
Bridging Pre-trained Models and Downstream Tasks for Source
Code Understanding

Deze Wang
National University of Defense

Technology, China

wangdeze14@nudt.edu.cn

Zhouyang Jia∗

National University of Defense

Technology, China

jiazhouyang@nudt.edu.cn

Shanshan Li∗

National University of Defense

Technology, China

shanshanli@nudt.edu.cn

Yue Yu
National University of Defense

Technology, China

yuyue@nudt.edu.cn

Yun Xiong
Fudan University

Shanghai, China

yunx@fudan.edu.cn

Wei Dong
National University of Defense

Technology, China

wdong@nudt.edu.cn

Xiangke Liao
National University of Defense

Technology, China

xkliao@nudt.edu.cn

ABSTRACT

With the great success of pre-trained models, the pretrain-then-

finetune paradigm has been widely adopted on downstream tasks

for source code understanding. However, compared to costly train-

ing a large-scale model from scratch, how to effectively adapt pre-

trained models to a new task has not been fully explored. In this

paper, we propose an approach to bridge pre-trained models and

code-related tasks. We exploit semantic-preserving transformation

to enrich downstream data diversity, and help pre-trained models

learn semantic features invariant to these semantically equivalent

transformations. Further, we introduce curriculum learning to or-

ganize the transformed data in an easy-to-hard manner to fine-tune

existing pre-trained models.

We apply our approach to a range of pre-trained models, and

they significantly outperform the state-of-the-art models on tasks

for source code understanding, such as algorithm classification,

code clone detection, and code search. Our experiments even show

that without heavy pre-training on code data, natural language pre-

trained model RoBERTa fine-tuned with our lightweight approach

could outperform or rival existing code pre-trained models fine-

tuned on the above tasks, such as CodeBERT and GraphCodeBERT.

This finding suggests that there is still much room for improvement

in code pre-trained models.

∗Zhouyang Jia and Shanshan Li are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510062

CCS CONCEPTS

• Computing methodologies → Supervised learning; Artificial

intelligence.

KEYWORDS

fine-tuning, data augmentation, curriculum learning, test-time aug-

mentation

ACM Reference Format:

Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong,

and Xiangke Liao. 2022. Bridging Pre-trained Models and Downstream

Tasks for Source Code Understanding. In 44th International Conference on

Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.3510062

1 INTRODUCTION

Large-scale models, such as BERT [9], RoBERTa [26], GPT-3 [5],

T5 [36], and BART [23], have greatly contributed to the develop-

ment of the field of natural language processing (NLP), and gradu-

ally form the pretrain-then-finetune paradigm. The basic idea of

this paradigm is to first pre-train a model on large general-purpose

datasets by self-supervised tasks, e.g., masking tokens in training

data and asking the model to guess the masked tokens. The trained

model is then fine-tuned on smaller and more specialized datasets,

each designed to support a specific task. The success of pre-trained

models in the natural language domain has also spawned a series

of pre-trained models for programming language understanding

and generation, including CodeBERT [11], GraphCodeBERT [13],

PLBART [2], and the usage of T5 to support code-related tasks [28],

improving the performance of a variety of source code understand-

ing and generation tasks.

However, pre-training a large-scale model from scratch is costly.

Additionally, along with an increasing number of pre-trained mod-

els, how to effectively adapt these models for a new task is not fully

exploited. In this paper, we try to take the first step to bridge large

pre-trained models and code-related downstream tasks. Moreover,

despite the success of existing pre-trained models for code-related

287

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

tasks, these models have two potential issues. First, these models

graft NLP pre-training techniques to understand the semantics of

source code, however, the semantics of programming language and

natural language are essentially different, and semantically equiv-

alent source code may be in various syntactic forms. The second

issue is that pre-trained models typically have at least millions of

parameters, so when a pre-trained model is applied to downstream

tasks with specialized datasets, there is a risk of overfitting because

the model is over-parameterized for the target dataset. Many stud-

ies have also found that when the test set is different from the actual

scene or the test set is slightly perturbed, various models for source

code would make mistakes [34, 37, 53].

To address the above issues, we design a lightweight approach

on top of the existing pre-trained language model fine-tuning para-

digm, that satisfies (1) extracting code semantic knowledge embed-

ded in diverse syntactic forms and complementing it to pre-trained

models, (2) reducing overfitting to the target dataset and being more

robust in testing. In order to incorporate semantic knowledge of the

programming languages into models, we employ data augmenta-

tion, which is mainly used to enrich the training dataset and make

it as diverse as possible. There are many successful applications of

data augmentation in the field of image processing, such as random

cropping [21], flipping [42] and dropout [44]. For code data, this

paper considers semantic-preserving transformation. An example

of code transformation is shown in Fig. 1, where the same program

is transformed three times successively, keeping the semantics un-

changed. Since the semantics of the original program are preserved,

it is logical that the model should have the same behavior as the

original program for the program generated by the transformation

techniques. Moreover, it is cheap to leverage a source-to-source

compiler [3] to perform semantic-preserving transformations on

source code.

In this paper, we build our approach on a series of large-scale

pre-trained models, including natural language pre-trained model

RoBERTa and code pre-trained models CodeBERT and GraphCode-

BERT, to bridge pre-trained models with downstream tasks for

source code. We first construct semantic-preserving transforma-

tion sequences and apply them to original training samples, as in

Fig. 1, to generate new training data and introduce code semantic

knowledge into models. The transformation sequences make code

transformations more complicated and could guide models to better

learn the underlying semantics of the code. These training data are

then fed to pre-trained models to fine-tune the models. Finally, we

augment the test sets with the same augmentation techniques as

the training sets to obtain multiple transformed test sets. To further

reduce overfitting from the training process, we average the model

performance on these test sets. Since our method averages the pre-

dictions from various transformation versions for any code snippet

in test sets, the final predictions are robust to any transformation

copy.

The transformed data significantly increase the data diversity,

however, they can also be considered as adversarial examples com-

pared to the original data [35, 37]. Fig. 1 shows the original program

and programs after multiple code transformations. As the number

of transformations increases, new tokens and syntactic forms are

introduced, and the distribution of transformed data becomes more

distinct from that of original data, making it more difficult to learn.

To solve this issue, we introduce Curriculum Learning (CL) [29]

and present training examples in an easy-to-hard manner, instead

of a completely random order during training. Many studies have

shown that it benefits the learning process not only for humans

but also for machines [10, 22]. The key challenge of CL is how to

define easy and hard samples, and in this paper we propose two hy-

potheses and experimentally verify them to determine the learning

order.

In our experiments, based on pre-trained models CodeBERT and

GraphCodeBERT, our method significantly surpasses the state-of-

the-art performance on algorithm classification, code clone detec-

tion and code search tasks. In the algorithm classification task, our

approach improves 10.24% Mean Average Percision (MAP) com-

pared to the state-of-the-art performance, and in the code clone de-

tection task, using only 10% of the randomly sampled training data,

code pre-trained model CodeBERT fine-tuned with our approach

outperforms the state-of-the-art model GraphCodeBERT normally

fine-tunedwith all training data. In the code search task, ourmethod

improves the state-of-the-art performance to 0.720 Mean Reciprocal

Rank (MRR). More impressively, to test whether our approach intro-

duces additional semantic knowledge of source code for the model,

we apply our approach to natural language pre-trained model

RoBERTa and find that it even outperforms CodeBERT with 3.88%

MAP on algorithm classification task and RoBERTa pre-trained

with code on code search task, and has the same performance as

CodeBERT on code clone detection task. The data, pre-trained mod-

els and implementation of our approach are publicly available at

the link: https://github.com/wangdeze18/DACL.

The main contributions of our paper are as follows:

• We design a lightweight approach on top of the existing

pre-trained language model fine-tuning paradigm, to bridge

pre-trained models and downstream tasks for source code.

To the best of our knowledge, it is the first work in this

direction.

• We apply our method to pre-trained models CodeBERT and

GraphCodeBERT, and the augmented models dramatically

outperform the state-of-the-art performance on algorithm

classification, code clone detection and code search tasks.

• Our study reveals that for code-related tasks, without the

need for heavy pre-training on code data, natural language

models (e.g. RoBERTa) easily outperform the same models

pre-trained with code, as well as the state-of-the-art code

pre-trained models (e.g. CodeBERT) with the help of our

approach.

2 PRELIMINARIES AND HYPOTHESES

2.1 Data Augmentation

Data Augmentation (DA) is a technique to create new training data

from existing training data artificially. Transformations were ran-

domly applied to increase the diversity of the training set. Data

augmentation is often performed with image data, where copies

of images in the training set are created with some image trans-

formation techniques performed, such as zooms, flips, shifts, and

more. In fact, data augmentation can also be applied to natural lan-

guage and code data. In this paper, our purpose of introducing data

augmentation is to learn code semantics from semantic-preserving

288

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

 int maxn = 0, secMaxn = 0;
 for (int count = 1; count < SIZE; count++){
 if (numbers[count] > maxn){

 secMaxn = maxn;
 maxn = numbers[count];
 }

 else if (numbers[count] > secMaxn){

 if (numbers[count] != maxn)
 secMaxn = numbers[count];
 }
 }

 cout<<maxn<<" "<<secMaxn<<endl;

- int maxn = 0, secMaxn = 0;
+ int count = 1, maxn = 0, secMaxn = 0;
- for (int count = 1; count < SIZE; count++){

+ while (count < SIZE) {

 if (numbers[count] > maxn){

 secMaxn = maxn;
 maxn = numbers[count];
 }

- else if (numbers[count] > secMaxn){

+ else if (numbers[count] > secMaxn

- if (numbers[count] != maxn)
+ && numbers[count] != maxn)
 secMaxn = numbers[count];
+ count++;
 }

 cout<<maxn<<" "<<secMaxn<<endl;

 int count = 1, maxn = 0, secMaxn = 0;
 int nonSense, temp;
 while (count < SIZE) {

 if (numbers[count] > maxn){

 secMaxn = maxn;
 maxn = numbers[count];
 }

 else if (numbers[count] > secMaxn

 && numbers[count] != maxn){
 secMaxn = numbers[count];
 }
 count++;

 }

- cout<<maxn<<" "<<secMaxn<<endl;
+ printf("%d %d\n", maxn, secMaxn);

 int count = 1, maxn = 0, secMaxn = 0;
+ int nonSense, temp;
 while (count < SIZE) {

 if (numbers[count] > maxn){

 secMaxn = maxn;
 maxn = numbers[count];
 }

 else if (numbers[count] > secMaxn

- && numbers[count] != maxn)
+ && numbers[count] != maxn){
 secMaxn = numbers[count];
+ }
 count++;
 }

 cout<<maxn<<" "<<secMaxn<<endl;

Original program 1-Transformation program 2-Transformation program 3-Transformation program

Figure 1: An example of code transformation. 𝑘 −𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 program represents the result of the original program after 𝑘
transformations. All four programs implement the function to find the maximum and second largest values in the array.

transformation, more specifically, to assist models in extracting

and learning features in a way that are invariant to semantically

equivalent declarations, APIs, control structures and so on.

In this paper, we exploit data augmentation not only for the train-

ing set but also for the test set. The application of data augmenta-

tion to the test set is called Test-Time Augmentation (TTA) [30, 42].

Specifically, it creates multiple augmented copies of each sample

in the test set, has the model make a prediction for each, and then

returns an ensemble of those predictions. The number of copies of

the given data for which a model must make a prediction is often

small. In our experiment, we randomly sample three samples for

each piece of data from their augmented copies, take the average re-

sults as the result of the augmented perspective and add the results

on the original dataset as the final results.

2.2 Curriculum Learning

The learning process of humans and animals generally follows the

order of easy to difficult, and CL draws on this idea. Bengio et

al. [4] propose CL for the first time imitating the process of human

learning, and advocate that the model should start learning from

easy samples and gradually expand to complex samples. In recent

years, CL strategies have been widely used in various scenarios

such as computer vision and natural language processing. It has

shown powerful benefits in improving the generalization ability and

accelerating convergence of various models [14, 18, 33, 46]. At the

same time, it is also easy-to-use, since it is a flexible plug-and-play

submodule independent of original training algorithms.

There are two key points of CL, one is the scoring function and

the other is the pacing function. The scoring function makes it

possible to sort the training examples by difficulty, and present to

the network the easier samples first. The pacing function deter-

mines the pace by which data is presented to the model. The main

challenge is how to obtain an effective scoring function without

additional labelling of the data.

2.3 Hypotheses

We formulate two hypotheses about the scoring functions to de-

termine the order of learning and conduct experiments to verify

them.

Many studies have shown that deep models for source code are

vulnerable to adversarial examples [34, 37, 53]. Slight perturbations

to the input programs could cause the model to make false predic-

tions. Therefore, it is natural for us to formulate the first hypothesis

that the augmented data are more challenging to learn than

the original data for general models. We design an experiment

to verify this hypothesis directly, as shown in Algorithm 1. It shows

the pseudocode to verify the impact of code transformation by

comparing the performance of the model on a range of training

set variants. The training set variants are generated by iterating

the transformation functions on the original training set. (line 4-7)

After the model is trained on the whole training set including all

training set variants, we evaluate the model on different training

set variants.

We apply Algorithm 1 to the state-of-the-art model CodeBERT

with benchmark dataset POJ104 [31] (will be explained in 4.1). Fig. 2

shows the performance of CodeBERT for these training set vari-

ants. The model performs best on the original training set. The

performance gets progressively worse as the number of transfor-

mations on the original dataset increases, which verifies that data

augmentation would increase the difficulty of the training set and

experimentally supports our hypothesis.

92.95
91.22

89.12

87.63

85.99
85

87

89

91

93

Original 1-Trans 2-Trans 3-Trans 4-Trans

P
re

ci
si

o
n
@

R
(%

)

Figure 2: The performance of CodeBERT on both original

and augmented training sets for POJ104 dataset.

As the augmented data are more difficult to learn, it is natural to

let the model learn the original data first and then the augmented

data from easy to hard. We detail our curriculum learning strategy

based on this hypothesis in the next section.

289

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

Algorithm 1 Validation Algorithm for Hypothesis 1

Input: Training set 𝐷 , transformation functions 𝑇1, ...,𝑇𝑘 , model
𝑀

1: Γ ← {𝐷}, a set of training set variants

2: Ω ← {}, a set of experimental results

3: 𝐷 ′ = 𝐷
4: for transformation 𝑡 ← 1 ... 𝑘 do

5: 𝐷 ′ = 𝑇𝑡 (𝐷
′)

6: Γ ← Γ ∪ {𝐷 ′}

7: end for

8: Train model𝑀 with the whole training set Γ
9: for dataset 𝑥 in Γ do

10: Calculate results on the model𝑀 ,𝑀 (𝑥)
11: Ω ← Ω ∪ {𝑀 (𝑥)}
12: end for

13: return Ω

The second hypothesis we propose is to solve the multiclass

classification task. Image classification, text classification like news,

and algorithm classification are all classical multiclass classification

tasks. The task is quite difficult, and a common simplification is

to split the multiclass classification task into easily solvable sub-

tasks with fewer classes. Hence, we formulate the hypothesis that

for the multiclass classification task, it is more effective to

determine the learning order of the model from a class per-

spective. Based on this hypothesis, the optimization goal of the

model gradually transitions from a classification problem with few

classes to a classification of multiple classes during the entire train-

ing process. Intuitively, the task is much easier to solve under this

setting compared to a straightforward solution. We next conduct

an experiment to verify the hypothesis.

The difficulty of code data may be reflected in the length of the

code, the use of rare tokens, the complexity of logic, etc. Although

these heuristics are reasonable for people, they are not necessarily

the case for models. Therefore, unlike the previous validation exper-

iment that uses code augmentation techniques to distinguish the

difficulty of the samples artificially, we let the model itself give an

evaluation of the data as the difficulty scores, as shown in Algorithm

2.

The purpose of Algorithm 2 is to get the average difficulty score

of each class on the training set. To get the difficulty score of each

sample on the training set, we apply the leave-one-out strategy, i.e.,

when we compute the difficulty scores for a part of the samples, we

train the model with all the other data. (line 4-9) Then we compute

the average difficulty scores on each class. (line 11-14)

To have a comparison with the learning order under the first

hypothesis, we also apply Algorithm 2 to the state-of-the-art model

CodeBERT with POJ104 dataset. POJ104 dataset contains many

classes, and the task of POJ104 dataset is to predict the class for a

given program. We apply Algorithm 2 to both the original training

set and the augmented training set. We sort their average difficulty

scores of each class according to the scores on the original training

set, as shown in Fig. 3.

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 10 20 30 40 50 60

P
re

ci
si

o
n

@
R

Class ID

Results on Original Dataset Results on Augmented Dataset

Figure 3: Visualization of average performance across train-

ing classes for POJ104 dataset by CodeBERT.

Algorithm 2 Validation Algorithm for Hypothesis 2

Input: Training set 𝐷 , the entire dataset 𝑆 , model𝑀
1: 𝐶 ← {}, a set of difficulty scores

2: Θ ← {}, a set of average difficulty scores on classes

3: Split training set 𝐷 uniformly as {𝐷𝑖 : 𝑖 = 1 ... 𝑁 }
4: for 𝑖 ← 1 ... 𝑁 do

5: Calculate the difference set of 𝐷𝑖 over 𝑆 , 𝑆 − 𝐷𝑖

6: Train model𝑀 with 𝑆 − 𝐷𝑖 and get model𝑀𝑖

7: Evaluate 𝐷𝑖 with𝑀𝑖 and obtain the experimental results of

each sample as the difficulty score set 𝐶𝑖
8: 𝐶 ← 𝐶 ∪𝐶𝑖
9: end for

10: Train model𝑀 with training set 𝐷
11: for class 𝑥 in 𝐷 do

12: Calculate average difficulty scores on class 𝑥 , 𝜇 (𝐶, 𝑥)
13: Θ ← Θ ∪ {𝜇 (𝐶, 𝑥)}
14: end for

15: return Θ

From Fig. 3 it can be found that the performance of the model

on various classes varies greatly. The experimental performance

reflects the difficulty of classes; the better the experimental perfor-

mance, the lower the difficulty, and vice versa. Also, we find that

the performance on the augmented dataset is almost always lower

than that on the original dataset, further validating our previous

hypothesis. At the same time, Fig. 3 shows that the performance of

the model on the augmented dataset, although decreasing, is always

distributed around the performance of the same class on the origi-

nal dataset. Therefore, we conclude that for multiclass classification

tasks organizing the data by class can yield data with more stable

gradients than artificially differentiating the data by augmentation

techniques. It motivates us to expose models to the easier classes

first and then gradually transition to the harder classes.

3 PROPOSED APPROACH

In this section, we describe the details of our approach. Our method

is built on the fine-tuning paradigm and adapts pre-trained models

to downstream tasks. Given pre-trained models and datasets of

downstream tasks, we exploit the potential of pre-trained models

on these tasks by acting on the data only.

290

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Training
set

Augmented
dataset

Ordered
dataset Model Results

Declaration

API

Control

Original
Augmentation technique

Test-time augmentation

N
Ti�

Figure 4: Overview of our proposed method.

3.1 Approach Overview

Fig. 4 presents an overview of our approach. Our approach mainly

consists of three components.

• Augmentation for training data that transforms given

programs into semantically equivalent programs and build

augmented dataset to make training data more diverse.

• Curriculum strategy that organizes augmented dataset

into the ordered dataset in an easy-to-hard order. The order

is determined by scoring functions.

• Test-time augmentation that yields transformed versions

of programs for prediction. The results are the fusion of

results of original programs and transformed programs of

different transformation types.

Table 1: Code Transformation Techniques

Transformation

Family
C/C++ Java

Control
for/while/if

transformer

for/while/if_else

transformer

API

input/output

c/cpp_style

transformer

equal_loc/equal_func/

add_assign transformer

Declaration

and other

unused_decl/brace/

return transformer

stmt_sort/merge/divide

transformer

3.2 Augmentation for Training Data

In order to help models learn code features in a way that are invari-

ant to semantically equivalent programs, we construct semantic-

preserving transformations for code data. The lexical appearances

and syntactical structures are different before and after transforma-

tions, but the semantics of programs are identical.

Various languages apply different transformation techniques

due to specific language characteristics. In this paper, we use the

same transformation techniques for data in the same language

which do not rely on prior knowledge from tasks or datasets. There

are two programming languages in our experiments. For C/C++,

we modify the work from Quiring et al. [34]. For Java, we apply

the SPAT tool [39]. We apply ten transformations for C/C++ and

nine transformations for Java. The specific transformations are

shown in Table 1. These techniques are grouped by the granu-

larity of their changes. They change the control structure, API

and declaration, respectively, to help models extract and learn the

corresponding features, while ensuring that the semantics remain

unchanged. Taking the transformations in Fig. 1 as an example, the

𝑓 𝑜𝑟 transformer is applied to transform the original program to

the 1−𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 program and converts the 𝑓 𝑜𝑟 structure to
𝑤ℎ𝑖𝑙𝑒 . This type of transformation enables the model to understand
various control structures. From 1 −𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 program to

2 −𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 program, 𝑢𝑛𝑢𝑠𝑒𝑑_𝑑𝑒𝑐𝑙 and 𝑏𝑟𝑎𝑐𝑒 transformer
are applied. This type of transformations could also generate di-

verse and equivalent declaration statements by merging, splitting

and swapping declaration statements, helping the model to ignore

the interference of syntactic formals and focus on semantics. In the

last transformation to 3− 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 program, the output API
𝑐𝑜𝑢𝑡 is converted to 𝑝𝑟𝑖𝑛𝑡 𝑓 . The API transformation exploits the
fact that the same function can be implemented by different APIs.

These transformation techniques would also work in combination

to make the dataset more diverse.

3.3 Curriculum Strategy

The key challenge of curriculum learning is how to define easy/difficult

examples. In this paper, we propose two difficulty scoring functions

based on the hypotheses presented in Section 2.3.

Augmentation-based Curriculum Strategy. The previous section

has introduced data augmentation techniques for code data, and it is

cheap to generate diverse data through transformations. However,

compared with original data, the augmented data can be regarded

as perturbations or adversarial examples of original data [37, 53],

and they should be more difficult to learn as verified in Section 2.3.

Therefore, we design an augmentation-based curriculum strat-

egy. We first train on only the original data, and then gradually

increase the proportion of the augmented data, ensuring that the

model is exposed to more data and the difficulty gradually increases

during the training process.

In particular, it should be noted that in the process of learn-

ing the augmented data we do not strictly follow the order of

1−𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 programs to𝑚𝑢𝑙𝑡𝑖−𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 programs,
since we find that some programs have far more transformed pro-

gram variants than others and multiple transformations could cause

the data to be unbalanced. Therefore, we sample an equal number

of augmented samples from the transformed program variants of

each sample in the original training set for learning, and the data

statistics are shown in Table 2. This method is easy to implement

on general models, and we illustrate its effects in the following

experiments.

Class-based Curriculum Strategy. Especially for multiclass classi-

fication tasks, based on the hypothesis verified in Section 2.3, we

propose a class-based curriculum strategy.

Specifically, the leave-one-out strategy is employed to obtain the

difficulty scores on the entire training set, and then the average

difficulty score on each class is calculated. The samples in the same

class take the average class difficulty score as their difficulty scores.

In the training process, this setting allows the model to learn easier

classes first, and then to more difficult classes. Obviously, the model

needs to extract and learn more features to deal with increasingly

difficult tasks.

Once the scoring function is determined, we still need to de-

fine the pace at which we transition from easy samples to harder

291

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

samples. With reference to the work [32], when selecting and ap-

plying different pacing functions, we ensure that the model has a

number of samples to learn when the training iteration begins, and

gradually gets in touch with difficult samples until all samples are

available. We implement a range of pacing functions according to

Penha et al. [32] and illustrate its effects in Section 5.3.

3.4 Test-Time Augmentation

We also apply augmentations to the test set. These are the same

as the augmentation techniques applied on the training set. TTA

neither modifies trained models nor changes test distribution. It

performs predictions on the same test data as the general test proce-

dure, except that the prediction for each test input is the aggregation

of predictions on multiple transformed versions.

To further eliminate overconfident incorrect predictions due to

overfitting [48], for each sample in the test set we sample three

augmented copies from its transformed candidates. Sampling more

samples for prediction maymake the results more robust, but would

increase the prediction time proportionally. As shown in the right

part of Fig. 4, the final experimental performance is the sum of

results on the original test set and results in the augmented per-

spective, which are the average of the results on augmented copies.

As a result, incorrect prediction on a single test case by the model

is corrected by combining multiple perspectives to make a final

prediction.

4 EXPERIMENTS

In this section, we conduct experiments to verify whether our

method is effective in different tasks, including algorithm classifi-

cation, code clone detection and code search tasks.

Table 2: Data Statistics

Dataset Original training set Augmented training set

POJ104 30815 123058

CodeCloneBench 901028 3362570

CodeSearchNet 164923 331533

4.1 Data preparation

In this subsection, we present benchmark datasets for three tasks

from CodeXGLUE [27]: POJ104, BigCloneBench [45] and Code-

SearchNet [16] and describe how to simply adapt data of various

tasks to our approach.

POJ104 dataset is collected from an online judge platform, which

consists of 104 program classes and includes 500 student-written

C/C++ programs for each class. The task for POJ-104 dataset is to

retrieve other programs that solve the same problem as a given

program. We split the dataset according to labels. We use 64 classes

of programs for training, 24 classes of programs for testing, and 16

classes of programs for validation. For data augmentation, to suc-

cessfully compile the programs, “#include” statements are prepended

before the programs. This process does not introduce differences

since added statements are the same for all programs. As some

programs cannot be compiled, we further use regular expressions

to correct programs with simple grammatical errors, and remove

the rest with serious grammatical and semantic problems. A total of

1710 programs were removed, accounting for about 3% (1710/52000).

To guarantee the fairness of the experiments, we also evaluate the

baseline models on both the original dataset and the normalized

dataset. For test-time augmentation, the results of the original and

augmented versions of the same program are merged to make a

prediction.

BigCloneBench dataset contains 25,000 Java projects, cover 10

functionalities and including 6,000,000 true clone pairs and 260,000

false clone pairs. The dataset provided by Wang et al. [49] is filtered

by discarding code fragments without any tagged true or false

clone pairs, leaving it with 9,134 Java code fragments. The dataset

includes 901,028/415,416/415,416 pairs for training, validation and

testing, respectively. This dataset has been widely used for the

code clone detection task. For code augmentation, since the data

is in the form of code pairs, we replace any original program in

clone pairs with augmented programs to form new pairs. For test-

time augmentation, all versions of a code pair are considered to

determine whether it is a clone pair.

CodeSearchNet contains about 6 million functions from open-

source code spanning six programming languages. In this paper,

we use the dataset in Java. Given a natural language query as the

input, the task is to find the most semantically related code from a

collection of candidate programs. According to the state-of-the-art

model GraphCodeBERT [13], we expand 1000 query candidates to

the whole code corpus, which is closer to the real-life scenario. The

answer of each query is retrieved from the whole validation and

testing code corpus instead of 1,000 candidate programs. For code

augmentation in the training set, since the data are pairs of natural

language queries and programming language fragments, we replace

original programs with augmented programs and form new pairs

with their natural language queries. When doing test-time augmen-

tation, it is different from the previous two tasks. Since the test set

is the set of natural language queries, we apply code augmentation

techniques to the codebase corresponding to these queries. For a

query and each code in codebase, we calculate similarity of the code

and its multiple transformed versions to the query, respectively. We

use the average of similarity for sorting and evaluation.

The original and augmented data statistics of the above tasks are

shown in Table 2 and the augmented datasets contain the original

data. We release all data for verification and future development.

Theoretically, more augmented data can be obtained, however, more

data to train would bring larger time overhead. To trade off the

experimental performance and time overhead, we use a limited

amount of augmented data, and we apply curriculum learning

strategy where the model is trained from a smaller data size and

the overhead is further reduced.

4.2 Experimental Setups

To illustrate the effectiveness of our method on code-related tasks,

we build our approach on code pre-trained models CodeBERT and

GraphCodeBERT. To illustrate the applicability of our method, we

also evaluate our method on natural language pre-trained model

RoBERTa [26] that has not been exposed to code at all. In replica-

tion experiments, we follow the description in their original papers

and released code. For parameter settings, to ensure fairness, we

292

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

keep all parameters consistent with their released code including

random seeds except for the warmup step and epoch. The warmup

step parameter adapts to the increase of the dataset, and its value

is adjusted from the original dataset size to the augmented dataset

size. Also due to the increase in data size and the progressive cur-

riculum learning, we increase the epoch and set it to 20, 10, and 15

on POJ104, BigCloneBench, and CodeSearchNet, respectively. We

replicate CodeBERT and GraphCodeBERT with the same parameter

settings. The results reported in the original papers and our repli-

cated results are not much different, and we present all the results.

For data augmentation, we implement augmentaion techniques on

the top of Clang [1] for C/C++. With respect to pacing function,

the hyperparameters are set according to Penha et al. [32].

4.3 Algorithm Classification

Metrics and Baselines. We use precision and MAP as the evalua-

tion metrics of the algorithm classification task. Precision is defined

as the average precision score and MAP is the rank-based mean of

average precision score, each of which is evaluated for retrieving

most similar samples given a query. We apply RoBERTa and the

state-of-the-art model CodeBERT as baseline methods. RoBERTa is

a pre-trained model on natural language. CodeBERT is a pre-trained

model on code data. It combines masked language modeling [9]

with replaced token detection objective [8] to pre-train a Trans-

former [47] encoder.

Table 3: Algorithm Classification Comparison

Model Precision MAP

RoBERTa 82.82 80.31(76.67)

RoBERTa + DA + CL 88.15 86.55

CodeBERT 85.28 82.76(82.67)

CodeBERT + DA + CL 93.63 92.91

Results. We compare with and without our method (DA + CL)

for these pre-trained models. Table 3 summarizes these results. For

baseline methods, all experimental results are evaluated on our

normalized dataset, except for results of MAP in parentheses. These

results are reported in the original paper of baseline methods and

MAP is their only metric for algorithm classification task. Natural

language pre-trained model RoBERTa fine-tuned with our method,

achieves 88.15% on precision, 86.55% onMAP. Ourmethod improves

its performance noticeably by 5.33% on precision, 6.31% onMAP and

9.88% compared to the results reported in the original paper. Code

pre-trained model CodeBERT fine-tuned with our method, achieves

93.63% precision and 92.91% on MAP. Our method substantially

improves 8.35% on precision, 10.15% on MAP, and 10.24% compared

to the original result. Notably, with our method, RoBERTa model

without being pre-trained on code data outperforms the existing

state-of-the-art model CodeBERT fine-tuned on this task by 3.79%

MAP.

4.4 Code Clone Detection

Metrics and Baselines. We use precision, recall and F1 score as

the evaluation metrics of the code clone detection task. In our

experiments, we compare a range of models including the state-of-

the-art model GraphCodeBERT. GraphCodeBERT is a pre-trained

model for code which improves CodeBERT by modeling the data

flow edges between code tokens. CDLH [50] learns representations

of code fragments through AST-based LSTM. ASTNN [56] encodes

AST subtrees for statements and feeds the encodings of all statement

trees into an RNN to learn representation for a program. FA-AST-

GMN [49] leverages explicit control and data flow information and

uses GNNs over a flow-augmented AST to learn representation for

programs. TBCCD [54] proposes a tree convolution-based method

to detect semantic clone, that is, using AST to capture structural

information and obtain lexical information from the position-aware

character embedding.

Table 4: Code Clone Detection Comparison

Model Precision Recall F1

CDLH 0.92 0.74 0.82

ASTNN 0.92 0.94 0.93

FA-AST-AMN 0.96 0.94 0.95

TBBCD 0.94 0.96 0.95

RoBERTa(10% data) 0.966 0.962 0.964(0.949)

RoBERTa(10% data) + DA + CL 0.973 0.957 0.965

CodeBERT(10% data) 0.960 0.969 0.965

CodeBERT(10% data) + DA + CL 0.972 0.972 0.972

GraphCodeBERT 0.973 0.968 0.971

Results. Table 4 shows results for code clone detection. Our re-

produced results are mostly consistent with results reported in

original papers, except for the F1 score of 0.964 for RoBERTa, which

is higher than the original result of 0.949.We implement our method

on RoBERTa and CodeBERT. Experiments show that models with

our method consistently perform better than the original mod-

els. Notably, with our method, RoBERTa performs comparably to

CodeBERT, and CodeBERT outperforms the state-of-the-art model

GraphCodeBERT. More importantly, following the original settings

of CodeBERT, CodeBERT only randomly samples 10% of the data

for training compared to GraphCodeBERT. Even though we expand

the data using data augmentation in the experiment for CodeBERT,

the data used by CodeBERT are still much less than data for Graph-

CodeBERT.

4.5 Code Search

Metrics and Baselines. For code search task, we use MRR as the

evaluation metric. MRR is the average of the reciprocal rank of

results of a set of queries. The reciprocal rank of a query is the

inverse of the rank of the first hit result.

Table 5 shows the results of different approaches on the Code-

SearchNet corpus. The first four rows are reported by Husain et

al. [16]. NBOW, CNN, BIRNN and SELFATT represent neural bag-

of-words [40], 1D convolutional neural network [19], bidirectional

GRU-based recurrent neural network [7], and multi-head atten-

tion [47], respectively.

Results. Table 5 shows results of different approaches for code

search. RoBERTa (code) is pre-trained on programs from Code-

SearchNet with masked language modeling while maintaining the

293

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

Table 5: Code Search Comparison

Model MRR

NBow 0.171

CNN 0.263

BiRNN 0.304

SelfAtt 0.404

RoBERTa 0.599

RoBERTa(code) 0.620

RoBERTa + DA + CL 0.635

CodeBERT 0.676

CodeBERT + DA + CL 0.697

GraphCodeBERT 0.696(0.691)

GraphCodeBERT + DA + CL 0.720

RoBERTa architecture. Our reproduced result 0.696 of GraphCode-

BERT is slightly differently from the originally reported result 0.691.

We implement our method on RoBERTa, CodeBERT and the state-

of-the-art model GraphCodeBERT for code search. The results show

that natural language pre-trained model RoBERTa with our method

outperforms RoBERTa (code), which is the same model architecture

pre-trained on code data. CodeBERT with our method outperforms

the original state-of-the-art model GraphCodeBERT. The perfor-

mance of GraphCodeBERT with our method reaches 0.720 MRR,

surpassing the original result 0.691 MRR.

4.6 Summary

On above tasks and their benchmark datasets, our method substan-

tially improves the performance of a range of pre-trained models,

achieving the state-of-the-art performance on all tasks. For the natu-

ral language pre-trained model with no exposure to code at all, with

the help of our approach, it is able to match or even surpass exist-

ing code pre-trained models normally fine-tuned to corresponding

tasks. In the code search task, RoBERTa pre-trained with natu-

ral language and fine-tuned with our method, surpasses the same

architecture pre-trained with code data and fine-tuned with the

general method. These all illustrate the strong bridging role of our

method between pre-trained models and code-related downstream

tasks by introducing semantic knowledge for downstream tasks

into pre-trained models.

For code-related tasks, applying our approach to a pre-trained

model at the finetune stage with a relatively small cost is preferable

to pre-training a more complicated model from scratch with huge

resources. It illustrates the superiority of our method, but this is

not to negate the work of code pre-trained models either. In fact,

our approach achieves better results when applied to a superior

pre-trained model. Probably, the research of pre-trained models for

source code has much work to do in terms of data diversity and

conjunction with downstream tasks.

5 ANALYSIS

This section analyzes the effects of different parameters on the

performance of tasks in our experiment.

5.1 Ablation Study

This section investigates how data augmentation and curriculum

learning affect the performance of models, respectively. The fol-

lowing subsections show these results for algorithm classification,

code clone detection and code search task.

Table 6: Ablation Study on Algorithm Classification

Model Precision MAP

CodeBERT 85.28 82.76

CodeBERT + DA + CL 93.63 92.91

w/o DA-Training 91.90 90.79

w/o TTA 88.76 87.21

w/o CL 92.55 91.52

Algorithm Classification. For algorithm classification task, we

conduct experiments without augmention on training set (DA-

Training), test-time augmentation or curriculum learning. The re-

sults are shown in Table 6. The first row shows the results of the

baseline model. The second row presents the results of the baseline

model with our full method. The third row removes augmentation

on the training set. The fourth row presents the results of remov-

ing test-time augmentation. The results of removing curriculum

learning strategy are shown in the last row. As seen from the re-

sults, removing any of the components leads to a drop of the model

performance, and the removal of test-time augmentation leads to

a significant performance degradation, indicating that all three

components are necessary to improve performance, and test-time

augmentaion contributes the most to the improvements. We be-

lieve that for clustering tasks similar to algorithm classification,

integrating multiple perspectives in a data augmentation manner

during testing could be a huge boost to model performance.

Table 7: Ablation Study on Code Clone Detection

Model Precision Recall F1

CodeBERT 0.963 0.965 0.964

CodeBERT + DA + CL 0.972 0.972 0.972

w/o TTA 0.971 0.972 0.971

w/o CL 0.976 0.965 0.970

w/o DA-Training + CL 0.964 0.965 0.964

Code Clone Detection. For code clone detection task, we also con-

duct experiments without augmention on training set, test-time

augmentation or curriculum learning. Unlike algorithm classifica-

tion, we apply augmentation-based curriculum learning for code

clone detection task. The removal of augmentation on the training

set means that the CL component also does not work, and only

test-time augmentation component works. The experimental re-

sults in Table 7 show that the combination of augmentation on

the training set and CL component has the largest performance

improvement, and test-time augmentation has no significant per-

formance improvement, but the model can still benefit from it.

294

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 8: Ablation Study on Code Search

Model MRR

GraphCodeBERT 0.696

GraphCodeBERT + DA + CL 0.720

w/o TTA 0.707

w/o CL 0.708

w/o DA-Training + CL 0.710

Code Search. With the same ablation experimental setups as for

the code clone detection task, we conduct experiments on the code

search task. As shown in Table 8, we conclude that all three com-

ponents are necessary for the improvements. The last row shows

the result using only test-time augmentation, which is able to sig-

nificantly exceed the original state-of-the-art performance with-

out training with additional augmentation data. We speculate that

test-time augmentation is able to combine multiple augmentation

copies in the code retrieval process to make judgments and elim-

inate overconfident incorrect predictions on the original test set.

The penultimate row shows the experimental result of removing

CL component. In other words, it is obtained by the combination

of augmentation on the training set and test-time augmentation

acting on the model. Compared to the result of applying test-time

augmentation component only in the last row, we find that more

augmented data used for training may result in negative gains. One

possible reason is that the augmented data introduces more noise,

causing the model to choose from more candidates for the same

query during training. These results further illustrate the necessity

of curriculum learning on augmented data.

Table 9: Effects of Augmentation Types on Algorithm Classi-

fication

Model Precision MAP

All 93.63 92.91

w/o Declaration 92.13 90.88

w/o API 92.35 91.24

w/o Control 94.17 93.41

5.2 Effects of Augmentation Type

Since this paper considers multiple augmentation techniques, in this

section we explore the effects of augmentation techniques at differ-

ent granularities on the experimental results. We build transformed

datasets of the same size using augmentation techniques of different

granularities and train CodeBERT separately on these datasets for

algorithm classification task. Results are shown in Table 9. The first

row shows the results using all augmentation techniques of three

granularities, while the second to fourth rows show the results

without the augmentation techniques for the declaration, API, or

control stucture granularity, respectively. From the results, it can

be seen that not using the augmentation techniques of declaration

or API granularity leads to a decrease in results, while not using

the augmentation techniques of control sturcture leads to an in-

crease. This indicates that the augmentation of declaration and API

contribute more to the improvements, however, the control struc-

ture augmentation introduces more noise than contribution. We

speculate that changing the control structure has a greater impact

on the token order and context relative to the other two granular-

ities of augmentation techniques, and pre-trained models we use

are based on masked language modeling and are context sensitive.

These reasons make it more difficult for the models to learn the

knowledge and features introduced in the process of changing the

control structure. This finding also encourages the code pre-trained

model to further exploit structural information of source code in

order to better understand the program semantics.

Table 10: Effects of Pacing Function on Algorithm Classifica-

tion

Model Precision MAP

Random(baseline) 85.28 82.76

Anti 81.87 78.73

Linear 86.94 84.96

Step 86.39 84.35

Geom_progression 85.97 83.70

Root_2 86.98 84.96

Root_5 86.11 83.95

Root_10 87.38 85.33

5.3 Effects of Pacing Function

To understand how the model is impacted by the pace we go from

easy to hard examples, we evaluate the effects of different pacing

functions on the experimental results, as shown in Table 10. We

conduct experiments on POJ104 dataset in the algorithm classfica-

tion task. The learning order is determined by the scoring function

described in Section 3.3. The baseline model CodeBERT is trained

in a random order and the Anti method orders training samples

from hard to easy. The other methods learn training samples from

easy to hard, with the difference that at each epoch a different pro-

portion of the training data are fed to the model as determined by

their functions. We briefly introduce different pacing functions and

the details are described in Penha et al. [32]. The 𝐿𝑖𝑛𝑒𝑎𝑟 function
linearly increases the percentage of training data input to the model.

𝑆𝑡𝑒𝑝 function divides training data into several groups, and after
fixed epoches a group of training samples will be added for model

training. 𝑅𝑜𝑜𝑡_𝑛 and 𝐺𝑒𝑜𝑚_𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 functions correspond to
two extreme cases. 𝑅𝑜𝑜𝑡_𝑛 function feeds the model with a large
number of easy samples and then slowly increases the proportion

of hard samples, while 𝐺𝑒𝑜𝑚_𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 function does the oppo-
site. In the 𝑅𝑜𝑜𝑡_𝑛 function, 𝑛 is the hyperparameter, and the larger
the value of 𝑛, the more training data are fed to the model at the
beginning. All these functions are fed with the same training data

at the final stage of training.

In Table 10, we can see that feeding data from easy to hard has

a certain performance improvement, while the performance of in-

putting training samples from hard to easy is significantly worse

than the baseline in a random order. These results illustrates the

effectiveness of our curriculum learning strategy and scoring func-

tions. Comparison of different pacing functions shows that 𝐿𝑖𝑛𝑒𝑎𝑟

295

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

and 𝑆𝑡𝑒𝑝 functions achieve similar results as 𝑅𝑜𝑜𝑡_2 function. The
𝑅𝑜𝑜𝑡 functions obviously outperform the 𝐺𝑒𝑜𝑚_𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 func-
tion, which is consistent with the findings of Sohrmann et al. [43]

and Penha et al. [32]. The reasons are that the root function gives

the model more time to learn from harder instances and is better

than no CL in terms of statistical significance. In our experiments,

we used 𝑅𝑜𝑜𝑡_10 function for algorithm classification task, and

since we did not perform ablation study on the datasets of the other

two tasks, we use 𝐿𝑖𝑛𝑒𝑎𝑟 function by default. The performance on
these two tasks could probably be further improved with different

pacing functions, and we leave it for future work.

6 RELATEDWORK

6.1 Data Augmentation

Data augmentation aims to increase the data diversity and thus

the generalization ability of the model by various transformation

techniques. This approach is widely used in the computer vision

domain [41, 51, 58]. In recent years, researchers apply data augmen-

tation to code data as well [34, 35, 37, 53, 55]. A series of studies

are motivated by the fact that existing models are vulnerable to

adversarial examples, and they design methods to expose the vul-

nerability of models and improve the robustness of models. Our

aim is to make the models more generalizable and perform better

on real data, unlike the methods described above. Jain et al. [17]

improve accuracy in code summarization and type inference task

based on equivalent data transformations and unsupervised aux-

iliary tasks. Nghi et al. [6] propose a self-supervised contrastive

learning framework for code retrieval and code summarization

tasks. Our aim is similar to these studies, but we do not need to

design the objective function or model architecture. Without the

need for complicated model design, our approach accomplishes the

same goal by acting on the data only. We simply augments the data

and feeds the augmented data into the model in an easy-to-hard

manner. Therefore, our lightweight method can be easily applied

over existing models and various downstream tasks.

6.2 Curriculum Learning

Learning educational material in order from easy to difficult is

very common in the human learning process. Inspired by cogni-

tive science [38], researchers have found that model training can

also benefit from a similar curriculum learning setting. Since then,

CL has been successfully applied to image classification [12, 15],

machine translation [20, 33, 57], answer generation [24] and infor-

mation retrieve [32].

The core of CL lies in the design of the scoring function, that is,

how to define easy and hard samples. A straightforward approach

is to study the data to create specific heuristic rules. For example,

Bengio et al. [4] use images containing less varied shapes as easy

examples to be learned first. Tay et al. [46] use paragraph length

as an evaluation criterion for difficulty in the question answer

task. However, these are highly dependent on the task dataset and

cannot be generalized to general tasks. Guo et al. [14] examine

the examples in their feature space, and define difficulty by the

distribution density, which successfully distinguishes noisy images.

Xu et al. [52] generally distinguish easy examples from difficult ones

on natural language understanding tasks by reviewing the training

set in a crossed way. In this paper, similar to Xu et al. [52], we also

utilize cross validation to measure data difficulty by model itself, but

we also take the class distribution into consideration. We intuitively

solve the multiclass classification problem from a class perspective

by first transforming it into a classification of fewer easy classes

and then gradually increasing the number of difficult classes. At the

same time, we combine curriculum learning and data augmentation

to overcome the problem that augmented data is more difficult to

learn. We first learn the original data, then gradually transition

to augmented data, and experimentally illustrate and verify the

effectiveness of the design.

7 THREATS TO VALIDITY

There are several threats to validity of our method.

• Due to the use of test-time augmentation in our method, this

component cannot be easily applied to code generation tasks.

Augmentation on the training set and curriculum learning

are still applicable, e.g., Jain et al. [17] have achieved good

performance on the code summarization task using code

augmentation.

• The transformation techniques we use are not representative

of the whole. Due to the characteristics of various tasks and

datasets, some transformations may lead to large improve-

ments and some may bing no improvements. Therefore, we

release the datasets for replication and reducing experimen-

tal bias. Our approach is designed to be a lightweight com-

ponent that generalizes to multiple downstream tasks. For

specific downstream tasks, new augmentation techniques

can also be applied to optimize the performance.

• Due to limited computed resource, we did not explore the

performance of our approach for the code clone detection

task on GraphCodeBERT or conduct ablation stuies on all

three tasks regarding the pacing function and transformation

type. In fact, there should be room for improvement and

interesting conclusions to be explored. We shall get better

results by searching for more suitable pacing functions and

transformation types for the other two tasks. We leave it for

future works.

8 CONCLUSION

In this paper, we focus on bridging pre-trained models and code-

related downstream tasks and propose a lightweight approach on

the fine-tuning paradigm, which is easy to implement on top of

various models. We build our approach on code pre-trained models

of CodeBERT and GraphCodeBERT, and these models substantially

outperform original models and achieve the state-of-the-art per-

formance on algorithm classification, code clone detection and

code search. Moreover, we apply our method to natural language

pre-trained model RoBERTa and it achieves comparable or better

performance than existing state-of-the-art code pre-trained models

fine-tuned on these tasks. This finding reveals that there is still

much room for improvement in existing pre-trained models for

source code understanding.

This paper focuses on code discriminative tasks. It is more chal-

lenging to apply our approach to code generation tasks. However,

generation tasks are data-hungry and may require more diverse

296

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

data for learning, such as code generation where multiple code

candidates are expected to be generated. In the future, it would

be interesting to combine our approach and prompt-based learn-

ing [25] to further exploit the potential of generative pre-trained

models on code generation tasks.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for

their insightful comments. This work was substantially supported

by National Natural Science Foundation of China (No. 61690203,

61872373, 62032019, and U1936213). This work was also supported

by the Major Key Project of PCL.

REFERENCES
[1] [n.d.]. Clang: a C language family frontend for LLVM. https://clang.llvm.org/
[2] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.

Unified Pre-training for Program Understanding and Generation. In NAACL.
[3] A. Aho, M. Lam, R. Sethi, and J. Ullman. 2006. Compilers: Principles, Techniques,

and Tools (2nd Edition).
[4] Yoshua Bengio, J. Louradour, Ronan Collobert, and J. Weston. 2009. Curriculum

learning. In ICML ’09.
[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, J. Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. Henighan, R. Child,
A. Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot Learners. ArXiv abs/2005.14165
(2020).

[6] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-Supervised Contrastive
Learning for Code Retrieval and Summarization via Semantic-Preserving Trans-
formations. Proceedings of the 44th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (2021).

[7] Kyunghyun Cho, B. V. Merrienboer, Çaglar Gulçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Represen-
tations using RNN Encoder–Decoder for Statistical Machine Translation. ArXiv
abs/1406.1078 (2014).

[8] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
ArXiv abs/2003.10555 (2020).

[9] J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT.

[10] J. Elman. 1993. Learning and development in neural networks: the importance of
starting small. Cognition 48 (1993), 71–99.

[11] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, X. Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and M. Zhou. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. ArXiv abs/2002.08155
(2020).

[12] Chen Gong, D. Tao, S. Maybank, W. Liu, Guoliang Kang, and Jie Yang. 2016.
Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.
IEEE Transactions on Image Processing 25 (2016), 3249–3260.

[13] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Jian Yin, Daxin Jiang, and M. Zhou. 2021. GraphCodeBERT:
Pre-training Code Representations with Data Flow. ArXiv abs/2009.08366 (2021).

[14] S. Guo, Weilin Huang, H. Zhang, Chenfan Zhuang, Dengke Dong, M. Scott,
and Dinglong Huang. 2018. CurriculumNet: Weakly Supervised Learning from
Large-Scale Web Images. ArXiv abs/1808.01097 (2018).

[15] Guy Hacohen and D. Weinshall. 2019. On The Power of Curriculum Learning in
Training Deep Networks. ArXiv abs/1904.03626 (2019).

[16] H. Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. ArXiv abs/1909.09436 (2019).

[17] Paras Jain, Ajay Jain, Tianjun Zhang, P. Abbeel, J. Gonzalez, and I. Stoica. 2020.
Contrastive Code Representation Learning. ArXiv abs/2007.04973 (2020).

[18] Lu Jiang, Deyu Meng, T. Mitamura, and A. Hauptmann. 2014. Easy Samples First:
Self-paced Reranking for Zero-Example Multimedia Search. Proceedings of the
22nd ACM international conference on Multimedia (2014).

[19] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
EMNLP.

[20] Tom Kocmi and Ondrej Bojar. 2017. Curriculum Learning and Minibatch Bucket-
ing in Neural Machine Translation. In RANLP.

[21] A. Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classifica-
tion with deep convolutional neural networks. Commun. ACM 60 (2012), 84 –
90.

[22] K. Krueger and P. Dayan. 2009. Flexible shaping: How learning in small steps
helps. Cognition 110 (2009), 380–394.

[23] M. Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: De-
noising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. ArXiv abs/1910.13461 (2020).

[24] Cao Liu, Shizhu He, Kang Liu, and Jun Zhao. 2018. Curriculum Learning for
Natural Answer Generation. In IJCAI.

[25] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2021. Pre-train, Prompt, and Predict: A Systematic Survey
of Prompting Methods in Natural Language Processing. ArXiv abs/2107.13586
(2021).

[26] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, M. Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa:
A Robustly Optimized BERT Pretraining Approach. ArXiv abs/1907.11692 (2019).

[27] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
AMachine Learning Benchmark Dataset for Code Understanding and Generation.
ArXiv abs/2102.04664 (2021).

[28] A. Mastropaolo, Simone Scalabrino, N. Cooper, David Nader-Palacio, D. Poshy-
vanyk, R. Oliveto, and G. Bavota. 2021. Studying the Usage of Text-To-Text
Transfer Transformer to Support Code-Related Tasks. 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE) (2021), 336–347.

[29] Tambet Matiisen, A. Oliver, T. Cohen, and J. Schulman. 2020. Teacher–Student
Curriculum Learning. IEEE Transactions on Neural Networks and Learning Systems
31 (2020), 3732–3740.

[30] Nikita Moshkov, Botond Mathe, Attila Kertész-Farkas, Réka Hollandi, and P.
Horváth. 2020. Test-time augmentation for deep learning-based cell segmentation
on microscopy images. Scientific Reports 10 (2020).

[31] Lili Mou, Ge Li, L. Zhang, T. Wang, and Zhi Jin. 2016. Convolutional Neural
Networks over Tree Structures for Programming Language Processing. In AAAI.

[32] Gustavo Penha and C. Hauff. 2020. Curriculum Learning Strategies for IR. Ad-
vances in Information Retrieval 12035 (2020), 699 – 713.

[33] Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, B. Póczos, and
Tom Michael Mitchell. 2019. Competence-based Curriculum Learning for Neural
Machine Translation. In NAACL-HLT.

[34] Erwin Quiring, A. Maier, and K. Rieck. 2019. Misleading Authorship Attribution
of Source Code using Adversarial Learning. In USENIX Security Symposium.

[35] Md Rafiqul Islam Rabin, Nghi D. Q. Bui, Yijun Yu, Lingxiao Jiang, and M. A.
Alipour. 2020. On the Generalizability of Neural Program Analyzers with respect
to Semantic-Preserving Program Transformations. ArXiv abs/2008.01566 (2020).

[36] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, W. Li, and Peter J. Liu. 2020. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer. ArXiv abs/1910.10683
(2020).

[37] Goutham Ramakrishnan, Jordan Henkel, Zi Wang, Aws Albarghouthi, S. Jha,
and T. Reps. 2020. Semantic Robustness of Models of Source Code. ArXiv
abs/2002.03043 (2020).

[38] Douglas L. T. Rohde and D. Plaut. 1999. Language acquisition in the absence of
explicit negative evidence: how important is starting small? Cognition 72 (1999),
67–109.

[39] SantiagoMunz. 2021. Semantic Preserving Auto Transformation. https://github.
com/SantiagoMunz/SPAT

[40] Imran A. Sheikh, I. Illina, D. Fohr, and G. Linarès. 2016. LearningWord Importance
with the Neural Bag-of-Words Model. In Rep4NLP@ACL.

[41] Connor Shorten and T. Khoshgoftaar. 2019. A survey on Image Data Augmenta-
tion for Deep Learning. Journal of Big Data 6 (2019), 1–48.

[42] K. Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks
for Large-Scale Image Recognition. CoRR abs/1409.1556 (2015).

[43] M. Sohrmann, C. Berendonk, M. Nendaz, R. Bonvin, and Swiss Working Group
For Profiles Implementation. 2020. Nationwide introduction of a new competency
framework for undergraduate medical curricula: a collaborative approach. Swiss
medical weekly 150 (2020), w20201.

[44] Nitish Srivastava, Geoffrey E. Hinton, A. Krizhevsky, Ilya Sutskever, and R.
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 15 (2014), 1929–1958.

[45] Jeffrey Svajlenko, Judith F. Islam, I. Keivanloo, C. Roy, and Mohammad Mamun
Mia. 2014. Towards a Big Data Curated Benchmark of Inter-project Code Clones.
2014 IEEE International Conference on Software Maintenance and Evolution (2014),
476–480.

[46] Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu, Minh C. Phan, Xingdi Yuan, J.
Rao, S. C. Hui, and A. Zhang. 2019. Simple and Effective Curriculum Pointer-
Generator Networks for Reading Comprehension over Long Narratives. ArXiv

297

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

abs/1905.10847 (2019).
[47] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. ArXiv abs/1706.03762 (2017).

[48] Guotai Wang, Wenqi Li, M. Aertsen, J. Deprest, S. Ourselin, and Tom
Kamiel Magda Vercauteren. 2019. Aleatoric uncertainty estimation with test-
time augmentation for medical image segmentation with convolutional neural
networks. Neurocomputing 335 (2019), 34 – 45.

[49] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones
with Graph Neural Network and Flow-Augmented Abstract Syntax Tree. 2020
IEEE 27th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER) (2020), 261–271.

[50] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. In IJCAI.

[51] Jerry W. Wei, A. Suriawinata, L. Vaickus, Bing Ren, Xiaoying Liu, Jason Wei, and
S. Hassanpour. 2019. Generative Image Translation for Data Augmentation in
Colorectal Histopathology Images. Proceedings of machine learning research 116
(2019), 10–24.

[52] Benfeng Xu, L. Zhang, Zhendong Mao, Q. Wang, Hongtao Xie, and Yongdong
Zhang. 2020. Curriculum Learning for Natural Language Understanding. In ACL.

[53] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models of
code. Proceedings of the ACM on Programming Languages 4 (2020), 1 – 30.

[54] Hao Yu,Wing Lam, Long Chen, Ge Li, Tao Xie, and QianxiangWang. 2019. Neural
Detection of Semantic Code Clones Via Tree-Based Convolution. 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC) (2019), 70–80.

[55] Huangzhao Zhang, Z. Li, Ge Li, L. Ma, Yang Liu, and Zhi Jin. 2020. Generating
Adversarial Examples for Holding Robustness of Source Code Processing Models.
In AAAI.

[56] J. Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A Novel Neural Source Code Representation Based on Abstract Syntax
Tree. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)
(2019), 783–794.

[57] Xuan Zhang, Manish Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup,
Marianna J. Martindale, P. McNamee, Kevin Duh, and Marine Carpuat. 2018. An
Empirical Exploration of Curriculum Learning for Neural Machine Translation.
ArXiv abs/1811.00739 (2018).

[58] Zhun Zhong, L. Zheng, Guoliang Kang, Shaozi Li, and Y. Yang. 2020. Random
Erasing Data Augmentation. In AAAI.

298

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:16 UTC from IEEE Xplore. Restrictions apply.

