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ABSTRACT 

During collaborative software development, bug reports are dy­

namically maintained and evolved as a part of a software project. 

For a historical bug report with complicated discussions, an accu­

rate and concise summary can enable stakeholders to reduce the 

time effort perusing the entire content. Existing studies on bug re­

port summarization, based on whether supervised or unsupervised 

techniques, are limited due to their lack of consideration of the re­

dundant information and disapproved standpoints among develop­

ers' comments. Accordingly, in this paper, we propose a novel un­

supervised approach based on deep learning network, called Bug­
Sum. Our approach integrates an auto-encoder network for fea­

ture extraction with a novel metric (believability) to measure the 

degree to which a sentence is approved or disapproved within dis­

cussions. In addition, a dynamic selection strategy is employed to 

optimize the comprehensiveness of the auto-generated summary 

represented by limited words. Extensive experiments show that 

our approach outperforms 8 comparative approaches over two 

public datasets. In particular, the probability of adding controver­

sial sentences that are clearly disapproved by other developers dur­

ing the discussion, into the summary is reduced by up to 69.6%. 
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1 INTRODUCTION 

There is a golden rule that originated in the open source movement, 

i.e., given enough eyeballs, all bugs are shallow [ 44]. Inspired by this 

rule, both open source and commercial projects [ 19] tend to man­

age their development tasks using bug repositories (e.g., Bugzilla 1 ) 
or issue tracking system (e.g., Issue Tracker in GitHub 2 ) online. A 

large number of bug reports and discussions have been accumu­

lated, which are valuable for software long-term maintenance [2] 

and developer onboarding [7]. 

In modern software development, a bug report is usually orga­

nized in the form of as an open post with a discussion section akin 

to those on social web sites [20]. When contributors find bugs in 

the software, they submit bug reports asked for a basic descrip­

tion about the exposed issue using natural language [3, 1 1 ,  53]. 

Then, other stakeholders, including project managers, maintainers 

or external contributors, discuss and likely put forward different 

standpoints to the issue in the form of comments. This process 

evolves dynamically along with the development of the project, 

i.e., the original bug report and all discussions can be read by any 

stakeholder, who may evaluate and directly reply to those stand­

points with their own opinions based on the development status, 

also in the form of comments. Thus, the scale of a bug report in­

creases rapidly through continuously iterative discussion [ 42]. Ac­

cording to our statistics, which are based on the dataset described 

in Section 2, 25.9% ofbug reports contain more than 15 comments, 

while each comment contains 39 words on average. Therefore, an 

accurate and concise summary can effectively reduce the time con­

sumed in wading through all posted comments [ 42]. While modern 

bug repositories (e.g., Debian 3) encourage contributors to manu­

ally write a summary for each bug report, only 2.80% of the bug 

reports in our dataset were found to have been equipped with ar­

tifact summaries using 29 words on average, which is insufficient 

to furnish stakeholders with the required information. 

Bug summarization has been proven to be a promising 

method [ 43] of auto-generating summaries by selecting salient sen­

tences based on supervised [ 17, 43] or unsupervised [22, 30, 52] 

machine learning techniques. The performance of traditional su­

pervised approaches relies heavily on the quality of the train­

ing corpus [27] , which requires massive manual effort and an­

notators with certain expertise. Additionally, existing unsuper­

vised approaches rely excessively on word frequency, which tends 

to introduce extra bias for two main reasons: 1) bug reports 

are conversation-based texts with frequent evaluation behav­

iors [27], i.e., the discussions are cross-validated among different 

1 https:/ /www.bugzilla.org/ 
2https://help.github.com/en/github/managing-your-work-on-github/about-issues 
3 https :/ /www.de bian.org/B ugs/ server-control #summary 

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore.  Restrictions apply. 



•

•

•

95

stakeholders according to their own experiences, and some com­

ments will be disapproved by other participators; 2) a group of com­

ments supporting the same standpoint have similar semantic fea­

tures, so word frequency-based approaches would be more likely 

to introduce redundant sentences (i.e., sentences that are different 

but represent a similar topic) into the auto-generated summary, 

which will decrease its comprehensiveness due to the word length 

limitation. 

Accordingly, in this paper, we propose a novel unsupervised ap­

proach of bug report summarization, called BugSum. Firstly, we 

use a trained auto-encoder network to extract semantic features by 

converting the sentences to vectors. Meanwhile, we design a novel 

metric (i.e., believability score) to measure the degree that a sen­

tence has been approved against disapproved among the interac­

tive discussions. Then, for each sentence, we merge the believabil­

ity score into the vector to reduce the possibility of controversial 

sentences being selected into the summary. Finally, we optimize 

the summary auto-generation process using a dynamic selection 

strategy that considers both informativeness and comprehensive­

ness. 

We compared BugSum with eight comparative summarization 

approaches over two public datasets. Experimental results demon­

strate that our work outperforms comparative approaches in terms 

of the metrics that have been widely used in previous studies. 

The key contributions of this paper include: 

• We proposed a novel unsupervised bug summarization ap­

proach by integrating the auto-encoder network, sentence 

believability assessment and dynamic selection. 

• The probability of adding controversial sentences, which are 

clearly disapproved by other developers during discussion, 

into the summary is reduced by up to 69.6% according to 

our careful manual evaluation. 

• We design extensive evaluations on two public datasets to 

demonstrate that our approach achieves the state-of-the-art 

performance. It outperforms 8 comparative approaches by 

up to 0.166 and 0.117 in terms ofF-score and Rouge-1 metrics 

respectively. 

2 MOTIVATION 

A high-quality bug report can comprehensively expose the soft­

ware bug per se, while also recording all participants' discussions 

according to the following process. A contributor first describes 

the issue and submits it as the description part of a bug report us­

ing natural language. Subsequently, other stakeholders, including 

project managers, maintainers or external contributors, discuss the 

proposed issue in the form of comments. The content of these dis­

cussions include aspects such as steps to reproduction, issue loca­

tion, and possible solutions. During the discussion, different stand­

points are likely to be proposed, e.g., comment#8 and comment#ll 
in Fig. 1. These standpoints can be read by other stakeholders, who 

may evaluate and directly reply to these standpoints to express 

their own opinions (i.e., evaluation behaviors), also in the form 

of comments. Such interaction structure has been referred to as 

conversation-based text in previous work [ 17, 43]. Here, we refer 

to a group of comments interconnected by evaluation behaviors 
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as a conversation. It has been proven that sentences in conver­

sations contain a large amount of important information such as 

observed bug behaviours, steps to bug reproduction, and possible 

solutions [ 1 ,  27]. This information is not contained in the descrip­

tion, and need to be included into the summary. 

In order to develop a thorough understanding of the conversa­

tions in bug reports, we analyzed 3 1 ,155 bug reports from 7 popular 

OSS projects ( 6,954 Hadoop, 1 , 177 ZooKeeper, 5,705 Derby, 1 ,826 

Yarn, 8,876 Flink, 3,710 HDFS and 2,907 Hive). To ensure the com­

plete life-circle information ofbug reports is included, all those bug 

reports are selected with the status of"Closed". We summarize our 

findings in the following two aspects, i.e., believability and redun­

dancy of the sentences among conversations. 

2.1 Salience and believability 

Typical summarization approaches focus on identifying salient 

sentences from bug reports and conversations, based on word fre­

quency [ 40] ,  predefined structure [27] and so on. However, in our 

dataset, we found that 7 1.5% of the bug reports contain evaluation 

behaviors that express attitudes of approval or disapproval within 

their conversations, covering over 36.4% of sentences on average. 

It is a significant challenge to balance the salience and believability 

of these highly discussed sentences for traditional approaches. 

For example, as shown in Fig. 1, the report describes a sys­

tem bug reading "Resource temporarily unavailable" in the last sen­

tence. Subsequently, Comment#8 proposes a solution, which is ap­

proved by Comment#lO but disapproved by Comment#ll. More­

over, Comment#ll explains the reason for the disapproval and pro­

poses another solution, which is approved by Comment#l3. In brief, 

the standpoint in Comment#8 is controversial in the conversation. 

The more a standpoint (comment) is disapproved by others, the 

lower believability it has, and vice versa. In addition, we define 

such comments that are disapproved by at least one other comment 

as controversial comments, and the sentences within these com­

ments as controversial sentences. Words and sentences related 

to the controversial comments have a relatively high appearance 

in the bug report, as stakeholders may discuss the standpoint being 

proposed by the controversial comment for several rounds. Thus, 

controversial sentences are highly preferred by previous word fre­

quency based approaches, e.g., Centroid [ 40] ,  which would intro­

duce a significant bias into the summary. 

Thus, when we attempt to generate a high-quality summary, the 

salience of a candidate sentence is determined by the information 

it contains (i.e., informativeness) and the extent to which the stand­

point is believable (i.e., believability). 

2.2 Redundancy in Sentences 

Bug reports are conversation-based text. Sentences in the same 

conversation that discuss relevant standpoints tend to contain re­

dundant semantic features, such as specific domain keywords re­

lated to the discussed standpoint. 

Starting from our dataset, we vectorize sentences using the Bag­

of-Words strategy, and calculate the cosine similarity to measure 

the semantic similarity between sentences. The result shows that, 

on average, sentences in the same conversation are 17.4% more sim­

ilar than sentences spread in different conversation. This means 
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Description 
Upgrading packages that use debconf sometimes fai l with the following error : 
ddH:on 1 " :  DhDr j ver N r:nn f "  i gN : 1/varlt:adw/d<� hcon rycon r i g. dat i s  I oc: k r�d by HJ1 o L h <� r  

roce s s :  Resource temporari ly unavai l ab l e  

!Thomas! Zahredd i n : lComment #8l 
ad the same problem, t h i s  solved it for me : 

udo rm -rf 1/var/cache/debconflh 
sudo apt-geL i n s t.c� I I  � r  

Meng iao : Comment #10 !Thomas[ s method fixed my problem �. ---------------------------� 
Col in Watson : #11  

recommend against Thomas' method i n  fomrnent #8l 
Whi l e  it i s  techn i c a l l y  a cache, removing i t  
removes a l l  saved answers to debconf questions, 
and you' 11 have to answer them all again on 
future upgrade s !  
Simply reuoo l iHg, whi l e  iHel egaH L ,  would l>e mud1 
less de struct ive. 

GIANLUCA : 
S i mpl y reboot i ng , 

much l e s s  destruc t ive. 
thanx so much ! ! 

® 
Comment #13 

i nc 1 cgant , wou l d  h e  

Figure 1: Evaluation behavior among sentences. 

(Bug #349467 of deconf from launchpad, https://bugs.launchpad.net/debconf/+bug/349469/) 

that sentences within the same conversation have relatively high 

semantic redundancy. If one sentence in a conversation has been 

assigned a relatively high salient weight (e.g., measured by word 

frequency [22, 40]), the other sentences in the same conversation 

may also have similar high scores due to the word similarity. Since 

sentences with higher salience are more likely to be selected by pre­

vious approaches, the bug report summary generated by the sen­

tences in the same conversation would hardly conclude the entire 

bug report because of the semantic redundancy [ 13]. 

3 BUGSUM DESIGN 

We design a novel unsupervised approach BugSum. BugSum uses 

an auto-encoder network to obtain the domain textual features in 

sentences. An assessment is deployed to evaluate the believability 

of sentences. Finally, Bug Sum generates summaries under certain 

word amount limitation through a dynamic selection of informa­

tive and believable sentences, while considering the comprehen­

siveness of the selected sentences. 

As shown in Fig. 2, Bug Sum consists of four steps: Bug Report 
Pre-processing, Sentence Feature Extraction, Sentence Believability 
Assessment, and Summary Generation. Bug report pre-processing 

removes noises from bug reports and divides bug reports into sen­

tences. Sentence feature extraction further compresses sentences 

into sentence vectors, while sentence believability assessment as­

signs believability scores to sentences. BugSum constructs a full­

text vector through weighted combining all sentence vectors in 

the bug report. At last, the summary generation step dynamically 

selects salient sentences from the bug report to form a summary. 

3.1 Bug Report Pre-processing 

Sentences in a bug report as real-world data contain a considerable 

amount of noises [ 49] , meaning that a pre-processing step for noise 

removal is required. 

96 

During pre-processing, BugSum divides a bug report into sen­

tences based on punctuation marks such as '.', ' ! ', '?', and ' ; ', apart 

from when the punctuation is used as a part of a string. Function 

names such as "book.find", which include the words "book" and 

"find", are treated as new words. BugSum tokenizes these sentences 

using the software-specific regular expression [27] to preserve the 

majority of the function and variable names while correctly identi­

fying words. BugSum further stems these tokens using the poster 

stemmer [39] and removes the stop words [10] .  In this step, each 

bug report is divided into sentences for further processing. 

3.2 Sentence Feature Extraction 

Sentence feature extraction is deployed to extract domain features 

from sentences. In BugSum, we use a trained auto-encoder net­

work to generate sentence vectors with domain features. The struc­

ture of auto-encoder network is illustrated in Fig. 2(B). The auto­

encoder consists of an encoder and decoder. The basic principle of 

the auto-encoder is that each sentence is encoded into a vector, af­

ter which it is decoded by the decoder to reconstruct the original 

input sentence. The more consistent the input is with the output, 

the more precisely the vector can express the textual features of 

the sentence. 

The encoder of the network processes one sentence at a time. 

The words in the sentences are first embedded into word vectors, 

after which these word vectors are recurrently processed by the 

recurrent units of the encoder. Bug Sum uses the last state of the 

encoder as the feature vector of the input sentence. 

To preserve both the forward and backward contextual features 

of each sentence, we employed bidirectional GRU (Bi-GRU) [51 ]  as 

the recurrent unit. Bi-GRU consists of a forward GRU and a back­

ward GRU, which takes the word embedded sequence forward and 

backward, respectively. The encoder concatenates the last hidden 

states of both the forward and backward GRU to form a sentence 

vector. We denote the sentence vector of sentence i as S; .  

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:49:29 UTC from IEEE Xplore.  Restrictions apply. 
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A. Bug Report Pre-processing 

Bug Report 
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B. Sentence Feature Extraction 

C. Sentence Bel i evabi l it y  Assessment 

Sentence 
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Evaluation Behaviors SVM Cla�sifier 
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EvaluatiOn AdJacc:ncy L1st 

Selected Sentences 

D. Summary Generat ion 

Figure 2: The framework of BugSum. 

We pre-process the dataset we discussed in Section 2 to create 

the training set. During the training process of the auto-encoder 

network, we minimize the MSE loss [9] between the input sentence 

and its corresponding decoded sentence. The parameters are opti­

mized using the widely used SGD optimizer [ 4] , and the learning 

rate is set to 0.01 [21 ] .  We continue this optimizing process until 

the MSE loss is minimized and remains stable. 

3.3 Sentence Believability Assessment 

As was discussed in Section 2.1 ,  the importance of sentences in 

the bug report is determined by their informativeness and believ­

ability. BugSum captures the evaluation behaviors in bug reports, 

and computes sentence believability based on these evaluation be­

haviors. BugSum further uses the obtained believability scores as 

weights and accumulates the weighted mean of the sentence vec­

tors to get the full-text vector. The full-text vector combines the 

believability of the sentences and domain textual features in the 

entire bug report. 

3.3. 1 Evaluation Behaviors. There are different expressions of 

evaluation behaviors in bug reports. Sentences in comments are 

usually evaluated in the form of replies, while sentences in the de­

scription are usually evaluated in the form of domain word shar­

ing. BugSum captures these evaluation behaviors based on their 

expressions. 

As shown in Fig. 1, arrows 1, 2, and 3 demonstrate the evalua­

tion behaviors occurring within comments, which are usually ex­

plicit replies. These replies often clearly indicate the person's name 

or the comment number of the evaluated comment, or quote the 

sentences being evaluated. Same to the comments, the description 

is evaluated by stakeholders. Sentences in the description may be 

confirmed, discussed, or extended during the evaluation process. 
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As the description usually not be replied directly, evaluation be­

haviors between the description and comments usually take the 

form of domain word sharing. As indicated by the arrow 4 in Fig. 1 ,  

the description and comments sharing domain words will be  con­

sidered as having evaluation behaviors. 

When considering the evaluation behaviors among comments, 

BugSum only focuses on the explicit replies. Ambiguous replies, 

which do not have an explicit target, are ignored because we can­

not ensure the correctness of the deduction. We store the set of 

sentences that evaluate sentence i in the evaluation adjacency list, 

and denote this set as EAdj; .  As for the evaluation behaviors be­

tween the description and comments, we use TF-IDF [ 41]  as the 

word assessment method in Bug Sum, and select words with the TF­

IDF scores higher than a threshold as domain words. The thresh­

old is denoted as e and will be tuned in Section 4.4.2. Sentences 

in the description and comments that share domain words will be 

considered as evaluation behaviors. BugSum takes such evaluation 

behaviors and stores them in the evaluation adjacency list. Finally, 

we obtain an evaluation adjacency list that contains evaluation be­

haviors in the bug report. 

3.3.2 Believability Score Assignment. Sentences in the bug report 

are supported or disapproved by other sentences during the discus­

sion, such evaluation behaviors cause sentences to have differing 

believability. Sentences supported by other sentences are more be­

lievable, while controversial sentences are likely to be incorrect. 

Bug Sum uses evaluation behaviors to assess how believable a sen­

tence is to be selected into the summary. 

We denote the believability score of sentence i as Bscore; .  The 

believability scores of sentences are further modified based on 

their related evaluation behaviors. Since we use multiplication 

when calculating the believability of a sentence, the believability 

score of each sentence is initialized to 1 so that it remains neutral 

during the calculation. 
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{ 1 + L.: (Bscorej * OPscorej ) , 
Bscore; = j EEAdj, 1, IEAdj; l  > 0 

IEAdj; l  = 0 
(1)  

The number of sentences that evaluate sentence i is denoted as 

IEAdj; 1. When IEAdj; I = 0, this indicates that sentence i is not eval­

uated by any other sentences, so its believability score remains 1. 

When IEAdj; I > 0, the believability score of the evaluated sen­

tence i is modified by its evaluator sentences in EAdj; . The weight 

of each evaluator sentence is decided by its believability score and 

its opinion on the evaluated sentence. BugSum uses opinion scores 

to assess the opinions of evaluator sentences towards the evaluated 

sentences. We denote the opinion score of sentence i as OF score; .  
Each opinion score is assigned via a pre-trained Support Vector 

Machine (SVM) classifier [ 45]. We train the SVM classifier over 

a dataset containing 3000 sentences, these sentences are collected 

from the dataset mentioned in Section 2 and manually labeled. Half 

of these sentences exhibit a negative opinions on the evaluated sen­

tences. The SVM classifier takes a sentence as an input and predicts 

the possibility that it expresses a negative opinion, taking a value 

between 0 and 1. To facilitate the calculation, we subtract the pos­

sibility from 0.5 and then multiply by 2, and use it as the sentence 

opinion score, whose value is between -1 and 1. When the sentence 

i is evaluated by sentencej, and the value ofOPscorej is less than 0,  

it  means that the sentence i is possibly disapproved by sentence j. 

Therefore, sentence i is a controversial sentence, and its believabil­

ity score Bscore; will decrease according to Formula 1. Otherwise, 

Bscore; will increase. 

If sentences are disapproved by most of its evaluator sentences, 

their believability scores may be lower than 0. Under these circum­

stances, we set their believability scores to 0. The reason is that, 

if sentence j that has a low believability (Bscorej < 0) also has a 

negative opinion (OPscorej < 0) regarding sentence i, the value 

of formula Bscorej * OPscorej will be greater than 0, meaning that 

Bscore; will increase according to Formula. 1. It is incorrect be­

cause a sentence disapproved by a incorrect sentence is not neces­

sarily correct. 

Bscore; = max(Bscore; ,  0) (2) 

For each bug report, BugSum takes the sentences believability 

scores as weights, and sums the weighted average of the sentence 

vectors to obtain the full-text vector i.e., DF. 

n 
DF = I Bscore; * 5; (3) 

i=l 
where n is the amount of sentences in the bug report, and 5; is 

the sentence vector of sentence i. Therefore, DF represents the do­

main features of the bug report, as it combines the domain textual 

features with the believability scores of all sentences. 

3.4 Summary Generation 

Since it is simpler and more effective to apply the extractive tech­

nique [27], we apply this technique for Bugsum, which selects 

salient sentences from the bug report to form a summary. The se­

lected sentences should be able to preserve the domain features 
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Algorithm 1 Beam Search. 

Input: Sentences set 5, full-text vector DF, beam size b, word 

amount limitation e 
Output: A sentence set Chosen with the highest 8 

1: Lnew <--- ¢, Laid <--- 5, Lchasen <--- ¢ 
2: while Laid is not empty do 

3: for Each sentence set I; in Laid do 

4: for Each sentence Sj in 5 do 

5: if Sj f/_ I; then 

6: lnew <--- I; U S; 
7: if word amount of lnew lenUnew) < e then 
8: 8 <--- Similarity between D F and D F 

9: if lnew can't be further extended then 

10: Append lnew to Lchasen 
11: Update Lchasen to reserve top-b sen-

tences set with lowest 8 
1� else 

13: Append lnew to Lnew 
14: Update Lnew to reserve top-b summary 

set with lowest 8 
15: end if 
16: end if 

17: end if 

18: end for 

19: end for 
20: Laid <--- Lnew 
21: Lnew <--- ¢ 
22: end while 

23: Select Chosen from Lchasen with the lowest 8 
24: return Chosen; 

of the entire bug report as comprehensively as possible. Therefore, 

during the selection, the informativeness of sentences should be 

determined by their ability to improve the comprehensiveness 

of the selected sentences. 

If k sentences are selected from the bug report, we denote the 

set consisting of selected sentences as Chosen and the dimension of 

the feature vector as d. BugSum uses the selected sentences to re­

construct the full-text vector DF, and subsequently uses the Mean 

Squared Error (MSE) between DF and DF to represent the recon­

struction loss, which is indicated as 8. 

DF = I Bscore; * 5; 

iEChasen 
d L.: (y; - ij;)2 

M5E = 
i=l 
------;-d--

8 = IM5E(DF, DF) I  

(4) 

(5) 

(6) 

A lower value of 8 indicates that, the selected sentence set con­

tains more domain features of the entire bug report, i.e., the se­

lected sentence set is more comprehensive. BugSum aims to find 

the optimal set of sentences that minimizes 8 under the word 

amount limitation e. This can be seen as a generalization of the 

knapsack problem, which has been proven to be NP-hard [24]. A 

bug report with n sentences can generate 2n different summaries, 
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making it extremely inefficient to evaluate all possible combina­

tions. Greedy algorithms (e.g., beam search algorithm) are effec­

tive approximate approaches to solve NP-hard problem. The beam 

search algorithm greedily traverses the entire candidate set recur­

rently, and looks for the top-b choices that can maximize the im­

provement in each iteration. It can significantly reduce the time 

effort compared to evaluate all possible combinations. 

The reconstruction loss 8 can leverage the comprehensiveness 

of selected sentences during the selection process. For example, in 

Fig. 2(D), the bug report contains 4 sentences, and the dimension 

of the feature vectors is 2. We denote their sentence vectors as 

S1 = [3, 0], S2 = [0, 2], S3 = [2, 0] and S4 = [0, 1] .  All of them 

have the same believability score, which is 1. The full-text vector 

can be calculated according to Formula 3, from which we can get 

DF = [5, 3]. The feature represented by the first dimension of the 

vector appears more frequently in the bug report, which means 

that it is likely to be more important. When the candidate set is (51 ) ,  
the reconstructed full-text vector can be calculated as DF1 = [3, 0] 
based on Formula 4. The reconstruction loss 8 between these two 

full-text vectors can also be calculated as 6.5 based on Formula 5 

and Formula 6. We add S2 and S3 into the candidate set, and find 

that the value of 8 is 2.5 and 4.5 when the candidate sets are (51 , S2) 
and (51 , S3), respectively. Although the amount of information in 

S2 and S3 is the same, adding S3 results in a higher reconstruction 

loss compares to S2 . This is because, despite the fact that the feature 

represented by the first dimension of the vector is more important, 

the selected sentence set (51 ) already contain some of this feature, 

and continuing to select sentences containing this feature will lead 

to redundancy. In this case, Bug Sum tends to select sentences that 

contain other features to maintain the comprehensiveness of the 

selected sentence set. 

The process of the beam search algorithm is illustrated in Al­

gorithm 1. We use Lnew and Laid to store the candidate sentence 

sets for the current iteration and next iteration, respectively. In 

each iteration, for each candidate sentence set l; in Laid , a new 

sentence is added to form a new candidate set lnew· If lnew can 

be further extended under the word amount limitation e, it will be 

added into Lnew· Otherwise, it will be added into Lchasen as one of 

the promising sentence sets used to form the summary. Lnew and 

Lchasen are maintained to retain b sentence sets with the highest 8. 
b is the beam size of the beam search algorithm. After all iterations 

are complete, the sentence set with the highest 8 will be selected to 

form the summary. We denote this sentence set as Chosen. Finally, 

BugSum concatenates the sentences from Chosen in their original 

order in the bug report to obtain the summary i.e., SUM. 

4 EXPERIMENTS 

We conduct experiments to evaluate our approach by answering 

the following research questions: 

• RQl: How does BugSum perform against baseline ap­

proaches? 

• RQ2: To what extent does BugSum reduce the controversial 

sentences being selected into the summary? 

• RQ3: How do the parameters influence the performance of 

BugSum? 
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• RQ4: How do sentence feature extraction and dynamic se­

lection influence the performance of BugSum? 

4.1 Experimental Setup 

We implement BugSum on PyTorch [38]. All experiments are de­

ployed on a single machine with the Ubuntu 16.04 operating sys­

tem, the Intel Core (TM) i7-8700K CPU, the GTX1080ti GPU, and 

16 GB memory. 

4. 1. 1 Datasets. We design our experiments on two popular bench­

mark datasets, i.e., Summary Dataset (SDS) [ 43] and the Author­
ship Dataset (ADS) [17] ,  which consist of 36 and 96 bug reports, 

respectively. Each bug report is annotated by three annotators to 

ensure quality. The annotators were asked to write an abstractive 

summary (AbsSum) in around 25% of the length of the bug report 

using their own words. They were also asked to list the sentences 

from the original report that gave them the most information when 

writing the summary. For each bug report, the sentences listed by 

more than two annotators are referred to as the golden standard 

sentences set ( GSS) [ 43]. 

4. 1.2 Baseline Approaches. We reproduce eight previous methods 

to compare with our approach. 

DeepSum [22] is an unsupervised approach for bug report 

summarization that focuses on predefined field words and sen­

tence types. Centroid [40], MMR [6] , Grasshopper [52], and Di­

vRank [30] are unsupervised approaches for natural language sum­

marization. They are enhanced by Noise Reducer [28] and imple­

mented for bug report summarization. We use the enhanced ver­

sion of these four approaches in our experiments. Hurried [27] is 

an unsupervised approach that imitates human reading patterns, 

connects sentences based on their similarity, and chooses sen­

tences with the highest possibility of being read during a random 

scan. DeepSum and Centroid mainly rely on word frequency in bug 

reports. MMR selects sentences based on their novelties. Grasshop­

per, DivRank, and Hurried focus on context information. It should 

be noted here that the context information not only contains eval­

uation behaviors used in our approaches, but also the relationships 

formed by sentences similarities. 

BRC [ 43]andACS [ 17] are supervised approaches for bug report 

summarization that use annotated bug reports as the training data 

for their classifiers. They score and choose sentences base on the 

classifiers. Due to the lack of annotated data, we use leave-one­

out [ 43] procedure in our experiments. The leave-one-out proce­

dure randomly chooses one bug report as the test set and the rest 

as the training set. We repeat this procedure ten times and use the 

average value as the final result. 

4. 1.3 Evaluation Metrics. We evaluate the performance of ap­

proaches from the perspective of accuracy and readability. The Pre­
cision, Recall, F-Score, and Pyramid metrics are used to measure the 

accuracy of the approaches, and the readability of approaches are 

measured in the form of the Rouge-1 and Rouge-2 metrics. 

We use the Precision, Recall, and F-Score metrics, which are cal­

culated from the selected sentence set Chosen and the golden stan­

dard sentence set GSS, to measure the accuracy of the summaries. 

Given a selected sentence set Chosen and the corresponding sum­

mary SUM, these metrics are calculated as follows: 
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Pyramid [36] precision is proposed to better measure the quality 

of the summary when multiple annotators exist. The assessment 

based on Pyramid assumes that, sentences listed by more annota­

tors should be preferred, with the achievement of a certain accu­

racy. 

P 
'
d 

NumchosenLis ted 
yramz = 

NumMaxLis ted 
(10) 

NumchasenLis ted is the amount of times that the sentences in 

Chosen are listed by annotators, while NumMaxLis ted is the max­

imum possible amount for the corresponding word amount limi­

tation. For example, three sentences are referenced by 2, 3, and 3 

annotators, respectively. When two sentences are required to form 

the summary, selecting the last two sentences can result in a max­

imum NumMaxLis ted of 6. If in fact, we choose the first two sen­

tences, the value of NumchasenLis ted is 5. Therefore, the Pyramid 
of this selection can be calculated as t according to Formula 10. 

The ROUGE toolkit [ 23] measures a method's qualities by count­

ing continuously overlapping units between the summary SUM 
and the ground truth AbsSum. For each bug report, we calculate 

the Rouge-n value with all three AbsSum written by the three an­

notators, and use their average value as the final Rouge-n score. 

Rouge-1 and Rouge-2 are used in our experiments due to their abil­

ities in human-automatic comparisons [37]. 

L.: L.: Countmatch (n-gram) 
"s�EA�b�sS�u�m�n_-�g_r_a_m

=
E
�
s--��--�----�-­Rouge-n = - L.: L.: Count(n-gram) 

s EAbsSum n-gram Es 

( 1 1 )  

In  Formula 1 1 ,  n is the n-gram length. The numerator is the num­

ber of n-gram overlapping units between SUM and AbsSum, while 

the denominator is the number of n-gram in AbsSum. 

4.2 Answer to RQl: Overall Performance 

We compare the performance ofBugSum with 8 baselines as intro­

duced in Section 4.1.2. We use the average of 10  times experiments 

as the final results. Table 1 and Table 2 show the overall perfor­

mance of BugSum against eight baselines over SDS and ADS, re­

spectively. A gray cell represents BugSum outperforming a base­

line approach withp-value < 0.05 by the paired Wilcoxon signed 

rank test [15] .  Experiment results show that, BugSum outperforms 

baseline approaches on almost all metrics and reaches the second 

place in the metrics Precision and Pyramid over SDS. 

The Recall of BugSum is significantly higher than that of com­

parative approaches, and the reason may be that: the Recall reveals 

the coverage of salient sentences. Due to the redundancy in sen­

tences, similar sentences tend to be scored with close scores. There­

fore, whenever a salient sentence is selected, previous approaches 

may also select sentences that contain redundant features of this 
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Table 1: Overall Performance on SDS. 

Centroid 

Grasshopper 

DivRank 

ACS 

BRC 

Hurried 

MMR 

DeepSum 

BugSum 

F-score Precision Recall Pyramid R-1 R-2 

0.343 0.536 

0.369 0.527 

0.378 0.590 

0.397 0.596 

0.40 1 0.572 

0.41 o r 0.7 11 

0.429 0.617 

0.462 I 0.62 1 

0.493 0.629 

0.270 0.460 0.472 0.126 

0.30 1  0.523 0.509 0.135 

0.30 1  0.545 0.527 0.138 

0.335 0.600 0.5 15  0.134 

0.35 1  0.629 0.522 0.140 1 0.300 r 0.710 l 0.527 0.153 

0.353 0.551 0.498 0.145 

I o.388 0.624 0.563 0.177 

0.413 0.661 0.589 0. 194 

Table 2: Overall Performance on ADS. 

DivRank 

Centroid 

MMR 

Grasshopper 

BRC 

Hurried 

ACS 

DeepSum 

BugSum 

F-score Precision Recall Pyramid R-1 R-2 

0.325 0.446 0.282 0.542 0.499 0.201 

0.337 0.488 0.280 0.561 0.473 0.183 

0.396 0.505 0.356 0.585 0.503 0.206 

0.361 0.445 0.337 0.546 0.503 0.200 

0.41 1 0.566 0.349 0.656 0.5 16 0.206 

0.417 0.576 0.346 0.635 0.540 0.239 

0.453 0.609 0.396 0.672 0.546 0.231 

0.457 J 0.606 L o.394J 0.681 o.553 L o.249 

0.491 0.611 0.417 0.692 0.564 0.270 

salient sentence, which leads to the drop in Precision. The cover­

age of salient sentences has to be decreased to maintain relatively 

high Precision. BugSum selects sentences while also considering 

their contributions to the comprehensiveness of selected sentences, 

which can prevent part of the noise sentences from being selected. 

This makes BugSum has high Recall while maintaining relatively 

high Precision. Approaches such as Hurried, Grasshopper, and Di­

vRank rely on context information, they use sentence similarity 

as one of the criteria for constructing context information. This 

criterion causes bias introduced by the redundancy in sentences 

to have a greater impact on these approaches, which makes them 

have relatively low Recall with the similar Precision. By contrast, 

MMR selects sentences based on their novelties, which makes it 

has relatively high Recall while having similar Precision over ADS. 

DeepSum also has relatively high Recall, as it re-initiates similar 

sentences during its pre-processing step. 

The results of the Pyramid metric show a similar trend with Pre­
cision. BugSum performs smoothly on both datasets, achieving the 

second highest and highest performance over SDS and ADS, re­

spectively. 

Readability is assessed using the Rouge-n score. The results sug­

gest that the summaries generated by BugSum are more readable 

than all baseline approaches. 

The characteristics of datasets can significantly affect the per­

formance of different approaches. For example, ACS is based on 

authorship. ACS uses bug reports posted by the same author as 

the training set to train a sentence classifier. The bug reports in 

ADS have this kind of authorship, which make ACS has relatively 

high performance on the ADS dataset. We find that approaches 
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based on context information, such as MMR, DivRank, and Hur­

ried, exhibit a significant performance drop when testing over ADS. 

To understand the cause of this performance drop, we count the 

number of sentences and the proportion of sentences related to 

the evaluation behaviors in SDS and ADS, respectively. We find 

that bug reports in ADS only contain an average of 39 sentences. 

Compared with an average of 65 sentences in SDS, ADS has a rel­

atively small amount of sentences, which makes the sentences in 

the description more important. In SDS and ADS, 44.5% and 30.7% 

of sentences respectively are influenced by evaluation behaviors. 

This indicates that there are relatively fewer evaluation behaviors 

in ADS, which results in a performance drop for approaches that 

rely on context information. Despite this, however, BugSum still 

achieves the state-of-the-art performance in ADS. The reason is 

that, BugSum only uses evaluation behaviors to emphasize the be­

lievability of sentences, but does not entirely rely on them. 

Result 1: BugSum outperforms baseline approaches on 

most metrics over these two datasets. The improvement in 

terms of F-score and Rough-1 is up to 0.166 and 0.1 17, re­

spectively. In particular, the Recall of BugSum outperforms 

baseline approaches by up to 0.143. This means that BugSum 

can cover more salient sentences by reducing semantic redun­

dancy while also maintaining comparatively high accuracy. 

4.3 Answer to RQ2: Controversial Sentence 
Reduction 

As was introduced in Section 2.1, the information contained in con­

troversial sentences is likely to be incorrect. Therefore, selecting 

these sentences into summaries may introduce misleading infor­

mation. BugSum evaluates the believability of sentences and aims 

to reduce the possibilities of controversial sentences being selected 

into summaries. In order to determine the extent to which Bug Sum 

reduces these possibilities, we first need to identifY which contro­

versial sentences are contained in our datasets ADS and SDS. In 

other words, we have to build a controversial sentence set as the 

ground truth. To ensure correctness, we only choose sentences that 

are explicitly disapproved by all evaluations, where the informa­

tion in the sentence is also manually confirmed to be incorrect. We 

recruit five experienced programmers, who have at least four years 

of programming experience. They determine whether a sentence 

is controversial based on the following criteria: 

• The sentence should be selected by at least one baseline ap­

proach. 

• The sentence should have been explicitly evaluated by at 

least one sentence, and all of these evaluation sentences 

should express negative opinions. 

We select sentences that are determined to be controversial by 

all five programmers. We obtain 7 and 16 controversial sentences 

from SDS and ADS, respectively. For each baseline and BugSum, 

we check the total number of controversial sentences that have 

been selected into the summaries over ADS and SDS. 

As shown in Fig. 3, BugSum only select 8.7% of controversial 

sentences into the summaries, which reduces the controversial 
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Figure 3: Selected controversial sentences. 

sentences in summaries by up to 69.6% compared to baseline ap­

proaches. We also observe that approaches like Grasshopper, Di­

vRank, and Hurried based on context information, and approaches 

such as DeepSum and Centroid based on word frequency select 

more controversial sentences. This validates our assumption pro­

posed in Section. 2.1. The controversial sentences are discussed 

by a series of comments before they are disapproved. Words or 

sentences related to the controversial sentences will appear more 

times in bug reports. Thus, approaches based on word frequency 

or context information are likely to select more controversial sen­

tences. 

Result 2: Controversial sentences are likely to be selected 

by the baseline approaches. Bug Sum can significantly reduce 

the possibility of controversial sentences being selected into 

the summary by up to 69.6% according to our careful empiri­

cal evaluation. 

4.4 Answer to RQ3: Influence of Parameters 

BugSum contains three parameters: feature vector dimension, do­

main word selection threshold, and the beam size of the beam 

search algorithm. To find out how these parameters influence the 

performance ofBugSum, we perform the following experiments. 

4.4. 1 Feature Vector Dimension. BugSum uses sentence vectors 

and a full-text vector to represent important information in bug re­

ports. The dimension of these feature vectors may affect the perfor­

mance of BugSum. We evaluate the performance of BugSum with 

the vector dimension from 1 to 2000. In Fig. 4(a), we present the 

F-score values of BugSum. 

The performance curves of Bug Sum on SDS and ADS exhibit a 

similar trend. The performance of Bug Sum declines rapidly when 

the dimension offeature vectors is lower than 200. It grows steadily 

when the dimension is between 200 and 1000. When the dimension 

is between 1000 and 1400, the performance ofBugSum remains sta­

ble and peaks when the dimension reaches 1200. The performance 

begins to decrease when the dimension exceeds 1400. The reason 

for this is that a low-dimension feature vector can only retain lim­

ited features with insufficient information, which can lead to worse 
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Figure 4: Performance of BugSum influnced by different parameters. 

performance. By contrast, when the dimension is too large, noisy 

features are also included in the feature vectors, which causes per­

formance degradation. 

We have also checked the performance of BugSum in terms of 

other metrics, and obtained quite similar results. Thus, we set the 

dimension of feature vectors to 1200 in all our experiments, as at 

around this value, the performance of Bug Sum reaches the peak 

on both ADS and SDS. 

4.4.2 Domain Word Selection Threshold. As noted in Section 3.3.1 ,  

we build the connection between the description and comments 

based on the sharing of domain words to assess the believability 

of sentences in the description. When selecting domain words, we 

need to set the threshold e to the TF-IDF value. In this experiment, 

we test the sensibility of e, from 0.02 to 0.20. 

As can be seen in Fig. 4(b), the performance ofBugSum increases 

rapidly over two datasets when e grows from 0.02 to 0.06. Subse­

quently, as the value increases from 0.06 to 0.1, we obtain compar­

ative performance. When e is higher than 0.1, the performance of 

BugSum first declines slightly and then remains stable from the 

point at around 0.18. The reason is that, when e is too small, the 

number of selected domain words will be large. Many links, includ­

ing noises, may be constructed between the description and com­

ments, which causes a further performance drop. On the contrary, 

when e is too high, few domain words can be selected, meaning 

that only a very limited amount of links can be built. The input 

information for BugSum is not rich enough, so its performance 

also drops. When e is higher than a certain value, such as 0.18 in 

Fig. 4(b), the amount of domain words is too small, and the relation 

between the description and comments can no longer affect the se­

lection. Therefore, the performance becomes stable again. We also 

observe that the performance over ADS is more sensitive to the 

change of e. This is because there are fewer sentences in ADS than 

in SDS, so the sentences in the description play a more critical role 

in ADS. The noises introduced by e will have more effects on ADS 

than on SDS. We also check the performance using other metrics 

and obtain similar results. Overall, we set the threshold of domain 

word selection to 0.08 in all our experiments. 

4.4.3 Beam Size. BugSum generates a summary based on the 

beam search algorithm. As introduced in Section 3.4, the beam 

search algorithm maintains b candidate sentence sets. In Fig. 4(c), 
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we illustrate the performance ofBugSum in the form of the F-score 
metric, when b is between 1 and 1 1 .  

The performance of  BugSum increases along with b until it 

reaches the value of 8, after which the performance becomes sta­

ble. Additional growth of the beam size cannot improve the per­

formance ofBugSum. The computational complexity of the search 

algorithm increases significantly as the beam size increases. Thus, 

we set the beam size to 8 in all our experiments to balance the per­

formance of BugSum and the computational time consumption. 

Result 3: The dimension of the feature vector seriously 

affects the performance ofBugSum. The threshold of domain 

word selection and the beam size also have a noticeable effect 

on the performance ofBugSum. Bug Sum can achieve its high­

est performance by setting these parameters appropriately. 

4.5 Answer to RQ4: Ablation Study 

In our approach, we implement the Sentence Feature Extraction 

(SFE) to extract textual features from sentences, and Dynamic 

Selection (DS) to improve the comprehensiveness of the chosen 

sentences. We deploy an ablation study to test the effectiveness 

of these two components against the commonly used alternative 

strategies. 

Bag-of-Words (BoW) is one of the most popular representation 

strategies [50] ,  which preserves the word frequency and ignores 

the original order or relationship between neighboring words. The 

sentence score method has been commonly used in previous ap­

proaches [ 6, 22, 27, 30, 40, 52] , which we denote as SSM. SSM se­

lects sentences with the highest score under the word amount lim­

itation. In this experiment, SSM uses the cosine similarity between 

the sentence vector 5; and the full-text vector DF as the score of 

sentence i. We use BoW as an alternative strategy for SFE and SSM 

as a replacement for DS. 

We illustrate the performance of the model under different com­

binations of alternative strategies in Table 3. We find that the re­

placement of any strategies will lead to a significant drop in most 

metrics. The replacement of the sentence feature extraction strat­

egy significantly impacts BugSum's Precision, R-1, and R-2. The rea­

son is that, the domain textual features in the sentences include 

word frequency and word context. The BoW strategy can only pre­

serve word frequency information, which leads to a performance 
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Table 3: Performance Using Different Strategies. 

Dataset I Strategy IF-score Precision Recall Pyramid R-1 R-2 

BoW SSM 0.297 0.41 1 0.241 0.307 0.436 0.092 

SDS BoW DS 0.396 0.496 0.344 0.550 0.5 17 0.125 

SFE SSM 0.381 0.522 0.306 0.543 0.509 0.1 1 3  

SFE DS 0.493 0.629 0.413 0.661 0.589 0. 194 

BoW SSM 0.294 0.405 0.254 0.493 0.460 0.1 1 2  

ADS BoW DS 0.386 0.45 1 0.353 0.562 0.5 12 0.207 

SFE SSM 0.377 0.467 0.322 0.528 0.487 0.180 

SFE DS 0.491 0.611 0.417 0.692 0.564 0.270 

drop, especially in terms of precision and readability. This also in­

dicates that our approach can preserve the domain textual features 

in sentences. We also find that summary selection strategies heav­

ily influence BugSum's Recall, a result that is caused by the redun­

dancy in sentences. Dynamic selection, as evaluated in Section 4.3, 

can select sentences while considering the comprehensiveness of 

the selected sentences. Alternative strategies like SSM tend to se­

lect sentences with redundant semantic features, and further cause 

relative low Recall while achieving similar Precision. 

Result 4: BugSum's sentence feature extraction strategy 

and dynamic selection strategy outperform alternative strate­

gies (i.e., BoW strategy and SSM strategy) in terms of 6 met­

rics over the datasets. 

5 RELATED WORK 

5.1 Bug Report Summarization 

Bug report summarization, which is considered to be a promis­

ing way to reduce human effort, involves composing a summary 

by picking out salient sentences from the bug report. Rastkar et 

al. [43] and Jiang et al. [ 1 7] extracted sentences based on feature 

classifiers that were trained using manually annotated bug reports. 

The performance of feature classifiers relies heavily on the qual­

ity of the training corpus [27], which requires the annotators to 

have certain expert knowledge and massive manual efforts. Arya 

et al. [ l ] labeled comments with their possible contained informa­

tion, and let users choose corresponding sentences based on their 

requirements. Radev et al. [ 40] compressed each sentence into a 

vector based on their TF-IDF values, and assessed sentences based 

on their similarity to the average of all sentence vectors. Other 

approaches [30, 52] have attempted select sentences according to 

reference relations, which were enhanced by a noise removal strat­

egy designed by Senthil et al. [28]. Lotufo et al. [27] scored their 

sentences based on imitating human reading patterns, connected 

sentences according to their similarities, and chose the sentences 

with the highest possibilities of being reached during a random tra­

verse. Jiang et al. [22] focused on predefined field words and sen­

tence types, and scored sentences based on the weight of words. In 

this paper, we have proposed a novel unsupervised algorithm for 

bug report summarization that can efficiently reduce the possibil­

ity of controversial sentences been selected into the summary. 
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5.2 Summarization of NLP 

Text summarization is one of the key applications of natural lan­

guage processing for information condensation [32]. Wang et 

al. [ 46] generated summaries for meeting records through tem­

plates, which required considerable manual effort to obtain. Cheng 

et al. [8] transformed the bug summarization into a classification 

task, by using LSTM as a recurrent document encoder to represent 

documents. Nallapati et al. [33] took the position of sentences into 

consideration to minimize the negative log-likelihood between 

the prediction and the ground truth by using an RNN based se­

quence model. Jadhav et al. [ 16] implemented the pointer network 

to add the salience of words into the prediction process. Narayan 

et al. [34] optimized the Rouge evaluation metric through a rein­

forcement learning objective. Zhou et al. [51]  designed an end-to­

end neural network to combine the sentence scoring process and 

the sentence selection process. The above approaches have acceler­

ated the development of understanding software artifacts [35] ,  e.g., 
source code and bug report. 

5.3 Deep Learning in Software Engineering 

In recent years, deep learning has been increasingly adopted to im­

prove the performance of software engineering tasks [ 48]. Moreno 

et al. [31 ]  and Matskevich et al. [29] utilized neural networks for 

source code analysis by integrating abstract syntax trees (i.e., AST) 
and code textual information to generate comments. Similarly, 

Wang et al. [ 47] combined API sequence information with neu­

ral networks, and generated descriptions for object-related state­

ment sequences. Moreover, Linares-Vasquez et al. [25] and Buse et 

al. [5] used neural networks to generate commit messages through 

extracting code changes. Jiang et al. [ 18] improved the results of 

neural networks by adding filters to filter out the likely poor pre­

dictions. Liu et al. [26] employed the pointer network to deal with 

out-of-vocabulary (i.e., OOV) words. While deep learning is an ex­

citing new technique, it is still debatable as to whether this method 

can be implemented in a way that benefits SE [12 ,  14]. 

6 CONCLUSION 

In this study, we present a novel unsupervised summarization ap­

proach, that considers sentence informativeness, believability and 

comprehensiveness, to generate more reliable and comprehensive 

summaries for bug reports. Compared to 8 typical baseline ap­

proaches, extensive experiments over two public datasets show 

that the performance of our approach reaches the state-of-the-art 

performance. Our approach can be applied in practice to assist 

with software maintenance and reuse. In particular, our method is 

able to prevent most controversial sentences from being selected 

into the summary, which point a promising direction for the fur­

ther work on conversation-based text analysis. 

In the future, we plan to conduct a large-scale quantitative eval­

uation using more OSS projects to validate the generality of our 

approach, as well as a careful qualitative case study designed to 

deeply explore more unique characteristics of bug reports that can 

improve our performances. 
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