
20
21

 I
E

E
E

/A
C

M
 4

3r
d

 I
n

te
rn

at
io

n
al

 C
o

n
fe

re
n

ce
 o

n
 S

o
ft

w
ar

e 
E

n
g

in
ee

ri
n

g
 (

IC
S

E
) 

| 9
7

8
-1

-6
6

5
4

-0
2

9
6

-5
/2

0
/$

3
1

.0
0

 ©
2

0
2

1
 I

E
E

E
 | 

D
O

I:
 1

0
.1

1
0

9
/I

C
S

E
4

3
9

0
2

.2
0

2
1

.0
0

0
2

1

2 0 2 1  IE E E /A C M  4 3 rd  In te rn a t io n a l C o n fe re n c e  o n  S o ftw a re  E n g in e e rin g  ( IC S E )

DepOwl: Detecting Dependency Bugs to Prevent
Compatibility Failures

Z h o u y a n g  J ia * * ,  S h a n s h a n  L i * * ,  T in g t in g  Y u * ,  C h e n  Z e n g * ,  E r c i  X u * ,  X ia o d o n g  L i u * * ,  J i W a n g * ,  X ia n g k e  L ia o *

* College of Computer Science 
National University of Defense Technology 

Changsha, China
{jiazhouyang, shanshanli, zengchen15, xuerci, liuxiaodong, 

wj, xkliao}@nudt.edu.cn

* Department of Computer Science 
University of Kentucky 

Lexington, USA 
tyu@cs.uky.edu

Abstract—Applications depend on libraries to avoid reinvent
ing the wheel. Libraries may have incompatible changes during 
evolving. As a result, applications will suffer from compatibility 
failures. There has been much research on addressing detecting 
incompatible changes in libraries, or helping applications co
evolve with the libraries. The existing solution helps the latest 
application version work well against the latest library version as 
an afterthought. However, end users have already been suffering 
from the failures and have to wait for new versions. In this 
paper, we propose DepOwl, a practical tool helping users prevent 
compatibility failures. The key idea is to avoid using incompatible 
versions from the very beginning. We evaluated DepOwl on 38 
known compatibility failures from StackOverflow, and DepOwl 
can prevent 35 of them. We also evaluated DepOwl using the 
software repository shipped with Ubuntu-19.10. DepOwl detected 
77 unknown dependency bugs, which may lead to compatibility 
failures.

Index Terms—Software dependency, Library incompatibility, 
Compatibility failure.

I. I n t r o d u c t i o n

Applications reuse as much existing code as possible for 
cost savings. Existing code is often in the form of libraries, 
which keep evolving and may introduce incompatible changes 
(e.g., changing interface signatures). Misuses of library ver
sions containing incompatible changes may lead to failures 
in applications. We refer to these failures as compatibility 
failures, or CFailures.

A CFailure involves three roles: library developers, appli
cation developers, and end users (library and application are 
relative concepts as an application itself may be a library for 
anther application). As shown in Figure 1, library developers 
release two versions containing incompatible changes. The 
changes are classified into two types: backward incompatible 
change (BIC) (e.g., removing an interface), and forward in
compatible change (FIC) (e.g., adding an interface). The solid

We thank the anonymous reviewers for their insightful comments. We also 
thank Xin Peng, Bihuan Chen and Kaifeng Huang for their suggestions. This 
work was supported in part by NSFC No. 61872373; National Key R&D  
Program of China No. 2018YFB0204301; NSFC No. 61872375, U19A2060, 
61802416; NSF grant CCF-1909085; and China Scholarship Council.

£ Shanshan Li and Xiaodong Liu are the corresponding authors.

Library
developer

End user

Fig. 1: Incompatible changes cause CFailures. The solid and 
dashed lines show how BIC (backward incompatible changes) and 
FIC (forward incompatible changes) cause CFailures, respectively.

(dashed) lines show how a BIC (an FIC) causes CFailures: 
i f  application developers develop an application based on the 
old (new) library version, end users may suffer from CFailures 
when linking the application to the new (old) library version. 
In either case, the incompatible change causes CFailures.

When incompatible changes happened, the three roles can 
prevent CFailures with different solutions: 1) library develop
ers can undo the changes in the latest version; 2) application 
developers can update the application to adapt the changes; 
3) end users can avoid using the incompatible library versions. 
There has been some research on detecting library changes 
[1]—[6]. These techniques focus on suggesting incompatible 
changes for library developers (i.e., the first solution). There 
has also been some work on detecting incompatible API 
usages in applications [7]-[10], or helping applications adapt 
library changes [11]-[14]. These techniques focus on helping 
application developers update the application (i.e., the second 
solution). In either of the above solutions, end users may have 
already suffered from CFailures and have to wait for new 
library/application versions. The third solution, on the other 
hand, is more light-weighted — end users can avoid CFailures 
from the very beginning without having to see the CFailures 
occur. However, there exists no research that can achieve this 
goal by helping users automatically select compatible library 
versions.

Some industrial settings use dependency management sys-

978-1-6654-0296-5/21/$31.00 ©2021 IEEE  
D O I 10.1109/ICSE43902.2021.00021

86

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



tems (DMSs) that can help users select right library versions. 
Examples include dnf [15] in RPM-based Linux distributions 
and apt [16] in Debian-based Linux distributions. However, 
DMSs have several practical limitations (more details in Sec
tion II):

1) DMSs require manual inputs from either application 
or library developers, which can be tedious and error- 
prone. For example, dnf requires application developers 
to specify version ranges of required libraries. apt asks 
library developers to maintain a symbol list provided by 
the library.

2) Manual inputs provided by developers may be outdated 
as the libraries evolve. For example, application de
velopers specified the version range libfoo>=1.0, after 
which libfoo-2.0 is released and backward incompatible 
to libfoo-1.0. The version range should have been updated 
to 2.0>libfoo>=1.0.

3) Developers may not comply with the requirements of the 
DMSs. For example, apt requires libraries not to break 
backward compatibility in a package, but library develop
ers may unintentionally introduce incompatibilities since 
there is no mechanism to guarantee the requirement.

Since DMSs depend on version ranges specified in specifi
cation files (e.g., the control file used by apt, or the .spec file 
used by dnf) to resolve dependencies, the above limitations 
may introduce incompatible versions being included in the 
version ranges. In this case, we say there are dependency bugs 
(or DepBugs) in the specification files.

To address the limitations within DMSs, we propose a new 
approach, DepOwl, to detect DepBugs and prevent CFailures. 
DepOwl works at the binary level to check compatibility 
between libraries and applications instead of analyzing the API 
usage in source code of applications (e.g., compilers)1. This is 
advantageous for end users who prefer to install binary files 
without having to compile the source code. For example, end 
users often use the command apt install to download binary 
files. The source-code level compatibility can not guarantee 
the compatibility of the binary files installed by the users.

Specifically, given the binaries of a library and an ap
plication, DepOwl automatically checks i f  the application is 
compatible to each version of the library, so it can help users 
select the right library versions to prevent CFailures. DepOwl 
contains three major steps. In the first step, DepOwl collects 
all potentially incompatible changes (e.g., add/remove/change 
interfaces) during the evolution of the library (from an old 
version to a new version), including both BICs and FICs. 
Next, DepOwl checks i f  the API usage in the target application 
matches the API definitions in either of the old and new library 
versions. I f  the change is a BIC (FIC) and the API usage 
matches the old (new) library version, the new (old) library 
version is regarded as an incompatible version. In the third 
step, DepOwl compares the incompatible version to all other 
library versions. Any version that is both backward and for
ward compatible to the incompatible version is also identified

'The current design of DepOwl focuses on C/C++ applications and libraries.

as an incompatible version. Users can prevent CFailures by 
avoiding using the reported incompatible versions.

A common usage scenario of DepOwl is to serve as a 
plugin for DMSs. Taking apt as an example, in Debian- 
based Linux distributions, apt helps users manage application 
dependencies. Each application contains a control file indi
cating its required libraries and version ranges. These ranges, 
however, may contain incompatible versions. DepOwl is able 
to detect incompatible versions, so that apt can avoid using 
incompatible versions when resolving dependencies, and users 
will be free of CFailures.

We evaluated DepOwl’s ability in preventing both known 
and unknown CFailures. We first evaluated DepOwl on 38 
real-world known CFailures from StackOverflow, and DepOwl 
can prevent 35 of them. We also applied DepOwl to the 
software repository shipped with Ubuntu-19.10, the latest 
Ubuntu stable version at the time of writing. DepOwl detected 
77 unknown DepBugs, which may cause CFailures.

In summary, the contributions of this paper are as follows:

1) We propose a lightweight solution to prevent CFailures 
when incompatible changes happened in libraries. Exist
ing research work mainly focuses on fixing CFailures in 
new versions, but can not prevent the CFailures. Industrial 
DMSs can help users resolve dependencies, but still have 
limitations.

2) We design and implement DepOwl, a practical tool to 
detect DepBugs and prevent CFailures. DepOwl can 
collect incompatible changes in libraries, detect DepBugs 
in applications, and suggest incompatible versions to help 
users prevent CFailures.

3) DepOwl can prevent 35 out of 38 CFailures selected from 
Stackoverflow. and detect 77 DepBugs in the repository 
shipped with Ubuntu-19.10. DepOwl is more accurate 
compared with baseline methods, and requires no human 
efforts.

II. Ex i s t i n g  DMSs a n d  Th e i r  L i m i t a t io n s

Manual management of software dependencies is time
consuming and sometimes even error-prone, since an appli
cation may depend on many libraries, which keep evolving all 
the time. In this regard, a common approach, especially in the 
open-source community, is to use a dependency management 
system (DMS), e.g., pip [17] for Python, Maven [18] for 
Java, npm [19] for JavaScript, apt [16] and dnf [15] in Linux 
distributions.

These DMSs provide interfaces for developers to specify 
dependencies (i.e., the required libraries and corresponding 
versions), as well as repositories that contain all libraries. 
Developers manually specify dependencies, then the DMSs 
can automatically download and install the libraries from the 
repositories. For a required library, developers can specify 
a fixed version or a version range. Using a fixed version 
is a reliable solution because it has little to virtually zero 
CFailures, but it lacks flexibility because critical fixes in later 
versions of the library cannot be automatically included [20]. 
While using a version range increases flexibility since it can

87

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



/ /c o c k p it-2 0 2 .1 /s rc /b r id g e /c o c k p itp ip e c h a n n e l.c  
id  = g_ s trd up _p rin tf ( Min te rna l-s tream -% M . . .  
in serted  = g_hash_table_replace ( . . . ,  id , . . . ) ;  
g_assert ( in s e rte d );

//h om e bank-5 .2 .2 /s rc /hb -transac tion .c  
i f ( g_hash_table_lookup(. . . )  == NULL ){  

re tv a l = g_hash_tab le_insert( . . . );
}
re tu rn  re tv a l;

Fig. 2: Example usages of library incompatible changes. Both 
cockpit-202.1 and homebank-5.2.2 use return values of glib functions, 
which return void in some glib versions.

automatically include critical fixes in later versions of the 
library, but decreases its reliability because the later versions 
may also introduce CFailures. There is a tradeoff between 
flexibility and reliability in these two approaches. Developers 
struggle to find the sweet spot [21].

Most DMSs leave this choice to application developers, who 
can manually limit the version range of each required library. 
Taking dnf as an example, dnf is the DMS used in RPM- 
based Linux distributions like Fedora. dnf requires application 
developers to specify the required libraries and version ranges 
(e.g., ocaml>=3.08), which may be outdated: 1) The version 
ranges may be too large as libraries evolve. For example, 
developers specify libfoo>=1.0 at first, after which libfoo-2.0 
is released and backward incompatible with libfoo-1.0. In this 
case, the version range should be updated to 2.0>libfoo>=1.0. 
2) The version ranges may be too small as libraries evolve. 
For example, developers specify libfoo<=1.0 at first, after 
which libfoo-2.0 is released and backward compatible with 
libfoo-1.0. In this case, the version range should be updated 
to libfoo<=2.0.

To avoid these limitations, another solution is to maintain a 
symbols file by library developers. This solution is applied in 
apt, the DMS in Debian-based Linux distributions like Ubuntu. 
According to Debian policy [22]: 1) "ABI (Application Binary 
Interface) changes that are not backward-compatible require 
changing the soname [23] of the library"; 2) "A shared 
library must be placed in a different package whenever its 
soname changes". It means that two library versions should 
be placed in two library packages, when the versions are 
backward incompatible. These two packages, to some degree, 
can be regarded as two different libraries, e.g., libssl1.0.0 
and libssl1.1. Library developers are required to maintain 
a symbols file [22], in which each line contains a symbol 
provided by the library, as well as the minimal version that the 
symbol is introduced. Then, the version range of this library 
can be inferred automatically by extracting symbols used by 
an application. The minimal version of the version range is the 
maximum value of introducing versions of all used symbols. 
The maximum version is not necessary since all versions 
are backward compatible in one package. Finally, the version 
range is used by apt to help users manage dependencies.

The above solution, however, is still limited since: 1) There 
is no mechanism to guarantee that library developers comply

Fig. 3: Overview of DepOwl. DepOwl contains three major steps: 
collect incompatible changes, detect dependency bugs, and suggest 
incompatible versions.

with the policy. Library developers may unintentionally intro
duce ABI incompatibilities between two versions, which have 
the same soname. Existing studies [6], [24] show 26%-33% of 
library versions violate semantic versioning, meaning libraries 
frequently introduce incompatibilities during minor version 
changes. 2) This solution only works for binary packages, 
since apt needs to analyze binary files to extract symbols used 
by the application. Application developers have to manually 
specify version ranges for source packages, which do not 
have binary files. In this case, apt w ill suffer from the same 
limitations as dnf. 3) Library developers need to manually 
update the symbols file when introducing forward incompatible 
changes. For example, when a struct type adds a field in a new 
library version, the introducing version of all symbols using 
the struct must be increased to the version at which the new 
field was introduced. Otherwise, a binary built against the new 
version of the library may be installed with a library version 
that does not support the new field. This is a common change 
during library evolutions, failing to update the introducing 
version of any symbol will lead to DepBugs. We will show a 
real-world example in Section III.

In summary, the DMSs supporting version ranges may intro
duce DepBugs — the ranges contain incompatible versions. In 
this paper, we focus on detecting and fixing DepBugs in the 
range-based DMSs, so that applications can achieve higher 
reliability without affecting flexibility.

III. M o t i v a t i o n  a n d  Ov e r v i e w  o f  DepOwl

In this section, we show a DepBug example which motivates 
us to design DepOwl. Based on the example, we introduce how 
DepOwl works at a high level.

Motivating example. From glib-2.39.1 to glib-2.39.2, the 
return types of some functions (e.g., g_hash_table_replace, 
g_hash_table_insert) changed from void to gboolean. These 
changes are: 1) backward compatible — a binary complied 
against the old version will ignore the return value of the new 
version, and there is no error; 2) forward incompatible — a 
binary complied against the new version may use the return 
value, where the old version returns void.

These changes may cause DepBugs in many applications 
(e.g., cockpit-202.1, homebank-5.2.2), where the return values 
of the changed functions are used. Figure 2 shows code

88

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



mylib.so
v1.0

mylib.so
v2.0

mylib.so
v3.0

glib>=2.37.3. Both the version ranges contain the incompat
ible version glib-2.39.1. Therefore, we say cockpit-202.1 and 
homebank-5.2.2 contain DepBugs since their version ranges 
contain incompatible versions.

The root cause of the DepBugs is that library developers do 
not update the introducing versions of the changed functions 
in the symbols file of the library.

The DepOwl approach. DepOwl can detect DepBugs in 
the above example, and prevent CFailures caused by the bugs. 
Figure 3 shows the overview of DepOwl, which contains three 
major steps. First, the root causes of CFailures are incom
patible changes in libraries. DepOwl collects incompatible 
changes from any two successive library versions, including 
both BICs and FICs. For example, the above example contains 
two incompatible changes as shown in Table Ia.

Second, one incompatible change may or may not result in 
CFailures. DepOwl analyzes usages of the changed element 
(e.g., g_hash_table_replace) in each application, and detects 
whether the old or new library version of the change is incom
patible to the application. I f  yes, DepOwl reports a DepBug 
when the incompatible version is included in the required 
version range of the application. For the above example, the 
third column of Table Ib shows the incompatible versions that 
cause DepBugs.

Third, one incompatible change may cause multiple incom
patible versions. DepOwl suggests all incompatible versions 
caused by each incompatible change. Users can prevent CFail
ures by avoiding using the incompatible versions. In this step, 
any version that is both backward and forward compatible 
to the version reported by the second step (e.g., glib-2.39.1 
for cockpit-202.1) w ill also be regarded as an incompatible 
version. In our example, the changed functions return void 
in glib-2.39.1 and previous versions. Thus, the incompatible 
version range is glib<=2.39.1. Then, DepOwl calculates the 
intersection between the incompatible version range and the 
required version range. For example, the intersection for 
cockpit-202.1 is 2.37.6<=glib<=2.39.1.

There are three challenges in the design of DepOwl:

• DepOwl collects library changes that break either back
ward or forward compatibility, whereas existing tools 
mainly focus on detecting backward incompatibilities. To

Fig. 4: Difference between DepOwl and existing tools. This 
figure includes source-code level (1, 2) and binary level (3, 4) 
compatibility between libraries and applications (2, 3), or cross 
different library versions (1, 4). Existing tools focus on (1, 2, 4), 
while DepOwl addresses (3).

achieve this, we propose a heuristic rule to help DepOwl 
detect changes breaking forward compatibilities.

• DepOwl detects i f  incompatible changes will cause Dep- 
Bugs. This is challenging because the changes can involve 
different types (e.g., add a function, remove a parameter). 
To address this, we categorize the changes and derive a 
set of rules to detect DepBugs for each type.

• DepOwl suggests all incompatible versions caused by 
each incompatible change. This is non-trivial because 
multiple changes may affect the same element. In this re
gard, DepOwl performs a global check across all versions 
to suggest incompatible ones for a changed element.

IV. DepOwl A p p r o a c h

There have been some existing techniques (e.g. compilers) 
on analyzing API usages in applications to check if  the 
application is compatible with a given library version. They 
work at the source-code level. However, end users often 
prefer to install binary files directly, instead of downloading 
source-code files and compiling the applications themselves. 
Therefore, the users often care more about the binary level 
compatibility. There has also been some work (e.g. ABI 
Tracker [25]) on detecting incompatibilities cross different 
library versions at both source-code and binary levels. This 
work does not analyze the API usages in applications. As 
shown in Figure 4, in this paper, we focus on detecting 
binary level compatibility between libraries and applications. 
The compatibility at the source-code level cannot guarantee 
the compatibility at the binary level, such as modification 
of virtual tables of classes, change of type sizes of function 
parameters, change of values of enumeration elements, change 
of orders of struct fields, change of compilation directives, and 
so on.

Figure 5 shows two real-world examples that applications 
and libraries are compatible at the source-code level, but 
incompatible at the binary level. In the first example, three

89

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



/ / o p e n s s l- 1 .0 .1 s /s s l / s s l . h
# i fn d e f  OPENSSL_NO_SSL2
const SSL_METHOD *SSLv2_method(v o id ) ; / *  SSLv2 * /  
const SSL_METHOD *SSLv2_server_m ethod(v o id ) ;  / *  SSLv2 * /  
const SSL_METHOD *S S L v2_ c lie n t_ m e th od (v o id ) ;  / *  SSLv2 * /
# e n d if

/ / r u b y - 2 . 5 . 5 / e x t / z l i b / z l ib . c  
# i f  !defined(HAVE_TYPE_Z_CRC_T)

ty p e d e f unsigned lon g  z _ c rc _ t;
# e n d if

const z _ c rc _ t * c r c t b l ;
c r c t b l  = g e t_ c rc _ ta b le ( ) ;

Fig. 5: Examples of source-code compatible but binary incom
patible dependency between libraries and applications.

APIs in the library openssl depend on the compilation direc
tive OPENSSL_NO_SSL2. In openssl-1.0.1s, the directive is 
enabled; thus, the APIs are not available in library binaries. 
While in other versions, the directive is disabled by default. 
In this case, the source code of openssl-1.0.1s is the same as 
the source code of other versions, but applications using the 
APIs only fail when linking to openssl-1.0.1s. In the second 
example, the application ruby-2.5.5 depends on the library 
zlib, which defines z_crc_t as unsigned int after zlib-1.2.7. 
When compiling ruby against zlib-1.2.6, the compilation direc
tive HAVE_TYPE_Z_CRC_T is not defined; thus, z_crc_t is 
unsigned long. When compiling ruby-2.5.5 against zlib-1.2.7, 
the compilation directive is defined; thus, z_crc_t is unsigned 
int. The application ruby-2.5.5 is source-code compatible with 
both zlib-1.2.6 and zlib-1.2.7. However, when the application 
is compiled against one version, it w ill be incompatible to 
another version at runtime.

Algorithm 1 shows how DepOwl suggests incompatible 
versions for each pair of library and application <lib, app> in 
a software repository (line 1). DepOwl first collects the set of 
incompatible changes IC  from lib (line 2). Table Ia illustrates 
two examples of incompatible changes. Each incompatible 
change ic is a three-tuple: <library name, change versions, 
change content>. The change versions contain the old and new 
versions involved in the change. For each ic (line 3), DepOwl 
then detects whether ic can cause a DepBug in app, and returns 
a two-tuple: <vold, vnew> (line 4). I f  the old (new) version of 
ic is incompatible to app and included in the version range 
required by app, vold (vnew) returns the old (new) version 
number, otherwise void (vnew) returns -1. I f  void (vnew) does 
not return -1 (line 5, line 8), DepOwl w ill suggest any version 
which is both backward and forward compatible to void (vnew) 
as an incompatible version (line 6, line 9).

A. Collecting Incompatible Changes

The first component of DepOwl takes the library lib as 
input, and collects its incompatible changes IC . As shown 
in Figure 1, both BICs and FICs may result in CFailures. 
DepOwl needs to collect both kinds of library changes. There 
are existing tools of detecting compatibility problems in li
braries, e.g., ABI-Tracker [25], a tool for checking backward 
compatibility of a C/C++ library. However, the existing tools 
mainly focus on backward compatibility problems. DepOwl 
transfers the forward problems into backward problems.

Algorithm 1 Pseudo-code of the DepOwl Approach.
Require: Library set L ib , application set App
Ensure: Incompatible version sets V<Ub (lib  E Lib, app 

1: for each pair of <lib, app> do 
2: IC  = Collect_Incompatible_Change(l ib )
3: for each ic  e  IC  do
4: [void,Vnew] = Detect_Dependency_Bug(ic , app)
5: if  void =  - 1  then
6: V<iib,app> += Suggest_Incompatible_Version(ic , void, lib)
7: end if
8: if  vnew =  - 1  then
9: V<iib,app> += Suggest_Incompatible_Version(ic , vnew, lib)

10: end if
11: end for
12: end for

We refer to incompatible changes from version vold  to
version vnew  as IC (v o ld ,v n e w ):

IC(Vold, vnew) — B IC ( v old, vnew) U F I C  (vold, vnew ), (1)

where B IC  (vo id , vn e w ) and F IC  (vo id , vn e w ) stand for BICs 
and FICs from vo ld  to vn e w . DepOwl applies a heuristic rule: 
forward incompatibility from vold  to vnew  is equivalent to 
backward incompatibility from vnew  to vo ld , formalized as:

F I C  (Vold,Vnew) — B I C  (v new , void). (2)

According to Equation 1 and Equation 2, we can get:

I C  (vold,vnew) — B I C  (vold,vnew ) U B IC (v new ,vold) . (3)

Then, DepOwl collects both B IC (v o ld , vn e w ) and
B IC (v n e w , vo ld ) by using the ABI-Tracker tool. For a 
library with N  versions, DepOwl calculates all incompatible 
changes IC  of lib :

I C  — ui=N _i IC (v i ,vi +1). (4)

During collecting library changes, DepOwl also consider 
the following factors: 1) Library soname [23]. DepOwl will 
skip the library changes between vold  and vn e w , i f  vold  and 
vnew  have different sonames. Library versions with different 
sonames w ill be packaged into different packages; thus will 
not lead to DepBugs. 2) Symbol versioning [26]. Symbol 
versioning supports multiple symbol versions in one library 
version. For example, in glibc-2.27, the symbol glob has 
two versions: glob@@GLIBC_2.27 and glob@GLIBC_2.2.5 
(‘ @@’ means the default version). DepOwl regards symbols 
with different versions as different symbols.

For each library version, DepOwl requires its binaries com
piled with debug symbols. When the input is not available, 
DepOwl takes source code as input, and compiles the library 
with debug symbols itself (we provide compiling scripts to 
achieve this). DepOwl uses default compilation directives 
during the compiling process, and accepts custom directives 
provided by users at the same time.

B. Detecting Dependency Bugs

The second component of DepOwl is to analyze usages of 
the changed element of each ic in app, and detect whether 
vold  or vnew  is incompatible to app. I f  yes, DepOwl reports a 
DepBug when the incompatible version (i.e., vold  or vn e w ) is

90

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



included in the version range required by app. When app does 
not specify any version range, DepOwl assumes it accepts all 
versions. As a common usage scenario of DepOwl is to detect 
DepBugs in a software repository. In this case, DepOwl takes 
the repository as input, and for each application package in 
the repository, DepOwl detects whether the change can lead 
to a DepBug. It is time consuming to analyze all application 
packages since a software repository may contain tens of 
thousands of application packages. In this regard, DepOwl 
splits the detecting process into two phases: filtering phase 
and detecting phase.

Filtering phase. DepOwl first filters out the application 
package that does not accept the library versions where ic 
happened. For example, app requires libfoo>=3.0, while the 
ic happened from libfoo-1.0 to libfoo-2.0. To achieve this, 
DepOwl analyzes the dependencies of app (e.g. from control 
file in Ubuntu or .spec file in Fedora), and extracts the libraries 
required by app, as well as corresponding required version 
ranges. DepOwl checks i f  the library (where ic happens) is 
included in the required libraries, and if  vo ld  and vnew  of ic 
are included in the corresponding version range. When either 
of the above two conditions is not satisfied, it means ic can 
never affect app. In this case, DepOwl reports no DepBugs 
and stops analyzing.

Then, DepOwl filters out the application package that does 
not use the changed element in ic . For example, the library 
adds a parameter for a symbol, which is not used in app. 
In general, ic can be classified into two types according to 
the changed element: change a symbol (e.g., from "foo()" 
to "foo(node a)") and change a data type (e.g., from "struct 
node {int i;}" to "struct node {float f;}"). DepOwl analyzes 
the binary files contained in app. When ic changes a symbol, 
DepOwl checks i f  any binary file requires the symbol by using 
the readelf [27] tool. When ic changes a data type, DepOwl 
collects all symbols that use the data type in the library, and 
checks i f  any binary file requires any symbol. I f  yes, it means 
ic can potentially lead to CFailures, and DepOwl starts the 
next phase. Otherwise, DepOwl stops analyzing, and reports 
no DepBugs.

Detecting phase. DepOwl analyzes the usage of the 
changed element and determines whether vo ld  or vnew  is 
incompatible to app. I f  the change is a BIC (FIC) and the 
usage matches vold (vn e w ), then vnew  (vo ld ) w ill be regarded as 
the incompatible version. DepOwl takes the application binary 
file with debug symbols as input. When ic changes a symbol, 
DepOwl extracts the symbol signature from the binary file. 
When ic changes a data type, DepOwl extracts the data-type 
definition from the binary file. After that, DepOwl compares if  
the signature or definition is the same as that of vold  or vn e w . 
I f  the above input is not available, DepOwl can also extracts 
the usage from source code. For example, when working on 
a software repository, many applications are released without 
debug symbols. In this case, DepOwl automatically downloads 
the source code of each application package.

When using the application source code, it is hard to extract 
symbol signatures or data-type definitions, since the header

files are not available. DepOwl has to apply different rules 
to determine the incompatible version. For example, when ic 
adds a field in a struct, DepOwl needs to check i f  the additional 
field is used in the source code. When ic changes the type of 
a return value from void to non-void, DepOwl needs to check 
i f  the return value is used in the source code.

In this regard, we enumerate all types of incompatible 
changes in C/C++ libraries and define determination rules 
for each type. The classification and rules are shown in 
Table II. We classify library changes into 18 types related 
to enum (1-3), struct (4-7), variable (8-10), and function 
(11-18). The struct and enum types are data-type changes, 
while the variable and function types are symbol changes. 
For data-type changes (1-7), DepOwl needs to confirm that 
the application uses the changed element in source code, e.g., 
member for enum or field for struct. For symbol changes (8
18), DepOwl has already confirmed that the application uses 
the changed symbol in the filtering phase. For changes related 
to "add" or "remove" (1-2, 4-5, 8-9, 11-14, 16-17), once the 
application uses the changed element, DepOwl determines 
the incompatible version is vold or vnew, respectively. For 
changes related to "change type" (6, 10, 15, 18), DepOwl 
analyzes the usages of changed element, and infers the type in 
source code. For example, from zlib-1.2.6.1 to zlib-1.2.7, the 
return type of the function get_crc_table changed from long to 
int. In the source code of package unalz-0.65, DepOwl finds 
"long *CRC_TABLE = get_crc_table();", i.e., the return type 
matches version 1.2.6.1. Thus, DepOwl determines 1.2.7 is the 
incompatible version. As for change type 3 and 7, it is hard to 
infer the member value or field order from source code. Thus, 
DepOwl cannot determine the incompatible version.

We tried to build a complete table with our best effort. 
We referenced online resources during the enumeration pro
cess [28]-[30]. For example, changing an inherited class in 
C++ will generate two totally different symbols in binaries due 
to name mangling. In this case, DepOwl w ill report function 
add and function remove. Also, DepOwl is designed to be 
flexible to incorporate new rules.

DepOwl uses srcML [31], a source-code analysis infrastruc
ture, to achieve the above analyzing. The source code cannot 
be compiled since the lack of header files, while srcML pro
vides lexical analysis and syntax analysis for non-compilable 
source code. DepOwl returns a two-tuple: <vold, vnew> in this 
step. I f  the old (new) version in ic is incompatible to app and 
included in the version range required by app, vold (vnew) 
returns the old (new) version number, otherwise vold (vnew) 
returns -1.

C. Suggesting Incompatible Versions

We refer to the incompatible version reported in the above 
step (i.e., vold or vnew) as vbug. A library change may lead 
to multiple incompatible versions beyond vbug. In this compo
nent, DepOwl detects all library versions that are incompatible 
to app caused by ic . To achieve this, DepOwl cannot simply 
assume the versions less than or greater than vbug as incom
patible versions, since the changed element in ic may change

91

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Rules for determining DepBugs.

ID Types of Incompatible Changes DepOwl Rules
Incomp.
Version

1 Enum adds member Use the member Vold
2 Enum removes member Use the member Vnew
3 Enum changes member value Use the member -
4 Struct adds fieldT Use the field Void
5 Struct removes field Use the field Vnew

6 Struct changes field type
Use the field &  
Match the filed type Vo./Vn.

7 Struct changes field order Use the field -
8 Global variable adds - Void
9 Global variable removes - Vnew
10 Global variable changes type Match the var type Vo./Vn.
11 Function adds - Void
12 Function removes - Vnew
13 Function adds para Use the para Vold
14 Function removes para Use the para Vnew
15 Function changes para type Match the para type Vo./Vn.
16 Function adds return value Use the function ret Vold
17 Function removes return value Use the function ret Vnew
18 Function changes return type Match the ret type Vo./Vn.

f  The struct related rules (4-7) also apply for union or class.

again in another ic . For example, in zlib, developers remove 
the function gzgetc (change gzgetc to a macro for speed) from 
zlib-1.2.5.1 to zlib-1.2.5.2. After that, the developers restore 
gzgetc for compatibility from zlib-1.2.5.2 to zlib-1.2.5.3 [32]. 
In this regard, DepOwl checks compatibilities of the changed 
element of ic across all versions of lib, and any version that 
is both backward and forward compatible to vbug will be 
regarded as an incompatible version.

We refer to the changed element in ic as ele. Suppose 
there are N  library versions. For Vi e [1, N ], DepOwl 
calculates is IV (v i), a Boolean value indicating whether vi  

is an incompatible version:

i s I V  (vi ) — —bbc(vbug,vi ,ele) A —bfc(vbug ,vi ,ele), (5)

where bbc(vbug,vi ,ele) and bfc(vbug,vb,ele) return Boolean 
values, meaning i f  ele breaks backward compatibility or breaks 
forward compatibility from vbug to vi , respectively. I f  yes, 
return 1, otherwise return 0. Similar to Section IV-A, we have:

bf  c(vbug, vi , ele) — bbc(vi ,vbug, ele). (6)

Therefore, DepOwl transforms the above two equations to:

i s I V  (vi ) — —bbc(vbug, vi , ele) A —bbc(vi , vbug, ele). (7)

Then, DepOwl outputs a list of Boolean values IS IV , each 
of them indicates whether a version is incompatible (i.e., 1) 
or not (i.e., 0):

I S I V  — [ i sIV (vi ), i s I V  (v2) , . . . , i s IV (v n  )]. (8)

For each element (e.g. is IV  (vi )) in IS IV , i f  is IV  (vi) 
equals to 1, and vi  belongs to the version range required by 
app, DepOwl regards vi  as an incompatible version. Taking 
the application cockpit-202.1 as an example, the required 
version range is glib>=2.37.6; while for Vj e (glib<=2.39.1), 
is IV  (vj ) equals to 1. DepOwl suggests the incompatible 
versions are 2.37.6<=glib<=2.39.1. For an application that is

not managed in a software repository, DepOwl assumes that 
it accepts all library versions since there is no version ranges.

For the given app and lib, DepOwl reports a set of incom
patible versions for each ic: IV < lib , app, ic > . Suppose there 
are M  incompatible changes in lib . Finally, DepOwl suggests 
all incompatible versions between app and lib :

V<lib, app> =  VIi= M IV <lib, app, ic i>  , (9)

where ici  stands for the i th  incompatible change.

V. Ev a l u a t i o n

To evaluate DepOwl, we consider three research questions: 

RQ1: How effective is DepOwl at preventing known CFail- 
ures? This question examines the recall of DepOwl by calcu
lating the percentage of CFailures that can be prevented by 
DepOwl among all known CFailures.

RQ2: How effective is DepOwl at preventing unknown CFail- 
ures? This question evaluates the precision of DepOwl by 
calculating the percentage of correct results among all results 
reported by DepOwl.

RQ3: How does DepOwl compare with existing methods? 
This question compares DepOwl with two widely used DMSs 
(i.e., apt and dnf), as well as the dependencies declared in the 
build systems (e.g., autoconf or cmake) by developers2.

A. Datasets and Experiment Designs

For each research question, we introduce the preparation of 
datasets, and the measurements used during the evaluation.

RQ1: Preventing known CFailures. We collected known 
CFailures from StackOverflow by using keyword search. 
However, simple keywords (e.g., library, dependency, version, 
etc) may result in tens of thousands of issues, and introduce 
massive manual efforts in the following analysis. Instead, we 
used the error messages when users came across compatibility 
problems as keywords. For example, when a library removes 
a symbol, the application will echo "symbol lookup error" at 
runtime. When a library symbol adds or removes a parameter, 
the complier will complain "too few/many parameter to func
tion" at compiling time. In total, we collected 529 issues by 
using error-message searching.

We then manually analyzed root causes of these issues and 
found 69 issues involve incompatible changes in libraries. 
These changes lead to CFailures through misuses of library 
versions. While others are mainly caused by dependency 
problems but not related to compatibility. Among the 69 
issues, 38 of them involve C/C++ programs. Since the current 
version of DepOwl handles C/C++ programs, we used the 
38 issues to answer RQ1. The applications of 23 issues are 
code snippets provided by the original posters, while other 
issues involved 12 mature projects including servers (e.g., 
Httpd, MongoDB) and clients (e.g., Eclipse, Qt) from different 
domains.

2The data and source code in this paper are publicly available in 
https://github.com/ZhouyangJia/DepOwl.

92

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Examples of reported DepBugs in the software repository shipped with Ubuntu-19.10 t.

Application and Library Information Results of DepOwl
Application Package Library Package Change Versions Change Symbol/Data-type Incompatible Versions
qgis-providers_3.4.10 libsqlite3-0>=3.5.9 <3.7.6.3, 3.7.7> struct sqlite3_module adds xSavepoint [3.5.9, 3.7.6.3]

unalz_0.65-7 zlib1g>=1.1.4 <1.2.6.1, 1.2.7> get_crc_table changes return value from long to int [1.2.7, Vlast]
elisa_1.1 libkf5i18n5>= 5.15.0 <5.16.0, 5.17.0> Add KLocalizedContext(QObject*) [5.16.0]

gammaray_2.9.0 libqt5core5a>=5.12.2 <5.13.2, 5.14.0> qt_register_signal_spy_callbacks() changes para type [5.14.0, Vlast]
geeqie_1:1.5.1-1 libglib2.0-0>=2.51.0 <2.51.0, 2.52.0> g_utf8_make_valid() adds parameter gssize [V in it, 2.51.0]
alsa-utils_1.1.9 libasound2>=1.1.1 <1.1.9, 1.2.1> Remove snd_tplg_new@ALSA_0.9 [1.2.1, Vlast]

rkward_0.7.0b-1.1 libkf5coreaddons5>=5.19.0 <5.19.0, 5.20.0> Add KCoreAddons::versionString() [5.19.0]

f We illustrate one bug for each library package. The complete DepBug list is available in our supplementary materials.

Since the 38 issues were selected by searching error mes
sages, they may not cover certain types of compatibility 
breaking changes (Table II) that do not produce observable 
symptoms. For example, in Table II, “ changing member values 
in a enum type (ID 3)" and “changing field orders in a struct 
type (ID 7)" may result in errors in a program, but will 
not generate error messages. Therefore, the 38 issues cannot 
cover the changes of ID 3 and ID 7. It is hard to collect 
incompatibilities that have no observable failures, since users 
cannot be sure i f  they are actual bugs, thus may not report 
issues.

We measured the effectiveness of preventing known CFail- 
ures in terms of whether DepOwl can prevent the CFailures 
in the 38 C/C++ related issues. To achieve this, DepOwl 
needs to detect DepBugs in these issues. DepBugs happen 
when the version ranges required by applications contain 
incompatible versions. Fixing the DepBugs helps users avoid 
using incompatible versions and prevent CFailures. When an 
application does not specify a version range, DepOwl assumes 
that the application accepts all library versions.

RQ2: Preventing unknown CFailures. We used the soft
ware repository shipped with Ubuntu-19.10 (the latest sta
ble version at the time of writing) to evaluate DepOwl, 
since Ubuntu uses apt, which can resolve dependencies au
tomatically, while other DMSs mainly depend on application 
developers to manually input dependencies. The repository 
includes 61,068 packages; each package can be either an 
application package or a library package. There are 32,069 
library packages, which are depended by at least one other 
package. For each library package, we count the number of 
application packages that depend on it. We choose the top 
1%0 (i.e., 32) library packages, which are from 26 different 
libraries (one library may generate multiple packages, e.g., 
the qt library generates libqt5core5a, libqt5gui5 etc.). For each 
chosen library, we collect its versions released during about 
last ten years, and get 841 versions in total (i.e., 32.2 versions 
for each library on average).

It is hard to directly measure the effectiveness of preventing 
unknown CFailures, since the unknown CFailures do not 
happen as yet. Instead, we measure the effectiveness in terms 
of whether DepOwl can detect unknown DepBugs in the 
software repository, and prevent potential CFailures caused 
by the DepBugs. In specific, for each application package 
from the software repository, DepOwl detects whether there

are DepBugs with regard to the chosen library packages, 
i.e., the version ranges required by the application package 
contain incompatible versions. I f  yes, DepOwl suggests the 
incompatible versions that may cause CFailures.

RQ3: Comparing with existing methods. We used the 
same dataset in RQ1 to compare DepOwl with existing 
methods, and calculated the percentage of issues that can be 
prevented i f  the original posters use existing methods.

We first compared DepOwl with two DMSs used in industry: 
1) dnf, used in RPM-based Linux distributions, where appli
cation developers manually specify version ranges of required 
libraries; 2) apt, used in DEB-based Linux distributions, 
where library developers maintain a symbols file. We then 
compared DepOwl with building scripts (e.g., configure.ac or 
CMakeList.txt) shipped with application source code, since 
developers often declare version ranges in the scripts.

B. Results and Analysis

RQ1: Preventing known CFailures. Two authors manually 
evaluated whether DepOwl can prevent the 38 known CFail- 
ures by analyzing i f  the incompatible versions suggested by 
DepOwl contain the incompatible version used by the original 
poster. The result shows DepOwl successfully suggests incom
patible versions for 35 of the 38 C/C++ related issues. The 
complete list of these issues is available in our supplementary 
materials. Each issue in the list contains the issue ID, the 
application name, the library name, and the incompatible 
versions suggested by DepOwl. Taking issue 27561492 as 
an example, library libpcre adds function pcrecpp::RE::Init 
from libpcre-5.0 to libpcre-6.0, and changes its parameter type 
from libpcre-6.7 to libpcre-7.0. Therefore, DepOwl reports two 
library changes. Meanwhile, the application mongodb-2.4 uses 
pcrecpp::RE::Init, and the parameter type is the same as the 
type from libpcre-6.0 to libpcre-6.7. Thus, DepOwl reports 
[Vin it, 5.0]U[7.0, Vlast]3 as the incompatible versions.

On the other hand, DepOwl reported three false negatives. 
Two cases were caused by compilation directives, e.g., the 
original poster executed and compiled an application on dif
ferent OS, where the libraries may be compiled with different 
directives. DepOwl cannot infer such directives, and thus gen
erates false negatives. The last case missed version information 
and might have used a very old library version. DepOwl can

3Vini t and Viast stand for the first and the last library version that have 
the same soname.

93

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



prevent CFailures in 35 out of the 38 issues. This result 
indicates DepOwl can effectively prevent real-world CFailures 
in terms of recall.

RQ2: Preventing unknown CFailures. DepOwl collected 
27,413 incompatible changes from the 841 versions of the 
26 libraries. For each change, DepOwl detects i f  the change 
can cause a DepBug for each application package. DepOwl 
detected 77 DepBugs, of which 49 are caused by backward 
incompatible changes and 28 are caused by forward incompat
ible changes. These DepBugs involve 69 application packages 
and 7 library packages. Table III illustrates one bug for each 
library package. The complete DepBug list is available in 
our supplementary materials. For example, in the first bug, 
the application qgis-providers_3.4.10 depends on the library 
libsqlite3-0>=3.5.9, which adds the filed xSavepoint in struct 
sqlite3_module from 3.7.6.3 to 3.7.7. The application used the 
new filed; thus 3.7.6.3 is an incompatible version. DepOwl 
then suggests all incompatible versions: [3.5.9, 3.7.6.3].

We searched evidence from new library versions, new 
application versions, or software repositories to evaluate i f  the 
77 DepBugs have been handled in different ways. I f  not, we 
further reported them to the repository maintainers. Among 
the 77 DepBugs, library developers undo the library changes 
of 37 cases in later library version. It means applications may 
have CFailures when using the library versions before undoing 
the changes. Application developers update the application to 
adapt the changes in 3 cases, meaning the old application 
version may have CFailures. Besides, 24 DepBugs are fixed 
in the latest version of Ubuntu or Debian. Although these 
bugs have been handled in different ways, they had been in 
the system for a long period of time, posing threats to the 
system reliability. For example, library developers fixed an 
incompatible version, which had already been released and 
affected applications. DepOwl is able to prevent these impacts 
from the very beginning.

For the other 13 cases, we report them to the Ubuntu 
community, 4 of them have been confirmed by developers, 
and 8 are pending for response. So far, we only found one 
potential false-positive case. DepOwl reported that the library 
kcoreaddons-5.19 is incompatible to the application rkward, 
which depends on kcoreaddons>=5.19. The developer agreed 
that the incompatibility may exist, but kcoreaddons-5.19 is not 
actually used in any Ubuntu release (Xenial uses kcoreaddons- 
5.18, Bionic uses kcoreaddons-5.40), thus has zero impact. 
This result indicates DepOwl can effectively detect real-world 
DepBugs in terms of precision.

This experiment took about 30 hours in a virtual machine 
with a dual-core CPU and 4G memory. The filtering and 
detection phases took about five hours (excluding downloading 
packages). The majority of time was spent on collecting library 
changes of history versions. This process is one-time effort, 
since the latest library version can be analyzed incrementally. 
The execution time of each library depends on its scale and 
type. When analyzing large C++ libraries like Qt, DepOwl may 
need dozens of minutes for each pair of versions. Meanwhile, 
some other libraries only need several seconds.

# webkitgtk.spec in webkitgtk-1A 3-9.el6_6.src.rpm 
BuildRequires: gtk2-devel 
BuildRequires: libsoup-devel >= 2.33.6 
BuildRequires: libicu-devel

# control in libwebkit-1.0-2_1.2.7-0+squeeze2_amd64.deb 
libpng12-0 (>= 1.2.13-4), 
libsoup2.4-1 (>= 2.29.90),
libsqlite3-0 (>= 3.7.3),

# configure.ac in webkit-1.4.3.tar.gz
LIBSOUP_REQUIRED_VERSION=2.33.6
CAIRO_REQUIRED_VERSION=1.6

Fig. 6: Version ranges of different baselines.

RQ3: Comparing with existing methods. We compared 
DepOwl with three existing methods, i.e., dnf for .rpm pack
ages, apt for .deb packages, and the building system. For 
each StackOverflow issue used in RQ1, two authors manually 
evaluated i f  the CFailure can be prevented by using existing 
methods when the original poster used the existing methods at 
first. Taking issue 30594269 as an example, webkit has "sym
bol lookup error" when linking to libsoup. The incompatible 
version range of libsoup is [Vi n i t , 2.29.6]. The version ranges 
of libsoup in three baselines accepted by webkit are [2.33.6, 
Vla s t], [2.29.90, Vla s t], [2.33.6, VUs t], respectively. Thus, all 
the three baselines can prevent the failure in this issue. Figure 6 
lists the files where we get these version ranges, including the 
webkitgtk.spec file in the .rpm package, the control file in the 
.deb package, and the configure.ac file in the building system 
of source code.

Figure 7 shows the results regarding the comparison among 
DepOwl and the three baselines. DepOwl can prevent CFail
ures in 35 issues whereas the baselines can prevent CFailures 
in 3, 7, 5 issues, respectively. Besides, DepOwl does not report 
any problems in 3 issues (i.e., 3 false negatives), while the 
baselines do not report any problems in 27, 27, 26 issues. 
This is because 23 issues were caused by code snippets 
provided by the original posters. These code snippets are not 
managed in any DMSs or build systems. Last but not the 
least, the baselines report DepBugs in 8, 4, 7 issues (i.e., 
the version range contains incompatible versions). DepOwl 
successfully prevents 35 CFailures, whereas the best baseline 
prevents 7 CFailures. The detailed results are available in our 
supplementary materials. This result indicates DepOwl is more 
accurate than the three baselines. In the mean time, DepOwl 
requires no human efforts, while the baselines require manual 
inputs from either library developers or application developers.

VI. D i s c u s s io n  a n d  Fu t u r e  W o r k s

In this section, we discuss limitations in the design of 
DepOwl, as well as future works with regard to the limitations.

Debug symbols of libraries. To collect incompatible 
changes (in Section IV-A), DepOwl requires all versions of 
the library as inputs. Each version should be in the source 
code form or the binary form with debug symbols. For 
the binary form, most libraries are released without debug 
symbols, and do not meet the requirement of DepOwl. As

94

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



40

Report DepBugs 
(false positive)

Do not report 
(false negative)

� Prevent Cfailures 
(true positive)

Fig. 7: The comparison among DepOwl and baselines.

for the source code form, we need to compile the source 
code so that DepOwl can collect Application Binary Interface 
(ABI) changes. DepOwl provides scripts to automate the 
compiling process. This is still limited since DepOwl uses 
the default compilation directives; thus cannot collect ABI 
changes triggered by other directives. As a result, developers 
have to provide the compilation directives, or DepOwl may 
cause false negatives.

• Future work: The most convenient way to avoid this lim
itation is to suggest library developers to release binaries with 
debug symbols when releasing new versions. This practice 
actually has been applied in some libraries. For example, in the 
software repository of Ubuntu-19.10, there are 753 packages 
with the suffix ‘-dbg’ containing debug symbols.

Code analysis in applications. When detecting dependency 
bugs (in Section IV-B), DepOwl requires application binaries 
compiled with debug symbols. This input is not available in 
most applications managed in existing DMSs. Alternatively, 
DepOwl has to use source code as input, but correct usages in 
source code do not indicate the application is free of CFailures 
in the binary form. For example, the second example of 
Figure 5 shows the usage of get_crc_table in ruby-2.5.5, which 
works well against both zlib-l.2.6 and zlib-1.2.7 in source 
code level: when ruby-2.5.5 is compiled against zlib-1.2.7, the 
return type z_crc_t is inf, when ruby-2.5.5 is compiled against 
zlib-l.2.6, the return type z_crc_t is long. However, ruby-2.5.5 
may have CFailures when compiled against one version and 
linked to another version at runtime. This limitation will lead 
to false negatives.

• Future work: DepOwl w ill provide an interface for applica
tion developers to indicate a fixed version for each library. This 
manual effort is the same to most DMSs like pip or Maven. 
Thus, DepOwl can compile the source code against the fixed 
library version.

Limitations when using ABI-Tracker. DepOwl uses ABI- 
Tracker to collect incompatible changes of a target library. 
ABI-Tracker takes source code of the library history versions 
as inputs and compiles each version with default directives. 
This process may introduce both false positives and false 
negatives. For example, in the first example of Figure 5, ABI- 
Tracker reports that openssl-l.O.ls removes three symbols. 
However, users will not encounter failures when disabling 
OPENSSL_NO_SSL2. In this case, DepOwl may report false

positives, although no false positives directly related to ABI- 
Tracker are generated in our experiment. On the other hand, 
when incompatible changes can only be triggered by specific 
directives, ABI-Tracker may generate false negatives and thus 
cause DepOwl to report false negatives. For example, two out 
of three false negatives in RQ1 are caused by compilation 
directives not correctly identified by ABI-Tracker.

Impacts of compilation directives. The compilation direc
tives of a target library may affect the symbols and data types 
provided by the library, and further affect the results of De
pOwl. Since ABI-Tracker uses default compilation directives 
to compile each library version, it may cause DepOwl to report 
false negatives (as discussed in the above paragraph). We have 
mitigated this impact by directly analyzing the binaries of 
the target libraries without the need of providing compilation 
directives. In the case where binaries are not available, De
pOwl accepts the directives from users for compiling. In our 
evaluation, we manually input the directives in most cases. For 
the two cases that we cannot obtain the directives in RQ1, 
DepOwl reports two false negatives, since the directives are 
hard to be inferred automatically.

V II. R e l a t e d  W o r k s

We briefly classify the existing works into three types:
Library changes. Many works are targeted at library 

changes. Bagherzadeh et al. [33] studied the size, type and 
bug fixes in 8,770 changes that were made to Linux system 
calls. Brito et al. [34] identified 59 breaking changes and asked 
the developers to explain the reasons behind their decision to 
change the APIs. Dig et al. [35], [36] discovered that over 80% 
of changes that break existing applications are refactorings. 
Li et al. [37] investigated the Android framework source code, 
and found inaccessible APIs are common and neither forward 
nor backward compatible. Li et al. [38] and Wang et al. [39] 
studied API deprecation in the Android ecosystem and Python 
libraries. McDonnell et al. [40] found Android updates 115 
API per month, and 28% usages in client applications are 
outdated with a median lagging of 16 months. Sawant et 
al. [41] investigated why API producers deprecate features, 
whether they remove deprecated features, and how they expect 
consumers to react. Brito et al. [1] identified API breaking 
and non-breaking changes between two versions of a lava 
library. Foo et al. [6] presented a static analysis to check if  
a library upgrade introduces an API incompatibility. Meng et 
al. [4] aggregated the revision-level rules to obtain framework- 
evolution rules. Mezzetti et al. [5] proposed type regression 
testing to determine whether a library update affects its public 
interfaces. Ponomarenko et al. [2] presented a new method 
for automatic detection of backward compatibility problems 
at the binary level. Wu et al. [3] proposed a hybrid approach 
to identify framework evolution rules.

These works are targeted at detecting changes, refactorings 
and rules during library evolutions. While DepOwl is targeted 
at preventing failures caused by the results of these works.

Application failures. Some works focus on CFailures in 
applications. Cai et al. [42] studied compatibility issues in

95

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



62,894 Android app to understand the symptoms and causes 
of these issues. Cossette et al. [43] studied techniques to help 
migrate client code between library versions with incompatible 
APIs. Dietrich et al. [44] studied partially upgrading systems, 
and found some crucial verification steps are skipped in this 
process. Jezek et al. [45] studied the compatibility of API 
changes, and the impact on programs using these libraries. 
Lamothe et al. [46] reported their experience migrating the use 
of Android APIs based on documentation and historical code 
changes. Linares-Vasquez et al. [47] studied how the fault- 
and change-proneness of APIs relates to applications’ lack 
of success. Xavier et al. [48] conducted a large-scale study 
on historical and impact analysis of API breaking changes. 
Balaban et al. [11] presented an approach to support client 
refactoring for class library migration. He et al. [7] and Xia et 
al. [49] studied API compatibility in Android. Henkel et 
al. [12] captured API refactoring actions, and users of the 
API can then replay the refactorings to bring their client 
software components up to date. Jezek et al. [10] proposed an 
approach that analyses the byte-code of Java classes to find 
type inconsistencies cross components. Li et al. [8] proposed 
a approach for modeling the lifecycle of the Android APIs, 
and analyzing app that can lead to potential compatibility 
issues. Perkins et al. [13] proposed a technique to generate 
client refactorings, by replacing calls to deprecated methods by 
their bodies. Wang et al. [9] proposed an automated approach 
that generates tests and collects crashing stack traces for 
Java projects subject to risk of dependency conflicts. Xing et 
al. [14] recognized the API changes of the reused framework, 
and proposed plausible replacements to the obsolete API based 
on working examples.

These works focus on detecting incompatible API usages 
and helping applications co-evolve with library evolutions, so 
that the latest application version works well. While DepOwl 
can prevent CFailures for users’ in-use versions.

Application-library dependencies. There are many works 
address application-library dependencies. Bavota et al. [50] 
studied the evolution of dependencies between projects in 
the Java subset of the Apache ecosystem. Bogart et al. [51] 
studied three software ecosystems to understand how devel
opers make decisions about change and change-related costs. 
Decan et al. [52] compared semantic-versioning compliance 
of four software packaging ecosystems, and studied how this 
compliance evolves over time. Decan et al. [53] analyzed the 
similarities and differences between the evolution of pack
age dependency networks. Derr et al. [20] studied library 
updatability in 1,264,118 apps, and found 85.6% libraries 
could be upgraded by at least one version. Dietrich et al. [21] 
studied developers’ choices between fixed version and version 
range from 17 package managers. Jezek et al. [54] provided 
evidences that four types of problems caused by resolving 
transitive dependencies do occur in practice. Kikas et al. [55] 
analyzed the dependency network structure and evolution of 
the JavaScript, Ruby, and Rust ecosystems. Kula et al. [56] 
studied 4,600 GitHub projects and 2,700 library dependencies 
to understand i f  developers update their library. Mirhosseini et

al. [57] studied 7,470 GitHub projects to understand i f  auto
mated pull requests help to upgrade out-of-date dependencies. 
Pashchenko et al. [58] studied whether dependencies of 200 
OSS Java libraries are affected by vulnerabilities. Raemaek- 
ers et al. [24] investigated semantic versioning, and found one 
third of all releases introduce at least one breaking change. 
Xian et al. [59] conducted an experience paper to evaluate 
existing third-party library detection tools. Wang et al. [60] 
conducted an empirical study on dependency conflict issues 
to study their manifestation and fixing patterns. Zerouali et 
al. [61] analyzed the package update practices and technical 
lag for the npm distributions.

These works mainly assist people in understanding 
application-library dependencies. While DepOwl is the first 
research work to help users avoid incompatible application- 
library dependency automatically. Huang et al. [62] and 
Wang et al. [63] designed tools to detect dependency conflicts 
for Maven and PyPI ecosystems. These tools focused on the 
diamond dependency problem, which detects conflicts among 
different dependencies. They assume each dependency itself 
is correct, whereas DepOwl detects bugs within dependencies.

V III. Co n c l u s i o n

In this paper, we find CFailures are caused by using incom
patible library versions, which are hard to be prevented by the 
existing research works or industrial DMSs. To fill this gap, 
we design and implement DepOwl, a practical tool to prevent 
CFailures by avoiding incompatible versions. DepOwl can 
detect unknown DepBugs in the software repository shipped 
with Ubuntu-19.10, and prevent CFailures in real-world issues 
collected from StackOverflow. However, DepOwl still has lim
itations in practice. With limited helps from library developers 
(release binaries with debug symbols) and application devel
opers (provide one required library version), DepOwl could 
achieve higher accuracy. As a result, applications could be 
both flexible for library evolutions and reliable for CFailures.

Re f e r e n c e s

[1] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Apidiff: Detecting 
api breaking changes,” in 2018 IEEE 25th International Conference on 
Software Analysis, Evolution and Reengineering (SANER), March 2018, 
pp. 507-511.

[2] A. Ponomarenko and V. Rubanov, “Backward compatibility of software 
interfaces: Steps towards automatic verification,” Programming and 
Computer Software, vol. 38, no. 5, pp. 257-267, Sep 2012. [Online]. 
Available: https://doi.org/10.1134/S0361768812050052

[3] W. Wu, Y. Gueheneuc, G. Antoniol, and M. Kim, “Aura: a hybrid 
approach to identify framework evolution,” in 2010 ACM/IEEE 32nd 
International Conference on Software Engineering, vol. 1, May 2010, 
pp. 325-334.

[4] S. Meng, X . Wang, L . Zhang, and H . Mei, “A history-based matching 
approach to identification of framework evolution,” in Proceedings of 
the 34th International Conference on Software Engineering, ser. ICSE 
12. IEEE Press, 2012, pp. 353-363.

[5] G. Mezzetti, A. Moller, and M . T. Torp, “Type regression testing 
to detect breaking changes in node.js libraries,” in 32nd European 
Conference on Object-Oriented Programming (ECOOP 2018), ser. 
Leibniz International Proceedings in Informatics (LIPIcs), T. Millstein, 
Ed., vol. 109. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz- 
Zentrum fuer Informatik, 2018, pp. 7:1-7:24. [Online]. Available: 
http://drops.dagstuhl.de/opus/volltexte/2018/9212

96

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



[6] D. Foo, H. Chua, J. Yeo, M. Y. Ang, and A. Sharma, “Efficient static 
checking of library updates,” in Proceedings of the 2018 26th ACM Joint 
Meeting on European Software Engineering Conference and Symposium 
on the Foundations of Software Engineering, ser. ESEC/FSE 2018. 
New York, NY, USA: Association for Computing Machinery, 2018, pp. 
791-796. [Online]. Available: https://doi.org/10.1145/3236024.3275535

[7] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding 
and detecting evolution-induced compatibility issues in android apps,” 
in Proceedings of the 33rd ACM/IEEE International Conference on 
Automated Software Engineering, ser. ASE 2018. New York, NY, 
USA: Association for Computing Machinery, 2018, pp. 167-177. 
[Online]. Available: https://doi.org/10.1145/3238147.3238185

[8] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating 
the detection of api-related compatibility issues in android apps,” in 
Proceedings of the 27th ACM SIGSOFT International Symposium on 
Software Testing and Analysis, ser. ISSTA 2018. New York, NY, USA: 
Association for Computing Machinery, 2018, pp. 153-163. [Online]. 
Available: https://doi.org/10.1145/3213846.3213857

[9] Y. Wang, M. Wen, R. Wu, Z. Liu, S. H. Tan, Z. Zhu, H. Yu, and 
S. Cheung, “Could i have a stack trace to examine the dependency 
conflict issue?” in 2019 IEEE/ACM 41st International Conference on 
Software Engineering (ICSE), May 2019, pp. 572-583.

[10] K. Jezek, L. Holy, A. Slezacek, and P. Brada, “Software components 
compatibility verification based on static byte-code analysis,” in 2013 
39th Euromicro Conference on Software Engineering and Advanced 
Applications, Sep. 2013, pp. 145-152.

[11] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class 
library migration,” in Proceedings of the 20th Annual ACM SIGPLAN 
Conference on Object-Oriented Programming, Systems, Languages, and 
Applications, ser. OOPSLA 05. New York, NY, USA: Association 
for Computing Machinery, 2005, pp. 265-279. [Online]. Available: 
https://doi.org/10.1145/1094811.1094832

[12] J. Henkel and A. Diwan, “Catchup! capturing and replaying refactorings 
to support api evolution,” in Proceedings. 27th International Conference 
on Software Engineering, 2005. ICSE 2005., May 2005, pp. 274-283.

[13] J. H. Perkins, “Automatically generating refactorings to support 
api evolution,” in Proceedings of the 6th ACM SIGPLAN- 
SIGSOFT Workshop on Program Analysis fo r Software Tools 
and Engineering, ser. PASTE�05. New York, NY, USA: Association 
for Computing Machinery, 2005, pp. 111-114. [Online]. Available: 
https://doi.org/10.1145/1108792.1108818

[14] Z. Xing and E. Stroulia, “Api-evolution support with diff-catchup,” IEEE 
Transactions on Software Engineering, vol. 33, no. 12, pp. 818-836, Dec 
2007.

[15] Fedora Docs, “Using the dnf software package manager,” 
https://docs.fedoraproject.org/en-US/quick-docs/dnf/, 2019.

[16] Ubuntu documentation, “Apt,” https://help.ubuntu.com/lts/serverguide/ 
apt.html.en, 2019.

[17] PyPA, “pip,” https://pypi.org/project/pip/, 2019.
[18] Apache, “Apache maven project,” http://maven.apache.org/, 2019.
[19] NPM Enterprise, “Npm,” https://www.npmjs.com/, 2019.
[20] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated: 

An empirical study of third-party library updatability on android,” 
in Proceedings of the 2017 ACM SIGSAC Conference on Computer 
and Communications Security, ser. CCS 17. New York, NY, USA: 
Association for Computing Machinery, 2017, pp. 2187-2200. [Online]. 
Available: https://doi.org/10.1145/3133956.3134059

[21] J. Dietrich, D. J. Pearce, J. Stringer, A. Tahir, and K. Blincoe, 
“Dependency versioning in the wild,” in Proceedings of the 16th 
International Conference on Mining Software Repositories, ser. 
MSR 19. IEEE Press, 2019, pp. 349-359. [Online]. Available: 
https://doi.org/10.1109/MSR.2019.00061

[22] Debian Policy Manual, “Shared libraries,”
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html, 2019.

[23] Wikipedia, “soname,” https://en.wikipedia.org/wiki/Soname, 2019.
[24] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning 

versus breaking changes: A  study of the maven repository,” in 2014 
IEEE 14th International Working Conference on Source Code Analysis 
and Manipulation, Sep. 2014, pp. 215-224.

[25] A. Ponomarenko, “Abi-compliance-checker,” https://github.com/lvc/abi- 
compliance-checker, 2019.

[26] GNU, “Version command,” https://sourceware.org/binutils/docs/ld/ 
VERSION.html, 2019.

[27] -------, “Readelf,” https://sourceware.org/binutils/docs/binutils/readelf.html,
2019.

[28] A. Ponomarenko, “Abi compliance checker,” https://lvc.github.io/abi- 
compliance-checker/, 2019.

[29] KDE Community, “Policies/binary compatibility issues with c++,” 
https://community.kde.org/Policies/Binary_Compatibility_Issues_With_ 
C++, 2019.

[30] J. Faust, “Abi compatibility,” https://www.ros.org/reps/rep-0009.html, 
2019.

[31] M. L. Collard and J. I. Maletic, “srcml,” https://www.srcml.org/, 2019.
[32] Zlib, “Changelog file for zlib,” https://www.zlib.net/ChangeLog.txt, 

2019.
[33] M. Bagherzadeh, N. Kahani, C.-P. Bezemer, A. E. Hassan, J. Dingel, 

and J. R. Cordy, “Analyzing a decade of linux system calls,” Empirical 
Software Engineering, vol. 23, no. 3, pp. 1519-1551, Jun 2018. 
[Online]. Available: https://doi.org/10.1007/s10664-017-9551-z

[34] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Why and how java 
developers break apis,” in 2018 IEEE 25th International Conference on 
Software Analysis, Evolution and Reengineering (SANER), March 2018, 
pp. 255-265.

[35] D. Dig and R. Johnson, “How do apis evolve? a story of refactoring,” 
Journal o f Software Maintenance and Evolution: Research and 
Practice, vol. 18, no. 2, pp. 83-107, 2006. [Online]. Available: 
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.328

[36] D. Dig and R. Johnson, “The role of refactorings in api evolu
tion,” in 21st IEEE International Conference on Software Maintenance 
(ICSM'05), Sep. 2005, pp. 389-398.

[37] L. Li, T. F. Bissyandé, Y. L. Traon, and J. Klein, “Accessing inaccessible 
android apis: An empirical study,” in 2016 IEEE International Confer
ence on Software Maintenance and Evolution (ICSME), Oct 2016, pp. 
411-422.

[38] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, 
“Characterising deprecated android apis,” in Proceedings of the 15th 
International Conference on Mining Software Repositories, ser. MSR 18. 
New York, NY, USA: Association for Computing Machinery, 2018, pp. 
254-264. [Online]. Available: https://doi.org/10.1145/3196398.3196419

[39] J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated 
python library apis are (not) handled,” in Proceedings of the 28th 
ACM SIGSOFT International Symposium on Foundations of Software 
Engineering, ser. FSE, 2020.

[40] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability 
and adoption in the android ecosystem,” in 2013 IEEE International 
Conference on Software Maintenance, Sep. 2013, pp. 70-79.

[41] A. A. Sawant, M. Aniche, A. van Deursen, and A. Bacchelli, “Under
standing developers� needs on deprecation as a language feature,” in 
2018 IEEE/ACM 40th International Conference on Software Engineer
ing (ICSE), May 2018, pp. 561-571.

[42] H. Cai, Z. Zhang, L. Li, and X. Fu, “A large-scale study of 
application incompatibilities in android,” in Proceedings of the 28th 
ACM SIGSOFT International Symposium on Software Testing and 
Analysis, ser. ISSTA 2019. New York, NY, USA: Association 
for Computing Machinery, 2019, pp. 216-227. [Online]. Available: 
https://doi.org/10.1145/3293882.3330564

[43] B. E. Cossette and R. J. Walker, “Seeking the ground truth: A  
retroactive study on the evolution and migration of software libraries,” 
in Proceedings of the ACM SIGSOFT 20th International Symposium on 
the Foundations of Software Engineering, ser. FSE 12. New York, NY, 
USA: Association for Computing Machinery, 2012. [Online]. Available: 
https://doi.org/10.1145/2393596.2393661

[44] J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An empirical 
study into evolution problems in java programs caused by library 
upgrades,” in 2014 Software Evolution Week - IEEE Conference on Soft
ware Maintenance, Reengineering, and Reverse Engineering (CSMR- 
WCRE), Feb 2014, pp. 64-73.

[45] K. Jezek, J. Dietrich, and P. Brada, “How java apis
break - an empirical study,” Information and Software 
Technology, vol. 65, pp. 129 -  146, 2015. [Online]. Available: 
http://www.sciencedirect.com/science/article/pii/S0950584915000506

[46] M. Lamothe and W. Shang, “Exploring the use of automated api 
migrating techniques in practice: An experience report on android,” in 
Proceedings of the 15th International Conference on Mining Software 
Repositories, ser. MSR 18. New York, NY, USA: Association 
for Computing Machinery, 2018, pp. 503-514. [Online]. Available: 
https://doi.org/10.1145/3196398.3196420

97

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 



[47] M. Linares-Vasquez, G. Bavota, C. Bernal-Cardenas, M. D i Penta, 
R. Oliveto, and D. Poshyvanyk, “Api change and fault proneness: 
A threat to the success of android apps,” in Proceedings of the 
2013 9th Joint Meeting on Foundations of Software Engineering, 
ser. ESEC/FSE 2013. New York, NY, USA: Association for 
Computing Machinery, 2013, pp. 477-487. [Online]. Available: 
https://doi.org/10.1145/2491411.2491428

[48] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact 
analysis of api breaking changes: A  large-scale study,” in 2017 IEEE 
24th International Conference on Software Analysis, Evolution and 
Reengineering (SANER), Feb 2017, pp. 138-147.

[49] H. Xia, Y. Zhang, Y. Zhou, X. Chen, Y. Wang, X. Zhang, S. Cui, 
G. Hong, X. Zhang, M. Yang, and Z. Yang, “How android developers 
handle evolution-induced api compatibility issues: A  large-scale study,” 
in Proceedings of the 42th IEEE/ACM International Conference on 
Software Engineering, ser. ICSE, 2020.

[50] G. Bavota, G. Canfora, M. D i Penta, R. Oliveto, and S. Panichella, “How 
the apache community upgrades dependencies: an evolutionary study,” 
Empirical Software Engineering, vol. 20, no. 5, pp. 1275-1317, Oct 
2015. [Online]. Available: https://doi.org/10.1007/s10664-014-9325-9

[51] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api: 
Cost negotiation and community values in three software ecosystems,” 
in Proceedings of the 2016 24th ACM SIGSOFT International 
Symposium on Foundations of Software Engineering, ser. FSE 2016. 
New York, NY, USA: Association for Computing Machinery, 2016, pp. 
109-120. [Online]. Available: https://doi.org/10.1145/2950290.2950325

[52] A. Decan and T. Mens, “What do package dependencies tell us about 
semantic versioning?” IEEE Transactions on Software Engineering, pp. 
1-1, 2019.

[53] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of 
dependency network evolution in seven software packaging ecosystems,” 
Empirical Software Engineering, vol. 24, no. 1, pp. 381^416, Feb 
2019. [Online]. Available: https://doi.org/10.1007/s10664-017-9589-y

[54] K. Jezek and J. Dietrich, “On the use of static analysis to safeguard 
recursive dependency resolution,” in 2014 40th EUROMICRO Confer
ence on Software Engineering and Advanced Applications, Aug 2014, 
pp. 166-173.

[55] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and 
evolution of package dependency networks,” in Proceedings of the 
14th International Conference on Mining Software Repositories, ser. 
MSR 17. IEEE Press, 2017, pp. 102-112. [Online]. Available: 
https://doi.org/10.1109/MSR.2017.55

[56] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, 
“Do developers update their library dependencies?” Empirical Software 
Engineering, vol. 23, no. 1, pp. 384^17, Feb 2018. [Online]. Available: 
https://doi.org/10.1007/s10664-017-9521-5

[57] S. Mirhosseini and C. Parnin, “Can automated pull requests encourage 
software developers to upgrade out-of-date dependencies?” in Proceed
ings of the 32nd IEEE/ACM International Conference on Automated 
Software Engineering, ser. ASE 2017. IEEE Press, 2017, pp. 84-94.

[58] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci, 
“Vulnerable open source dependencies: Counting those that matter,” 
in Proceedings of the 12th ACM/IEEE International Symposium on 
Empirical Software Engineering and Measurement, ser. ESEM 18. 
New York, NY, USA: Association for Computing Machinery, 2018. 
[Online]. Available: https://doi.org/10.1145/3239235.3268920

[59] Z. Xian, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X . Luo, and 
Y. Liu, “Automated third-party library detection for android applications: 
Are we there yet?” in Proceedings of the 35th ACM/IEEE International 
Conference on Automated Software Engineering, ser. ASE, 2020.

[60] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu, 
and S.-C. Cheung, “Do the dependency conflicts in my project matter?” 
in Proceedings of the 2018 26th ACM Joint Meeting on European 
Software Engineering Conference and Symposium on the Foundations 
of Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA: 
Association for Computing Machinery, 2018, pp. 319-330. [Online]. 
Available: https://doi.org/10.1145/3236024.3236056

[61] A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. Gonzalez- 
Barahona, “An empirical analysis of technical lag in npm package 
dependencies,” in New Opportunities fo r Software Reuse, R. Capilla, 
B. Gallina, and C. Cetina, Eds. Cham: Springer International Publish
ing, 2018, pp. 95-110.

[62] K. Huang, B. Chen, B. Shi, Y. Wang, C. Xu, and X. Peng, “Interactive, 
effort-aware library version harmonization,” in Proceedings of the 28th

ACM SIGSOFT International Symposium on Foundations of Software 
Engineering, ser. FSE, 2020.

[63] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S.-C. Cheung, 
C. Xu, and Z. Zhu, “Watchman: Monitoring dependency conflicts for 
python library ecosystem,” in Proceedings of the 42th IEEE/ACM 
International Conference on Software Engineeringser. ICSE, 2020.

98

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:54:27 UTC from IEEE Xplore.  Restrictions apply. 


