence set con­

tains more domain features of the entire bug report, i.e., the se­

lected sentence set is more comprehensive. BugSum aims to find

the optimal set of sentences that minimizes 8 under the word

amount limitation e. This can be seen as a generalization of the

knapsack problem, which has been proven to be NP-hard [24]. A

bug report with n sentences can generate 2n different summaries,

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

δ

S1 = [3, 0] S2 = [0, 2] S3 = [2, 0] S4 = [0, 1]

DF = [5, 3]

(S1)

D̃F1 = [3, 0]
δ

S2 S3
δ S1 S2

S1 S3
S2 S3 S3

S2

(S1)

Lnew Lold

li Lold
lnew lnew

θ
Lnew LChosen

Lnew
LChosen δ

δ

•

•

•

•

99

making it extremely inefficient to evaluate all possible combina­

tions. Greedy algorithms (e.g., beam search algorithm) are effec­

tive approximate approaches to solve NP-hard problem. The beam

search algorithm greedily traverses the entire candidate set recur­

rently, and looks for the top-b choices that can maximize the im­

provement in each iteration. It can significantly reduce the time

effort compared to evaluate all possible combinations.

The reconstruction loss 8 can leverage the comprehensiveness

of selected sentences during the selection process. For example, in

Fig. 2(D), the bug report contains 4 sentences, and the dimension

of the feature vectors is 2. We denote their sentence vectors as

S1 = [3, 0], S2 = [0, 2], S3 = [2, 0] and S4 = [0, 1] . All of them

have the same believability score, which is 1. The full-text vector

can be calculated according to Formula 3, from which we can get

DF = [5, 3]. The feature represented by the first dimension of the

vector appears more frequently in the bug report, which means

that it is likely to be more important. When the candidate set is (51) ,
the reconstructed full-text vector can be calculated as DF1 = [3, 0]
based on Formula 4. The reconstruction loss 8 between these two

full-text vectors can also be calculated as 6.5 based on Formula 5

and Formula 6. We add S2 and S3 into the candidate set, and find

that the value of 8 is 2.5 and 4.5 when the candidate sets are (51 , S2)
and (51 , S3), respectively. Although the amount of information in

S2 and S3 is the same, adding S3 results in a higher reconstruction

loss compares to S2 . This is because, despite the fact that the feature

represented by the first dimension of the vector is more important,

the selected sentence set (51) already contain some of this feature,

and continuing to select sentences containing this feature will lead

to redundancy. In this case, Bug Sum tends to select sentences that

contain other features to maintain the comprehensiveness of the

selected sentence set.

The process of the beam search algorithm is illustrated in Al­

gorithm 1. We use Lnew and Laid to store the candidate sentence

sets for the current iteration and next iteration, respectively. In

each iteration, for each candidate sentence set l; in Laid , a new

sentence is added to form a new candidate set lnew· If lnew can

be further extended under the word amount limitation e, it will be

added into Lnew· Otherwise, it will be added into Lchasen as one of

the promising sentence sets used to form the summary. Lnew and

Lchasen are maintained to retain b sentence sets with the highest 8.
b is the beam size of the beam search algorithm. After all iterations

are complete, the sentence set with the highest 8 will be selected to

form the summary. We denote this sentence set as Chosen. Finally,

BugSum concatenates the sentences from Chosen in their original

order in the bug report to obtain the summary i.e., SUM.

4 EXPERIMENTS

We conduct experiments to evaluate our approach by answering

the following research questions:

• RQl: How does BugSum perform against baseline ap­

proaches?

• RQ2: To what extent does BugSum reduce the controversial

sentences being selected into the summary?

• RQ3: How do the parameters influence the performance of

BugSum?

99

• RQ4: How do sentence feature extraction and dynamic se­

lection influence the performance of BugSum?

4.1 Experimental Setup

We implement BugSum on PyTorch [38]. All experiments are de­

ployed on a single machine with the Ubuntu 16.04 operating sys­

tem, the Intel Core (TM) i7-8700K CPU, the GTX1080ti GPU, and

16 GB memory.

4. 1. 1 Datasets. We design our experiments on two popular bench­

mark datasets, i.e., Summary Dataset (SDS) [43] and the Author­
ship Dataset (ADS) [17] , which consist of 36 and 96 bug reports,

respectively. Each bug report is annotated by three annotators to

ensure quality. The annotators were asked to write an abstractive

summary (AbsSum) in around 25% of the length of the bug report

using their own words. They were also asked to list the sentences

from the original report that gave them the most information when

writing the summary. For each bug report, the sentences listed by

more than two annotators are referred to as the golden standard

sentences set (GSS) [43].

4. 1.2 Baseline Approaches. We reproduce eight previous methods

to compare with our approach.

DeepSum [22] is an unsupervised approach for bug report

summarization that focuses on predefined field words and sen­

tence types. Centroid [40], MMR [6] , Grasshopper [52], and Di­

vRank [30] are unsupervised approaches for natural language sum­

marization. They are enhanced by Noise Reducer [28] and imple­

mented for bug report summarization. We use the enhanced ver­

sion of these four approaches in our experiments. Hurried [27] is

an unsupervised approach that imitates human reading patterns,

connects sentences based on their similarity, and chooses sen­

tences with the highest possibility of being read during a random

scan. DeepSum and Centroid mainly rely on word frequency in bug

reports. MMR selects sentences based on their novelties. Grasshop­

per, DivRank, and Hurried focus on context information. It should

be noted here that the context information not only contains eval­

uation behaviors used in our approaches, but also the relationships

formed by sentences similarities.

BRC [43]andACS [17] are supervised approaches for bug report

summarization that use annotated bug reports as the training data

for their classifiers. They score and choose sentences base on the

classifiers. Due to the lack of annotated data, we use leave-one­

out [43] procedure in our experiments. The leave-one-out proce­

dure randomly chooses one bug report as the test set and the rest

as the training set. We repeat this procedure ten times and use the

average value as the final result.

4. 1.3 Evaluation Metrics. We evaluate the performance of ap­

proaches from the perspective of accuracy and readability. The Pre­
cision, Recall, F-Score, and Pyramid metrics are used to measure the

accuracy of the approaches, and the readability of approaches are

measured in the form of the Rouge-1 and Rouge-2 metrics.

We use the Precision, Recall, and F-Score metrics, which are cal­

culated from the selected sentence set Chosen and the golden stan­

dard sentence set GSS, to measure the accuracy of the summaries.

Given a selected sentence set Chosen and the corresponding sum­

mary SUM, these metrics are calculated as follows:

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

Precision =
|Chosen ∩GSS |

|Chosen |

Recall =
|Chosen ∩GSS |

|GSS |

F−score =
2 ∗ Precision ∗ Recall

Precision + Recall

Pyramid =
NumChosenListed

NumMaxListed

NumChosenListed

Chosen NumMaxListed

NumMaxListed

NumChosenListed
5
6

Rouдe−n =

∑
s ∈AbsSum

∑
n−дram∈s

Countmatch (n−дram)∑
s ∈AbsSum

∑
n−дram∈s

Count(n−дram)

n

p−value < 0.05

100

. . !Chosen n GSS I
PreclSlon =

IChosenl

ll
_ !Chosen n GSS I

Reca -
IGSSI

F-score =
2 * Precision * Recall

Precision + Recall

(7)

(8)

(9)

Pyramid [36] precision is proposed to better measure the quality

of the summary when multiple annotators exist. The assessment

based on Pyramid assumes that, sentences listed by more annota­

tors should be preferred, with the achievement of a certain accu­

racy.

P
'
d

NumchosenLis ted
yramz =

NumMaxLis ted
(10)

NumchasenLis ted is the amount of times that the sentences in

Chosen are listed by annotators, while NumMaxLis ted is the max­

imum possible amount for the corresponding word amount limi­

tation. For example, three sentences are referenced by 2, 3, and 3

annotators, respectively. When two sentences are required to form

the summary, selecting the last two sentences can result in a max­

imum NumMaxLis ted of 6. If in fact, we choose the first two sen­

tences, the value of NumchasenLis ted is 5. Therefore, the Pyramid
of this selection can be calculated as t according to Formula 10.

The ROUGE toolkit [23] measures a method's qualities by count­

ing continuously overlapping units between the summary SUM
and the ground truth AbsSum. For each bug report, we calculate

the Rouge-n value with all three AbsSum written by the three an­

notators, and use their average value as the final Rouge-n score.

Rouge-1 and Rouge-2 are used in our experiments due to their abil­

ities in human-automatic comparisons [37].

L.: L.: Countmatch (n-gram)
"s�EA�b�sS�u�m�n_-�g_r_a_m

=
E
�
s--��--�----�-­Rouge-n = - L.: L.: Count(n-gram)

s EAbsSum n-gram Es

(1 1)

In Formula 1 1 , n is the n-gram length. The numerator is the num­

ber of n-gram overlapping units between SUM and AbsSum, while

the denominator is the number of n-gram in AbsSum.

4.2 Answer to RQl: Overall Performance

We compare the performance ofBugSum with 8 baselines as intro­

duced in Section 4.1.2. We use the average of 10 times experiments

as the final results. Table 1 and Table 2 show the overall perfor­

mance of BugSum against eight baselines over SDS and ADS, re­

spectively. A gray cell represents BugSum outperforming a base­

line approach withp-value < 0.05 by the paired Wilcoxon signed

rank test [15] . Experiment results show that, BugSum outperforms

baseline approaches on almost all metrics and reaches the second

place in the metrics Precision and Pyramid over SDS.

The Recall of BugSum is significantly higher than that of com­

parative approaches, and the reason may be that: the Recall reveals

the coverage of salient sentences. Due to the redundancy in sen­

tences, similar sentences tend to be scored with close scores. There­

fore, whenever a salient sentence is selected, previous approaches

may also select sentences that contain redundant features of this

100

Table 1: Overall Performance on SDS.

Centroid

Grasshopper

DivRank

ACS

BRC

Hurried

MMR

DeepSum

BugSum

F-score Precision Recall Pyramid R-1 R-2

0.343 0.536

0.369 0.527

0.378 0.590

0.397 0.596

0.40 1 0.572

0.41 o r 0.7 11

0.429 0.617

0.462 I 0.62 1

0.493 0.629

0.270 0.460 0.472 0.126

0.30 1 0.523 0.509 0.135

0.30 1 0.545 0.527 0.138

0.335 0.600 0.5 15 0.134

0.35 1 0.629 0.522 0.140 1 0.300 r 0.710 l 0.527 0.153

0.353 0.551 0.498 0.145

I o.388 0.624 0.563 0.177

0.413 0.661 0.589 0. 194

Table 2: Overall Performance on ADS.

DivRank

Centroid

MMR

Grasshopper

BRC

Hurried

ACS

DeepSum

BugSum

F-score Precision Recall Pyramid R-1 R-2

0.325 0.446 0.282 0.542 0.499 0.201

0.337 0.488 0.280 0.561 0.473 0.183

0.396 0.505 0.356 0.585 0.503 0.206

0.361 0.445 0.337 0.546 0.503 0.200

0.41 1 0.566 0.349 0.656 0.5 16 0.206

0.417 0.576 0.346 0.635 0.540 0.239

0.453 0.609 0.396 0.672 0.546 0.231

0.457 J 0.606 L o.394J 0.681 o.553 L o.249

0.491 0.611 0.417 0.692 0.564 0.270

salient sentence, which leads to the drop in Precision. The cover­

age of salient sentences has to be decreased to maintain relatively

high Precision. BugSum selects sentences while also considering

their contributions to the comprehensiveness of selected sentences,

which can prevent part of the noise sentences from being selected.

This makes BugSum has high Recall while maintaining relatively

high Precision. Approaches such as Hurried, Grasshopper, and Di­

vRank rely on context information, they use sentence similarity

as one of the criteria for constructing context information. This

criterion causes bias introduced by the redundancy in sentences

to have a greater impact on these approaches, which makes them

have relatively low Recall with the similar Precision. By contrast,

MMR selects sentences based on their novelties, which makes it

has relatively high Recall while having similar Precision over ADS.

DeepSum also has relatively high Recall, as it re-initiates similar

sentences during its pre-processing step.

The results of the Pyramid metric show a similar trend with Pre­
cision. BugSum performs smoothly on both datasets, achieving the

second highest and highest performance over SDS and ADS, re­

spectively.

Readability is assessed using the Rouge-n score. The results sug­

gest that the summaries generated by BugSum are more readable

than all baseline approaches.

The characteristics of datasets can significantly affect the per­

formance of different approaches. For example, ACS is based on

authorship. ACS uses bug reports posted by the same author as

the training set to train a sentence classifier. The bug reports in

ADS have this kind of authorship, which make ACS has relatively

high performance on the ADS dataset. We find that approaches

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

•

•

101

based on context information, such as MMR, DivRank, and Hur­

ried, exhibit a significant performance drop when testing over ADS.

To understand the cause of this performance drop, we count the

number of sentences and the proportion of sentences related to

the evaluation behaviors in SDS and ADS, respectively. We find

that bug reports in ADS only contain an average of 39 sentences.

Compared with an average of 65 sentences in SDS, ADS has a rel­

atively small amount of sentences, which makes the sentences in

the description more important. In SDS and ADS, 44.5% and 30.7%

of sentences respectively are influenced by evaluation behaviors.

This indicates that there are relatively fewer evaluation behaviors

in ADS, which results in a performance drop for approaches that

rely on context information. Despite this, however, BugSum still

achieves the state-of-the-art performance in ADS. The reason is

that, BugSum only uses evaluation behaviors to emphasize the be­

lievability of sentences, but does not entirely rely on them.

Result 1: BugSum outperforms baseline approaches on

most metrics over these two datasets. The improvement in

terms of F-score and Rough-1 is up to 0.166 and 0.1 17, re­

spectively. In particular, the Recall of BugSum outperforms

baseline approaches by up to 0.143. This means that BugSum

can cover more salient sentences by reducing semantic redun­

dancy while also maintaining comparatively high accuracy.

4.3 Answer to RQ2: Controversial Sentence
Reduction

As was introduced in Section 2.1, the information contained in con­

troversial sentences is likely to be incorrect. Therefore, selecting

these sentences into summaries may introduce misleading infor­

mation. BugSum evaluates the believability of sentences and aims

to reduce the possibilities of controversial sentences being selected

into summaries. In order to determine the extent to which Bug Sum

reduces these possibilities, we first need to identifY which contro­

versial sentences are contained in our datasets ADS and SDS. In

other words, we have to build a controversial sentence set as the

ground truth. To ensure correctness, we only choose sentences that

are explicitly disapproved by all evaluations, where the informa­

tion in the sentence is also manually confirmed to be incorrect. We

recruit five experienced programmers, who have at least four years

of programming experience. They determine whether a sentence

is controversial based on the following criteria:

• The sentence should be selected by at least one baseline ap­

proach.

• The sentence should have been explicitly evaluated by at

least one sentence, and all of these evaluation sentences

should express negative opinions.

We select sentences that are determined to be controversial by

all five programmers. We obtain 7 and 16 controversial sentences

from SDS and ADS, respectively. For each baseline and BugSum,

we check the total number of controversial sentences that have

been selected into the summaries over ADS and SDS.

As shown in Fig. 3, BugSum only select 8.7% of controversial

sentences into the summaries, which reduces the controversial

101

25

-c 20
� .,
1i 15
3 � "" .. 10 0 !:: c 0 u 5

0 •

Figure 3: Selected controversial sentences.

sentences in summaries by up to 69.6% compared to baseline ap­

proaches. We also observe that approaches like Grasshopper, Di­

vRank, and Hurried based on context information, and approaches

such as DeepSum and Centroid based on word frequency select

more controversial sentences. This validates our assumption pro­

posed in Section. 2.1. The controversial sentences are discussed

by a series of comments before they are disapproved. Words or

sentences related to the controversial sentences will appear more

times in bug reports. Thus, approaches based on word frequency

or context information are likely to select more controversial sen­

tences.

Result 2: Controversial sentences are likely to be selected

by the baseline approaches. Bug Sum can significantly reduce

the possibility of controversial sentences being selected into

the summary by up to 69.6% according to our careful empiri­

cal evaluation.

4.4 Answer to RQ3: Influence of Parameters

BugSum contains three parameters: feature vector dimension, do­

main word selection threshold, and the beam size of the beam

search algorithm. To find out how these parameters influence the

performance ofBugSum, we perform the following experiments.

4.4. 1 Feature Vector Dimension. BugSum uses sentence vectors

and a full-text vector to represent important information in bug re­

ports. The dimension of these feature vectors may affect the perfor­

mance of BugSum. We evaluate the performance of BugSum with

the vector dimension from 1 to 2000. In Fig. 4(a), we present the

F-score values of BugSum.

The performance curves of Bug Sum on SDS and ADS exhibit a

similar trend. The performance of Bug Sum declines rapidly when

the dimension offeature vectors is lower than 200. It grows steadily

when the dimension is between 200 and 1000. When the dimension

is between 1000 and 1400, the performance ofBugSum remains sta­

ble and peaks when the dimension reaches 1200. The performance

begins to decrease when the dimension exceeds 1400. The reason

for this is that a low-dimension feature vector can only retain lim­

ited features with insufficient information, which can lead to worse

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

θ
θ

θ

θ

θ

θ

θ

θ

θ

Si DF
i

102

0.6 .----------------� 0.(; ,-----------------, 0. 6 ,----------------,

0.55

0.5
� ¥ 0.45

'"

0.:! 0.4

0. 1 0.35

0.55

0.5
� 10. 45

0.4

0.35
........ sns
-AUS

0. 3 L_ ______________ ___j 0. 3 L_ ______________ _
� - - - 1- ,. 1- 1- I� -

Feature ve-ctor dimension
0. 02 0.04 0. 06 0.08 0. 1 0.12 0. 14 0.16 0.18 0. 2

Domain word sdertion thre..'ihohl Beam size
10 1l

(a) (b) (c)

Figure 4: Performance of BugSum influnced by different parameters.

performance. By contrast, when the dimension is too large, noisy

features are also included in the feature vectors, which causes per­

formance degradation.

We have also checked the performance of BugSum in terms of

other metrics, and obtained quite similar results. Thus, we set the

dimension of feature vectors to 1200 in all our experiments, as at

around this value, the performance of Bug Sum reaches the peak

on both ADS and SDS.

4.4.2 Domain Word Selection Threshold. As noted in Section 3.3.1 ,

we build the connection between the description and comments

based on the sharing of domain words to assess the believability

of sentences in the description. When selecting domain words, we

need to set the threshold e to the TF-IDF value. In this experiment,

we test the sensibility of e, from 0.02 to 0.20.

As can be seen in Fig. 4(b), the performance ofBugSum increases

rapidly over two datasets when e grows from 0.02 to 0.06. Subse­

quently, as the value increases from 0.06 to 0.1, we obtain compar­

ative performance. When e is higher than 0.1, the performance of

BugSum first declines slightly and then remains stable from the

point at around 0.18. The reason is that, when e is too small, the

number of selected domain words will be large. Many links, includ­

ing noises, may be constructed between the description and com­

ments, which causes a further performance drop. On the contrary,

when e is too high, few domain words can be selected, meaning

that only a very limited amount of links can be built. The input

information for BugSum is not rich enough, so its performance

also drops. When e is higher than a certain value, such as 0.18 in

Fig. 4(b), the amount of domain words is too small, and the relation

between the description and comments can no longer affect the se­

lection. Therefore, the performance becomes stable again. We also

observe that the performance over ADS is more sensitive to the

change of e. This is because there are fewer sentences in ADS than

in SDS, so the sentences in the description play a more critical role

in ADS. The noises introduced by e will have more effects on ADS

than on SDS. We also check the performance using other metrics

and obtain similar results. Overall, we set the threshold of domain

word selection to 0.08 in all our experiments.

4.4.3 Beam Size. BugSum generates a summary based on the

beam search algorithm. As introduced in Section 3.4, the beam

search algorithm maintains b candidate sentence sets. In Fig. 4(c),

102

we illustrate the performance ofBugSum in the form of the F-score
metric, when b is between 1 and 1 1 .

The performance of BugSum increases along with b until it

reaches the value of 8, after which the performance becomes sta­

ble. Additional growth of the beam size cannot improve the per­

formance ofBugSum. The computational complexity of the search

algorithm increases significantly as the beam size increases. Thus,

we set the beam size to 8 in all our experiments to balance the per­

formance of BugSum and the computational time consumption.

Result 3: The dimension of the feature vector seriously

affects the performance ofBugSum. The threshold of domain

word selection and the beam size also have a noticeable effect

on the performance ofBugSum. Bug Sum can achieve its high­

est performance by setting these parameters appropriately.

4.5 Answer to RQ4: Ablation Study

In our approach, we implement the Sentence Feature Extraction

(SFE) to extract textual features from sentences, and Dynamic

Selection (DS) to improve the comprehensiveness of the chosen

sentences. We deploy an ablation study to test the effectiveness

of these two components against the commonly used alternative

strategies.

Bag-of-Words (BoW) is one of the most popular representation

strategies [50] , which preserves the word frequency and ignores

the original order or relationship between neighboring words. The

sentence score method has been commonly used in previous ap­

proaches [6, 22, 27, 30, 40, 52] , which we denote as SSM. SSM se­

lects sentences with the highest score under the word amount lim­

itation. In this experiment, SSM uses the cosine similarity between

the sentence vector 5; and the full-text vector DF as the score of

sentence i. We use BoW as an alternative strategy for SFE and SSM

as a replacement for DS.

We illustrate the performance of the model under different com­

binations of alternative strategies in Table 3. We find that the re­

placement of any strategies will lead to a significant drop in most

metrics. The replacement of the sentence feature extraction strat­

egy significantly impacts BugSum's Precision, R-1, and R-2. The rea­

son is that, the domain textual features in the sentences include

word frequency and word context. The BoW strategy can only pre­

serve word frequency information, which leads to a performance

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

103

Table 3: Performance Using Different Strategies.

Dataset I Strategy IF-score Precision Recall Pyramid R-1 R-2

BoW SSM 0.297 0.41 1 0.241 0.307 0.436 0.092

SDS BoW DS 0.396 0.496 0.344 0.550 0.5 17 0.125

SFE SSM 0.381 0.522 0.306 0.543 0.509 0.1 1 3

SFE DS 0.493 0.629 0.413 0.661 0.589 0. 194

BoW SSM 0.294 0.405 0.254 0.493 0.460 0.1 1 2

ADS BoW DS 0.386 0.45 1 0.353 0.562 0.5 12 0.207

SFE SSM 0.377 0.467 0.322 0.528 0.487 0.180

SFE DS 0.491 0.611 0.417 0.692 0.564 0.270

drop, especially in terms of precision and readability. This also in­

dicates that our approach can preserve the domain textual features

in sentences. We also find that summary selection strategies heav­

ily influence BugSum's Recall, a result that is caused by the redun­

dancy in sentences. Dynamic selection, as evaluated in Section 4.3,

can select sentences while considering the comprehensiveness of

the selected sentences. Alternative strategies like SSM tend to se­

lect sentences with redundant semantic features, and further cause

relative low Recall while achieving similar Precision.

Result 4: BugSum's sentence feature extraction strategy

and dynamic selection strategy outperform alternative strate­

gies (i.e., BoW strategy and SSM strategy) in terms of 6 met­

rics over the datasets.

5 RELATED WORK

5.1 Bug Report Summarization

Bug report summarization, which is considered to be a promis­

ing way to reduce human effort, involves composing a summary

by picking out salient sentences from the bug report. Rastkar et

al. [43] and Jiang et al. [1 7] extracted sentences based on feature

classifiers that were trained using manually annotated bug reports.

The performance of feature classifiers relies heavily on the qual­

ity of the training corpus [27], which requires the annotators to

have certain expert knowledge and massive manual efforts. Arya

et al. [l] labeled comments with their possible contained informa­

tion, and let users choose corresponding sentences based on their

requirements. Radev et al. [40] compressed each sentence into a

vector based on their TF-IDF values, and assessed sentences based

on their similarity to the average of all sentence vectors. Other

approaches [30, 52] have attempted select sentences according to

reference relations, which were enhanced by a noise removal strat­

egy designed by Senthil et al. [28]. Lotufo et al. [27] scored their

sentences based on imitating human reading patterns, connected

sentences according to their similarities, and chose the sentences

with the highest possibilities of being reached during a random tra­

verse. Jiang et al. [22] focused on predefined field words and sen­

tence types, and scored sentences based on the weight of words. In

this paper, we have proposed a novel unsupervised algorithm for

bug report summarization that can efficiently reduce the possibil­

ity of controversial sentences been selected into the summary.

103

5.2 Summarization of NLP

Text summarization is one of the key applications of natural lan­

guage processing for information condensation [32]. Wang et

al. [46] generated summaries for meeting records through tem­

plates, which required considerable manual effort to obtain. Cheng

et al. [8] transformed the bug summarization into a classification

task, by using LSTM as a recurrent document encoder to represent

documents. Nallapati et al. [33] took the position of sentences into

consideration to minimize the negative log-likelihood between

the prediction and the ground truth by using an RNN based se­

quence model. Jadhav et al. [16] implemented the pointer network

to add the salience of words into the prediction process. Narayan

et al. [34] optimized the Rouge evaluation metric through a rein­

forcement learning objective. Zhou et al. [51] designed an end-to­

end neural network to combine the sentence scoring process and

the sentence selection process. The above approaches have acceler­

ated the development of understanding software artifacts [35] , e.g.,
source code and bug report.

5.3 Deep Learning in Software Engineering

In recent years, deep learning has been increasingly adopted to im­

prove the performance of software engineering tasks [48]. Moreno

et al. [31] and Matskevich et al. [29] utilized neural networks for

source code analysis by integrating abstract syntax trees (i.e., AST)
and code textual information to generate comments. Similarly,

Wang et al. [47] combined API sequence information with neu­

ral networks, and generated descriptions for object-related state­

ment sequences. Moreover, Linares-Vasquez et al. [25] and Buse et

al. [5] used neural networks to generate commit messages through

extracting code changes. Jiang et al. [18] improved the results of

neural networks by adding filters to filter out the likely poor pre­

dictions. Liu et al. [26] employed the pointer network to deal with

out-of-vocabulary (i.e., OOV) words. While deep learning is an ex­

citing new technique, it is still debatable as to whether this method

can be implemented in a way that benefits SE [12 , 14].

6 CONCLUSION

In this study, we present a novel unsupervised summarization ap­

proach, that considers sentence informativeness, believability and

comprehensiveness, to generate more reliable and comprehensive

summaries for bug reports. Compared to 8 typical baseline ap­

proaches, extensive experiments over two public datasets show

that the performance of our approach reaches the state-of-the-art

performance. Our approach can be applied in practice to assist

with software maintenance and reuse. In particular, our method is

able to prevent most controversial sentences from being selected

into the summary, which point a promising direction for the fur­

ther work on conversation-based text analysis.

In the future, we plan to conduct a large-scale quantitative eval­

uation using more OSS projects to validate the generality of our

approach, as well as a careful qualitative case study designed to

deeply explore more unique characteristics of bug reports that can

improve our performances.

7 ACKNOWLEDGMENTS

This paper is supported by National Key Research and Develop­

ment Program of China (No. 2018YFB0204301), National Natural

Science Foundation (No.61672529, No.61872373 and No. 61702534).

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

104

REFERENCES
(1] Deeksha Arya, Wenting Wang,]in LC Guo, and Jinghui Cheng. 2019. Analysis

and detection of information types of open source software issue discussions.
In Proceedings of the 41st International Conference on Software Engineering. IEEE
Press, 454-464.

(2] Nicolas Bettenburg, Saschajust, Adrian Schrbter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. 2008. What makes a good bug report?. In Proceedings
of the 16th ACM SIGSOFI International Symposium on Foundations of software
engineering. ACM, 308-318.

.
(3] Nicolas Bettenburg, Rahul Prernraj , Thomas Zimmermann, and Sunghun K1m.

2008. Extracting structural information from bug reports. In Proceedings of the
2008 international working conference on Mining software repositories. 27-30.

(4] Leon Bottou. 2010. Large-scale machine learning with stochastic gradient de­
scent. In Proceedings ofCOMPSTAT'2010. Springer, 177-186.

(5] Raymond PL Buse and Westley R Weimer. 2010. Automatically documenting
program changes. In Proceedings of the IEEE!ACM international conference on
Automated software engineering. 33-42.

(6] Jaime G Carbonell and jade Goldstein. 1998. The use of MMR, diversity-based
reran king for reordering documents and producing summaries .. In SIGIR, Vol. 98.
335-336.

(7] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir
Filkov. 2015. Developer onboarding in GitHub: the role of prior social links and
language experience. In Proceedings of the 2015 10th joint meeting on foundations
of software engineering. ACM, 817-828.

(8] Jianpeng Cheng and Mirella Lapata. 2016. Neural summarization by extracting
sentences and words. arXiv preprint arXiv:1603.07252 (2016).

(9] Peter Christoffersen and Kris Jacobs. 2004. The importance of the loss function
in option valuation. Journal of Financial Economics 72, 2 (2004), 291-318.

(10] Damian Doyle. (n.d.]. Default English stopwords list. https://www.ranks.nl/
stopwords. 2017.

(1 1] Qiang Fan, Yue Yu, Gang Yin, Tao Wang, and Huaimin Wang. 2017. Where is
the road for issue reports classification based on text mining?. In 2017 ACM!IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 121- 130.

(12] Wei Fu and Tim Menzies. 2017. Easy over hard: A case study on deep learning. In
Proceedings of the 2017 11th joint meeting on foundations of software engineering.
49-60.

(13] Beate Hampe. 2002. Superlative verbs: A corpus-based study of semantic redun­
dancy in English verb-particle constructions. Vol. 24. Gunter Narr Verlag.

(14] Vincent] Hellendoorn and Premkumar Devanbu. 2017. Are deep neural net­
works the best choice for modeling source code?. In Proceedings of the 201 7 1 1th
Joint Meeting on Foundations of Software Engineering. 7 63-773.

(15] Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scan­
dinavian journal of statistics (1979), 65-70.

(16] Aishwarya Jadhav and Vaibhav Rajan. 2018. Extractive summarization with
swap-net: Sentences and words from alternating pointer networks. In Proceed­
ings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 142- 151.

(17] He Jiang, Jingxuan Zhang, Hongjing Ma, Najam Nazar, and Zhilei Ren. 2017.
Mining authorship characteristics in bug repositories. Science China Information
Sciences 60, 1 (2017), 012107.

(18] Siyuanjiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat­
ing commit messages from diffs using neural machine translation. In 2017 32nd
IEEEIACM International Conference on Automated Software Engineering (ASE).
IEEE, 135-146.

(19] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M
German. 2015. Open source-style collaborative development practices in com­
mercial projects using GitHub. In Proceedings of the 37th International Conference
on Software Engineering. IEEE Press, 574-585.

(20] Won Kim, Ok-Ran Jeong, and Sang-Won Lee. 2010. On social Web sites. Infor­
mation systems 35, 2 (2010), 215-236.

(21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi­
cation with deep convolutional neural networks. In Advances in neural informa­
tion processing systems. 1097-1105.

(22] Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li. 2018. Unsupervised
deep bug report summarization. In Proceedings of the 26th Conference on Program
Comprehension. ACM, 144- 155.

(23] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74-81.

(24] HuiLin andjeffBilmes. 2010. Multi-document summarization via budgeted max­
imization of submodular functions. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Compu­
tational Linguistics. 912-920.

(25] Mario Linares-Vasquez, Luis Fernando Cortes-Coy, Jairo Aponte, and Denys
Poshyvanyk. 2015. Changescribe: A tool for automatically generating commit
messages. In 2015 IEEE!ACM 37th IEEE International Conference on Software En­
gineering, Vol. 2. IEEE, 709-7 12.

104

(26] Qin Liu, Zihe Liu, Hongming Zhu, Hongfei Fan, Bowen Du, and Yu Qian. 2019.
Generating commit messages from diffs using pointer-generator network. In
2019 IEEE!ACM 16th International Conference on Mining Software Repositories
(MSR). IEEE, 299-309.

(27] Rafael Lotufo, Zeeshan Malik, and Krzysztof Czarnecki. 2015. Modelling the
'hurried'bug report reading process to summarize bug reports. Empirical Soft­
ware Engineering 20, 2 (2015), 5 16-548.

(28] Senthil Mani, Rose Catherine, Vibha Singhal Sinha, and Avinava Dubey. 2012.
Ausum: approach for unsupervised bug report summarization. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 1 1 .

(29] Sergey Matskevich and Co !inS Gordon. 2018. Generating comments from source
code with CCGs. In Proceedings of the 4th ACM SIGSOFT International Workshop
on NLP for Software Engineering. 26-29.

(30] Qiaozhu Mei,]ian Guo, and Dragomir Radev. 2010. Divrank: the interplay of
prestige and diversity in information networks. In Proceedings of the 16th ACM
SIGKDD international conference on Knatvledge discovery and data mining. Acm,
1009-1018.

(31] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. 2013. Automatic generation of natural language sum­
maries for java classes. In 2013 21st International Conference on Program Com­
prehension (ICPC). IEEE, 23-32.

(32] Nikita Munot and Sharvari S Govilkar. 2014. Comparative study of text summa­
rization methods. International Journal of Computer Applications 102, 12 (2014).

(33] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. Summarunner: A recur­
rent neural network based sequence model for extractive summarization of doc­
uments. In Thirty-First AAAI Conference on Artificial Intelligence.

(34] Shashi Narayan, Shay B Cohen, and Mirella Lapata. 2018. Ranking sentences
for extractive summarization with reinforcement learning. arXiv preprinl
arXiv:1802.08636 (2018).

(35] Najam Nazar, Yan Hu, and He Jiang. 2016. Summarizing software artifacts: A
literature review. Journal of Computer Science and Technology 31, 5 (2016), 883-
909.

(36] Ani Nenkova, Rebecca Passonneau, and Kathleen McKeown. 2007. The pyra­
mid method: Incorporating human content selection variation in summariza­
tion evaluation. ACM Transactions on Speech and Language Processing (TSLP) 4,
2 (2007), 4.

(37] Karolina Owczarzak, john M Conroy, Hoa Trang Dang, and Ani Nenkova. 2012.
An assessment of the accuracy of automatic evaluation in summarization. In Pro­
ceedings ofWorkshop on Evaluation Metrics and System Comparison for Automatic
Summarization. Association for Computational Linguistics, 1-9.

(38] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. (2017).

(39] Martin F Porter. 1980. An algorithm for suffix stripping. Program 14, 3 (1980),
130-137.

(40] Dragomir R Radev, Hongyan Jing, Malgorzata Stys, and Daniel Tam. 2004.
Centroid-based summarization of multiple documents. Information Processing
& Management 40, 6 (2004), 9 19-938.

(41] Juan Ramos et a!. 2003. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. Piscataway, N], 133-142.

(42] Rastkar, Sarah, Murphy, C Gail, Murray, and Gabriel. 2010. Summarizing soft­
ware artifacts: a case study of bug reports. (2010).

(43] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2014. Automatic summa­
rization of bug reports. IEEE Transactions on Software Engineering 40, 4 (2014),
366-380.

(44] Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology &
Policy 12, 3 (1 999), 23-49.

(45] Vladimir N. Vapnik. 2000. Jl!e Nature of Statistical Learning Theory. Springer,.
(46] Lu Wang and Claire Cardie. 2013. Domain-independent abstract generation for

focused meeting summarization. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1 . 1395-
1405.

(47] Xiaoran Wang, Lori Pollock, and K Vijay-Shanker. 2017. Automatically generat­
ing natural language descriptions for object-related statement sequences. In 2017
IEEE 24th International Conference on Software Analysis, Evolution and Reengi­
neering (SANER). IEEE, 205-216.

(48] Martin White, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshy­
vanyk. 2015. software repositories. In 2015 IEEEIACM 12th Working Conference
on Mining Software Repositories. IEEE, 334-345.

(49]]if eng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongxuan Luo, and
Xindong Wu. 2014. Towards effective bug triage with software data reduction
techniques. IEEE transactions on knowledge and data engineering 27, 1 (2014),
264-280.

(50] Yin Zhang, Rong]in, and Zhi-Hua Zhou. 2010. Understanding bag-of-words
model: a statistical framework. International Journal of Machine Learning and
Cybernetics 1, 1-4 (2010), 43-52.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

105

[51] Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang, Ming Zhou, and Tiejun
Zhao. 2018. Neural document summarization by jointly learning to score and
select sentences. arXiv preprint arXiv:1807.02305 (2018).

[52] Xiaojin Zhu, Andrew Goldberg,Jurgen Van Gael, and David Andrzejewski. 2007.
Improving diversity in ranking using absorbing random walks. In Human Lan­
guage Technologies 2007: The Conference of the North American Chapter of the

105

Association for Computational Linguistics; Proceedings of the Main Conference. 97-
104.

[53] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schroter, and Cathrin Weiss. 2010. What makes a good bug report? IEEE Trans­
actions on Software Engineering 36, 5 (2010), 618-643.

[51] Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang, Ming Zhou, and Tiejun
Zhao. 2018. Neural document summarization by jointly learning to score and
select sentences. arXiv preprint arXiv:1807.02305 (2018).

[52] Xiaojin Zhu, Andrew Goldberg,Jurgen Van Gael, and David Andrzejewski. 2007.
Improving diversity in ranking using absorbing random walks. In Human Lan­
guage Technologies 2007: The Conference of the North American Chapter of the

Association for Computational Linguistics; Proceedings of the Main Conference. 97-
104.

[53] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schroter, and Cathrin Weiss. 2010. What makes a good bug report? IEEE Trans­
actions on Software Engineering 36, 5 (2010), 618-643.

[51] Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang, Ming Zhou, and Tiejun
Zhao. 2018. Neural document summarization by jointly learning to score and
select sentences. arXiv preprint arXiv:1807.02305 (2018).

[52] Xiaojin Zhu, Andrew Goldberg,Jurgen Van Gael, and David Andrzejewski. 2007.
Improving diversity in ranking using absorbing random walks. In Human Lan­
guage Technologies 2007: The Conference of the North American Chapter of the

Association for Computational Linguistics; Proceedings of the Main Conference. 97-
104.

[53] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schroter, and Cathrin Weiss. 2010. What makes a good bug report? IEEE Trans­
actions on Software Engineering 36, 5 (2010), 618-643.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore. Restrictions apply.

