
Multi-Intention-Aware Configuration Selection for Performance
Tuning

Haochen He
hehaochen13@nudt.edu.cn

National University of Defense

Technology, China

Zhouyang Jia∗

jiazhouyang@nudt.edu.cn

National University of Defense

Technology, China

Shanshan Li†

shanshanli@nudt.edu.cn

National University of Defense

Technology, China

Yue Yu†

yuyue@nudt.edu.cn

National University of Defense

Technology, China

Chenglong Zhou
zhouchenglong15@nudt.edu.cn

National University of Defense

Technology, China

Qing Liao
liaoqing@hit.edu.cn

Harbin Institute of Technology

Shenzhen, China

Ji Wang
wj@nudt.edu.cn

National University of Defense

Technology, China

Xiangke Liao
xkliao@nudt.edu.cn

National University of Defense

Technology, China

ABSTRACT

Automatic configuration tuning helps users who intend to improve

software performance. However, the auto-tuners are limited by

the huge configuration search space. More importantly, they fo-

cus only on performance improvement while being unaware of

other important user intentions (e.g., reliability, security). To re-

duce the search space, researchers mainly focus on pre-selecting

performance-related parameters which requires a heavy stage of

dynamically running under different configurations to build per-

formance models. Given that other important user intentions are

not paid attention to, we focus on guiding users in pre-selecting

performance-related parameters in general while warning about

side-effects on non-performance intentions. We find that the con-

figuration document often, if it does not always, contains rich in-

formation about the parameters’ relationship with diverse user

intentions, but documents might also be long and domain-specific.

In this paper, we first conduct a comprehensive study on 13

representative software containing 7,349 configuration parame-

ters, and derive six types of ways in which configuration parame-

ters may affect non-performance intentions. Guided by this study,

we design SafeTune, a multi-intention-aware method that pre-

selects important performance-related parameters and warns about

their side-effects on non-performance intentions. Evaluation on

target software shows that SafeTune correctly identifies 22-26

∗Co-first author
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510094

performance-related parameters that are missed by state-of-the-

art tools but have significant performance impact (up to 14.7x).

Furthermore, we illustrate eight representative cases to show that

SafeTune can effectively prevent real-world and critical side-effects

on other user intentions.

CCS CONCEPTS

• Software and its engineering→ Extra-functional properties.

KEYWORDS

Performance tuning, user intention, non-performance property

ACM Reference Format:

Haochen He, Zhouyang Jia, Shanshan Li, Yue Yu, Chenglong Zhou, Qing

Liao, Ji Wang, and Xiangke Liao. 2022. Multi-Intention-Aware Configura-

tion Selection for Performance Tuning. In 44th International Conference on

Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.3510094

1 INTRODUCTION

Configuration can change software behavior and thus enable cus-

tomization to meet different user intentions. Among many possible

user intentions, improving performance is one of the most common

purposes. However, modern software systems are often equipped

with a large number of parameters (e.g., HDFS [46] has 560 param-

eters) that are impractical to tune by hand. Though existing works

have applied various techniques to perform automatic configura-

tion tuning [17, 18, 20, 25, 36, 41–43, 52, 54, 61], they still have two

major limitations. First, it is well-known that their efficiency is

extremely limited by the huge configuration search space [58, 61].

Second, we find that they only consider performance improvement

while being unaware of user intentions other than performance

(e.g., reliability, security). However, one configuration parameter

may impact multiple user intentions at the same time. For exam-

ple, changing some parameters gain performance by sacrificing

reliability [1]. But users of safety-critical systems (e.g., industrial

1431

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA H. He, Z. Jia, S. Li, Y. Yu, C. Zhou, Q. Liao, J. Wang and X. Liao.

innodb_flush_log_at_trx_commit:

“Controls the balance between strict ACID compliance for commit

operations and higher performance... The default setting of 1 is

required for full ACID compliance. Logs are written and flushed

to disk at each transaction commit. With a setting of 0, logs are

written and flushed to disk once per second. You can achieve better

performance by changing the default value but then you can lose

transactions in a crash.”

Figure 1: Configuration documents of MySQL

control systems) may also intend to keep their systems reliable

while improving performance. In such cases, the parameter that

affects the corresponding intentions should be very carefully tuned.

To reduce the huge search space for those auto-tuners, many

recent works have been proposed to pre-select important parameters.

They run dynamic performance experiments to measure perfor-

mance changes with parameter value changes, and use statisti-

cal [24] or machine-learning [38] methods to select parameters

that have significant impacts on performance. Though working in

some scenarios, the effectiveness of their dynamic methods depends

strongly on both workloads and environment, which often vary

from case to case. Moreover, these methods are hard to deploy due

to the heavy performance experiments.

In this paper, we propose SafeTune, a multi-intention-aware ap-

proach that provides tuning guidance, including identifying perfor-

mance-related configuration parameters in general and warning

about potential side-effects on other user intentions. To the best

of our knowledge, we are the first to propose multi-intention-

aware parameter pre-selection for performance tuning. The in-

sight of SafeTune is that configuration documents often con-

tain rich information about parameters’ relationship with multiple

user intentions. For example, in Fig. 1, the document of parameter

innodb_flush_log_at_trx_commit explains if and how the parame-

ter affects performance in general, and warns about the potential

side-effect (losing a transaction) on the intention of reliability. Safe-

Tune leverages documents to understand the relationship between

performance and other user intentions.

It is non-trivial for SafeTune to automatically select performance-

related parameters and warn about side-effects. First, how config-

uration parameters affect performance and cause side-effects on

non-performance intentions is unknown. Second, building a model

to learn information from documents (which are written in natural

language) requires large-scale training data, but there is no such

public dataset. Third, the side-effect information is usually described

implicitly, and documents can be very long and domain-specific.

For the example shown in Fig. 1, expert knowledge is required to

understand that "lose transaction" means hurting reliability in this

context.

Therefore, we first conduct an empirical study to comprehen-

sively understand how the configuration parameters can affect

performance and cause side-effects on non-performance intentions

such as reliability. To determine the general result from the study,

we choose 13 software from four categories, including 7,349 parame-

ters, as shown in Table 1. From this study, we obtain three heuristics

to precisely filter out parameters unrelated to performance, and

derive a categorization that contains six types of ways in which

parameters can cause side-effects on non-performance intentions.

Based on these findings, SafeTune predicts the tuning guidance

of a parameter for the given configuration document of the param-

eter. In light of the last two challenges, SafeTune takes two major

steps: 1) We design a semi-supervised data expansion approach,

which automatically expands the manually labeled training dataset.

We manually assign the type of side-effect for parameters in a

small-scale training data set during the study. Next, SafeTune uses

association rule mining techniques in a progressive manner to mine

natural language patterns from the dataset, then uses the patterns

to enlarge this dataset with high precision. This step is necessary

because manually inspecting all parameters is extremely expensive.

2) SafeTune trains a learning-based hierarchical model to capture

important information from the document based on the expanded

dataset and provide the final performance tuning guidance.

We evaluate SafeTune on software that has neither previously

appeared before in this paper. The results show that SafeTune

can accurately identify performance-related parameters and their

side-effects, scoring 81.3-85.1% in precision and 67.6-67.7% in re-

call. Compared with the state-of-the-art pre-selecting method [38],

SafeTune can correctly find 117 performance-related parameters

that are missed by the method, and some of the these parameters

have huge (up to 14.6x) performance impacts. Moreover, SafeTune

correctly covers 29 out of 32 performance-related parameters. The

false positive rate is 12.7%. Furthermore, we conduct a case study

in which we apply SafeTune with a state-of-the-art and popular

auto-tuner, OtterTune [50], which has 1.1k GitHub stars. The results

show that SafeTune can help prevent eight side-effects (covering

four types) caused by OtterTune that lead to severe consequences.

Our main contributions can be summarized as follows:

• We conclude six types of ways in which performance-related

parameters can affect non-performance user intentions from

an empirical study of 13 widely used open-source software

from four representative domains.

• We design and implement a multi-intention-aware and semi-

supervised approach, SafeTune, to identify performance-

related parameters and their side-effects. All data and source

code can be found in our public repository:

https://github.com/TimHe95/SafeTune

• We evaluate SafeTune on the target software. The results

show that SafeTune finds 22-26 performance-related param-

eters that have large performance impacts (up to 14.7x) but

are missed by state-of-the-art tools. Further, we illustrate

eight representative cases to show that SafeTune can effec-

tively prevent real-world and critical side-effects on other

intentions.

2 UNDERSTANDING PERFORMANCE-
RELATED CONFIGURATION

To comprehensively understand which configuration parameters

affect software performance, along with what side-effects those

performance-related parameters may have on non-performance

intentions, we conduct an empirical study on 7,349 parameters from

13 open-source software systems. From this study, we first derive

1432

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

Multi-Intention-Aware Configuration Selection for Performance Tuning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Studied Software and Configuration Parameters

Category Software Popularity‡ # Params†

Database

MySQL 6.8k 943

Cassandra 6.8k 116

MariaDB 3.9k 274

Web Service
Apache Httpd 2.7k 571

Nginx 14.5k 710

Distributed

Service

Hadoop Common 11.8k 313

MapReduce 11.8k 198

Apache Flink 16.8k 441

HDFS 11.8k 560

Keystone 4.4k 394

Nova 2.7k 844

Developer

Tool

GCC 5.3k 1,335

Clang 2.8k 650

Total 7,349

†The number of configuration parameters. ‡ Github stars

three heuristic strategies to help filter out parameters unrelated

to performance. We then conclude six different types of ways in

which those performance-related parameters may cause side-effects.

These findings are used to guide the design of SafeTune.

2.1 Data Collection

We study the configuration documents of the software. The config-

uration document explains the detailed semantics and their rela-

tionships with user intentions (e.g., performance). The document

has two unique advantages. First, it provides a general but com-

prehensive understanding of configuration parameters that does

not rely on specific workloads; then, it contains multiple user in-

tentions (e.g., text in bold in Fig. 1). We studied 13 open-source

software systems from four different domains, as shown in Table 1.

These four categories are chosen from the most popular products

provided by famous cloud vendors [5, 7, 10] and are representative

among highly-configurable software systems [31, 37, 50, 51, 59, 61].

These software systems are: 1) usually located in server-side and

accordingly have higher demands in terms of performance, reli-

ability, etc; 2) mature and widely used, with at least 2.7k GitHub

stars; 3) highly configurable (each has more than 100 configuration

parameters) with well-maintained configuration documents. We

collected configuration parameters and their documents from two

main sources: the official websites and the configuration files (e.g.

XML-based configuration files). Each of the collected data point is in

the form of <parameter name, description>. We filter out parameters

without description, and finally collected 7,349 parameters.

Identifying Performance-related Parameters. To understand

the side-effects of performance-related parameters, we manually

studied the documentation of configuration parameters. Studying

all parameters is extremely expensive; accordingly, we conclude

three heuristic strategies to filter out parameters that have no im-

pact on the performance of software. 1) Parameters indicating the

location of resources. Descriptions of these parameters contain

phrases such as "path of", "port of", "address of", and "location of".

These typically have little impact on performance. 2) Parameters

marked as "unused" or "deprecated" in the documentation. 3) Param-

eters set for compatibility reasons. These parameters are usually

designed to support old behavior in old versions of software. Pa-

rameters in this category are filtered by the keywords "version",

"compatibility" and "legacy". We apply these heuristics to all 7,349

parameters and filter out 1,071 parameters. Note that these heuris-

tics are set to quickly filter out some of parameters unrelated to

performance so that the others still need to be further filtered out

by SafeTune. We then randomly sample 1,292 (20%) of the 6,278 pa-

rameters to study. Two authors with at least three years of research

experience in configuration independently identified each parame-

ter as either performance-related or not according to its description.

Once a disagreement occurred, a third author was involved until a

consensus is reached. Finally, we obtained 525 performance-related

parameters for further study.

2.2 Side-effects on Non-performance Intentions

We study the 525 performance-related parameters to understand

the side-effects they may cause. We follow the same methodology

as in the above section; additionally, to make the results more

consistent, the rest of the authors randomly review a fifth of the

parameters studied in weekly meetings. This process took more

than 400working hours and lasted for six weeks. During the process,

we use the software quality model [35] as the starting point and

refine the classification by our domain knowledge (some software

qualities in this model may not be affected by performance-related

configurations). Finally, we conclude six different types of ways in

which these performance-related parameters may cause side-effects

on non-performance user intentions.

As a result, we find that the majority (76.0%, 399/525) of perfor-

mance-related parameters have side-effects on non-performance

intentions. These parameters can affect common user intentions,

such as reliability, security and functionality. Table 2 shows the

number of parameters falling into each type of side-effects. This

result indicates a strong demand for tuning tools to warn about

these side-effects for end users. Subsequently, we describe each

type and the criteria used to classify it in our study.

Lower reliability. These parameters improve performance at the

cost of decreasing the level of reliability. For example, innodb_flush

_log_at_trx_commit controls the ACID level of MySQL, the value

of "1" ensures strict data protection by executing fsync at every

commit. Changing this value to "2" improves the performance by

reducing the calls to fsync at the risk of losing data during a power

loss. To avoid affecting user intention of reliability, tuning tools

should warn users about the risk associated with improving per-

formance. Criteria to classify: These parameters are usually related

to the way data are persisted to the hard drive and fault tolerance

policies, and they are usually documented as "replication level",

"update interval", "write to disk", etc.

Lower security. These parameters improve performance at the

cost of a lower level of security protection. For example, the param-

eter PrivilegesMode in Apache Httpd controls the way requests

are processed. The value "SECURE" means that all requests are run

in a secure sub-process, but with more overhead. When changing

to "FAST", requests are run in-process, speeding up the software

but opening up the chance for malicious attackers to utilize the

1433

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA H. He, Z. Jia, S. Li, Y. Yu, C. Zhou, Q. Liao, J. Wang and X. Liao.

Table 2: Side-effects on non-performance intentions

Type of Side-effects # Params # Paramsall

Lower reliability 33 121

Lower security 46 185

Reduced functionality 138 696

Lower performance (for other workloads) 68 379

Higher cost 114 512

Limited side-effect 126 603

Total 525 2,496

Params: number of parameters in the studied set. # Paramsall: number

of parameters in the whole data set.

in-process module to escalate privileges. To avoid affecting user in-

tention regarding security, such parameters should bewarned about.

Criteria to classify: These parameters are usually related to common

security policies such as encryption, authentication and privacy

protection, and they are usually documented as "enable/disable au-

thentication", "enable/disable SSL", "whether (a kind of data) should

be encrypted", etc.

Reduced functionality.These parameters improve performance

at the cost of reduced functionality. For example, the parame-

ter adl.feature.ownerandgroup.enableupn in Hadoop controls

whether an additional process should be performed to convert users

and groups in FileStatus/AclStatus response to a user-friendly name.

Disabling this function saves a large amount of computation (as

documented: "for optimal performance, false is recommended"); how-

ever users intending to enable this function should be provided

with warnings. Criteria to classify: These parameters are usually

documented as "enable/disable (a feature)", "control output", "collect

information of (a component)", etc.

Lower performance (for other workloads). These parameters

can improve performance only for specific workloads run by some

users, and may hurt others run by other users. Taking the parameter

max_seeks_for_key in MariaDB as an example, it controls the

estimated maximum cost for look-ups on table’s index. Decreasing

the value makes MariaDB prefer index scan than full table scan.

But the index scan is only faster than the full table scan when the

cost for index look-ups is low in actual (i.e., low cardinality of the

index), which is completely workload-dependent. If another user

runs a different workload, the inappropriate value may cause the

performance problem [13]. So these parameters should be tuned

with caution.Criteria to classify: These parameters typically control

the internal argument of a specific algorithm, data structure and

model, and they are usually documented as "threshold of", "ratio

of", "upper/lower bound of", etc.

Higher cost. These parameters improve performance at the cost

of consumingmore system resources (e.g. CPU cores, memory, band-

width). For example, dfs.image.parallel.threads in HDFS sets

the number of threads used to load the image. A higher value of this

parameter results in higher parallelism and reduced loading time,

while more CPU cores may be used. In Amazon Web Services [5],

four more CPU cores for a 32GB memory instance can cost 72$

per month. In cases where a user’s budget or hardware resources

are limited, changing these parameters may still indirectly affect

user intentions (e.g., unexpected bill charges). Criteria to classify:

StudiedParameters

Un-studiedParameters

Expanded Parameters
LearningBased Model

Forest-2

Perf. Related Parameters& Side-effects
Data Expansion

Rule Mining
NLP Pre-processing

Data Balancing
NLPrules

… Side-effects
Perf.

UnrelatedForest-1Perf. Related Necessary forproduction users
Necessary inoffline training

Figure 2: Overview of SafeTune.

These parameters usually control the system resources allocated to

the software, and they are usually documented as "size of buffer",

"number of workers", etc.

Limited side-effects. These parameters improve performance

with limited side-effect on non-performance intentions. Some pa-

rameters improve performance by applying certain optimization

strategies. For example, when index_merge in MySQL is turned

on, MySQL can better utilize index and read from a single table

rather than across multiple tables. Such optimization has a lim-

ited impact on the system, thereby causing limited side-effects

on user intentions. It is recommended for tuning tools to tune

such parameters in the first place. In other cases, parameters in

this category may trade-off other properties (e.g., floating point

precision) for performance. Criteria to classify: These parameters

usually control optimization strategies such as caching, load bal-

ancing, compression, and they are usually documented as "enable

(a kind of optimization)", "whether to (do optimization)", etc.

In rare cases, one parameter has side-effects on more than one

other user intentions. We do not find any case that improving

performance brings positive effects on other user intentions.

3 SEMI-SUPERVISED DATASET EXPANSION

Given the side-effects summarized in the study, our goal is to build

a model that can automatically identify the performance-related

parameters and warn about their side-effects. Training a model

to get information from natural language requires data at a large

scale. We refer to the configuration parameters and their side-effect

types (labels) as training data; hence, SafeTune has seven labels

(including six side-effects and performance unrelated parameters).

However, the training data obtained from the study is insufficient

(i.e., does not exceed 100 for some types), and manual labeling of

the unstudied data is extremely expensive.

During the empirical study process in §2, we find that descrip-

tions of parameters of the same type share certain linguistic pat-

terns. For example, parameters that may lead to higher cost are

usually documented like "size of buffer" or "number of threads".

With these patterns, we will be able to enlarge the dataset with

less manual effort. Therefore, we design a semi-supervised data

expansion approach that utilizes natural language processing (NLP)

and association rule mining (ARM) techniques to automatically

mine the patterns (i.e., association rules) in a progressive manner

to enlarge the amount of labeled data in the study. As shown in

1434

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

Multi-Intention-Aware Configuration Selection for Performance Tuning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: The rule examples of each side-effect types mined by SafeTune (Underlined words are those matched by rules).

Side-effect type Rule example Support Confidence Matched description

Lower reliability (NOUN, write), (NOUN, level) 7 0.875 Sets the current transaction’s synchronization level.

Lower security (VERB, check), (NOUN, security) 6 0.857
Sets how deeply mod_ssl should verify before deciding

that the clients do not have a valid certificate.

Reduced

functionality
(NOUN, level), (NOUN, information) 6 0.857

Verbosity of SQL debugging information: 0=None,

100=Everything.

Lower performance

(for other workloads)

(NOUN, time), (ADP, for), (NOUN, re-

source)
6 0.857 The time for which retry cache entries are retained.

Higher cost
(VERB, set), (NOUN, amount), (NOUN,

resource)
12 0.923

This value controls the number of cache directives that

the NameNode will send over the wire in response to ...

Limited side-effect (VERB, enable), (NOUN, optimization) 12 0.857 Enables or disables genetic query optimization.

the left part of Fig. 2, the data expansion process contains three

main steps: First, SafeTune uses NLP to pre-process the manually

studied configuration documents and normalizes words to highlight

the most informative words. Second, it mines the pre-processed

documents to obtain a set of rules using ARM. With these rules, it

matches configuration documents that are not involved in the study

to increase the available training data. The above two steps proceed

iteratively until no configuration documents can be enlarged by

the rules. At the third step, SafeTune balances the data of each

type of side-effect to avoid over-fitting to some types.

3.1 Pre-processing

The goal of pre-processing is to normalize words and highlight im-

portant information in the description of parameters. Pre-processing

contains three steps: lemmatization, reduction, and substitution.

At the lemmatization step, since we are not interested in the

grammar features in the documents, we transform each token to

its original form to eliminate third-person or plural format effects;

for instance, the word "specified" is transformed into "specify".

In the reduction step, we remove the words that are not likely to

convey useful information and retain the informative ones. During

our study, we find that three kinds of words play an important role

in deciding the possible side-effects: 1) nouns, which directly point

out the entities on which parameters will have an effect; 2) verbs,

which are actions related to parameters and tend to directly lead

to the impact; 3) adverbs/adjectives, which describe the effects of

parameter value changes. We therefore extract the part-of-speech

(POS) information of each word and retain words with POS of the

types listed above.

In the substitution step, we replace special words to prevent

the model from being distracted by unrelated information. For

example, we replace the parameter names that appeared in the

documentation with "CONFIG" and replace numbers with a fixed

number. Moreover, to highlight the semantic knowledge in the

documents, we replace words that appear in the synonyms list

(the full list can be fond in our public repository) which is built

upon domain-specific resources [2, 3, 23]. Examples of synonyms

are shown in "Criteria to classify" in §2.2. For example, the words

"commit", "update" and "sync" are replaced with "write", since they

have similar meanings. We implement the pre-processing part us-

ing spaCy [33]. We provide an example to demonstrate the above

process: the description "Sets the current transaction’s synchroniza-

tion level" will be converted to [(VERB, set), (ADJ, current),

(NOUN, transaction), (NOUN, write), (NOUN, level)].

3.2 Mining Association Rules

The goal of this step is to find the sub-sequences that appear ex-

clusively and frequently in descriptions of the specific type of side-

effect of performance-related parameters. These sub-sequences

are association rules that distinguish different types of side-effect.

For the pre-processed sentences obtained from § 3.1, we utilize

FEAT [28] to mine association rules for each type of side-effect.

SafeTune utilizes it by adding the label to the end of the description

and mining the most frequent sub-sequences (rules) co-occurring

with the label. For example, a rulemined by the algorithm is [(NOUN,

write), (NOUN, level)], which is a sub-sequence of the example

above. Also, SafeTune outputs the support and confidence of each

association rule, and they are defined as follows:

support = |rules𝑖 | where the rule𝑖 matches the document

of the 𝑖thside-effect, and

confidence =
support

|rules∗𝑖 |
where the rule∗𝑖 matches the document

of any type of the side-effect.

The support of the rule𝑖 is defined as the number of occurrences of

the rule matching 𝑖th type given that the rule appears. Moreover, its
confidence is the conditional probability that a document is the 𝑖th

type of side-effect when matching this rule. For example, the rule

above has a support of 7 and confidence of 0.857, which represents

a strong signal of its side-effect type (i.e. Lower reliability). Table 3

presents rule examples mined for each type.

In the mining stage, SafeTune may obtain millions of rules. As

this set may contain rules with low quality, we retain only the rules

that are sub-sequences of other rules with the same support, since

shorter rules are more general and are thus more likely to expand

more data. Moreover, this expanded training data will be directly

used to train the SafeTune model. Thus, the soundness of the ex-

panded training data is important. Furthermore, we do not expect

the expansion process to expand all parameters to the training data

(completeness). Therefore, we drop out the rules whose confidences

are lower than 0.85. As we will show in §5.2, with this level of con-

fidence, the data expansion method can achieve an optimal balance

between precision and recall.

1435

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA H. He, Z. Jia, S. Li, Y. Yu, C. Zhou, Q. Liao, J. Wang and X. Liao.

3.3 Expanding Dataset Progressively

The goal of this step is to use rules mined from the studied data to

match configuration documents to the greatest extent possible to

enlarge the training data. For parameters not involved in the study,

SafeTune pre-processes their documents as in §3.1. SafeTune then

matches rules mined in the previous step to identify the candidate

to be expanded. Note that one parameter document may match

multiple rules of different types. SafeTune calculates the sum of

matched rules’ confidence of each type respectively and take the

label with the highest score. If no rule is matched, the parameter

will not be expanded. If the two steps described in §3.1 and §3.2

are applied only once, the data expanded may still be insufficient.

SafeTune expands the dataset in a progressive manner. The process

terminates when there is no data remaining that can be expanded.

3.4 Balancing Data

The goal of this step is to make the training data balanced in order

to avoid the model being biased towards the majority classes. After

the data expansion via rules matching, the parameters that have no

impact on the performance account for 72.2% of the entire dataset,

while the performance-related parameters that cause Lower security

contain only 4.1%. This imbalance causes the model to be easily

biased towards the performance-unrelated parameters. To avoid

this bias, SafeTune over-samples the parameters in the minority

types of side-effects to ensure that they are the same as the number

of performance-unrelated parameters. Since the soundness of the

expanded data is our main concern, we need to lower the probability

of incorporating false data. Borderline-SMOTE [30] is a widely

used over-sampling method for imbalanced data. Compared with

other methods, it can effectively avoid generating samples from

the "danger area" (i.e., samples near the borderline of different

classes). After balancing the training data, SafeTune applies the

pre-processing step as in § 3.1 to the data set to normalize words

and highlight important information in the training set.

4 IDENTIFYING PERFORMANCE-RELATED
PARAMETERS AND SIDE-EFFECTS

In this section, we introduce how SafeTune predicts the tuning

guidance for configuration parameters. As shown in the right part

of Fig. 2, SafeTune takes configuration documents that have been

expanded and pre-processed from the data expansion step as in-

put, then outputs tuning guidance including performance-related

parameters and their side-effects on non-performance intentions.

Random forest (RF for short) [21] is an appropriate algorithm for

the text classification task. It can precisely capture the difference

between types of side-effects and is more robust than a single

decision tree. It is alsomore lightweight andmore interpretable than

deep learning models like CNN. More importantly, neural networks

usually demand millions of data for training, which is not accessible

for configuration documents. The labels of input data in our task

are hierarchical (i.e., level-1: performance-related/unrelated; level-2:

six different side-effects only for performance-related parameters).

However, the classic RF algorithms do not account for hierarchical

datasets. Inspired by [29], we build a two-level hierarchical random

forest model, as shown in the bottom right part of Fig. 2. RF-1 is used

to identify the performance related parameters from unrelated ones.

All training data are used to train RF-1. Moreover, RF-2 is used to

predict side-effects (among the six side-effects) for the performance-

related parameters, while only the performance-related parameters

in the training set are used to train RF-2. The label of the data to be

predicted is decided by the multiplication of the probabilities given

by the two RFs. For example, if the probabilities given by the two

RFs of a configuration parameter are RF-1 : [0.3, 0.7] and RF-2 :

[0.04, 0.2, 0.1, 0.5, 0.1, 0.06], then the parameter will be labeled as
"performance-related" (since 0.7 > 0.3), as well as the "Higher cost"
label (0.7 · 0.5 = 0.35, which is greater than all the others).
RF requires embedding of the input documents written in natu-

ral language. SafeTune embeds each parameter’s document using

TF-IDF [45], a widely-used method in information retrieval. For its

part, TF-IDF treats each document as bag-of-words, ignoring the

sequence information. In our task, "write data" and "...data. Write..."

can express completely different meanings. Hence, SafeTune con-

siders at most three consecutive words (i.e., unigram, bigram and

trigram) when calculating the TF-IDF embedding. Note that the

embedding may be sparse (e.g., 2,000 dimensions, with 1,990 zeros),

and the RF algorithm only selects several dimensions each time to

train a decision tree [21]. Thus, SafeTune applies principal compo-

nent analysis (PCA) [12] for the TF-IDF embedding. We ensure that

the PCA preserves 99% of the information from the initial TF-IDF

embedding.

5 EVALUATION

We implement SafeTunewith sklearn [22] and randomForest(R) [40].

All experiments are conducted on machines with a 48-core Intel-

Xeon 2.2GHz processor, Tesla V100 GPU, 64GB RAM, and 1TB hard

disk, with Ubuntu 18.04 LTS, and Python 3.6.8. We evaluate the

effectiveness of SafeTune by answering the following questions:

• RQ1: Accuracy of predicting tuning guidance and data

expansion.How accurate is SafeTune in identifying perfor-

mance-related parameters and predicting their side-effects

on non-performance intentions? How accurate is the auto-

matically expanded data?

• RQ2: Comparison between SafeTune and the state-

of-the-art tool. Can SafeTune cover performance-related

parameters that are identified by the existing tool? Can

SafeTune identify performance-related parameters that are

missed by the existing tool?

• RQ3: User study on the effectiveness of SafeTune on

helping performance tuning.Does the existing auto-tuner

produces potential side-effects on other user intentions? Can

SafeTune help the tool to prevent those side-effects? How

severe are these side-effects?

5.1 RQ1: Accuracy of Predicting Tuning
Guidance and Data Expansion

To answer RQ1, we evaluate the accuracy of SafeTune in iden-

tifying performance-related parameters and predicting their side-

effects. To avoid over-fitting, we conduct experiments on software

that are neither studied nor included in the training set. Since Safe-

Tune automatically expands the training set, we also evaluate the

accuracy of the expanded data.

1436

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

Multi-Intention-Aware Configuration Selection for Performance Tuning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: Precision and recall in predicting performance-related parameters and their side-effects

Software

SafeTune SafeTunew/o exp. SafeTuneideal
PR SE PR SE PR SE

preci. recall preci. recall preci. recall preci. recall preci. recall preci. recall

PostgreSQL 0.873 0.764 0.812 0.629 0.713 0.545 0.623 0.481 0.873 0.777 0.847 0.685

Squid 0.872 0.602 0.830 0.623 0.693 0.426 0.589 0.439 0.891 0.632 0.868 0.652

Spark 0.801 0.669 0.792 0.651 0.611 0.532 0.510 0.389 0.855 0.662 0.820 0.648

Overall 0.851 0.677 0.813 0.676 0.498 0.577 0.553 0.439 0.881 0.691 0.847 0.662

PR: effectiveness of predicting performance-related parameters. SE: effectiveness of predicting side-effects. precis.: precision. w/o exp.: only using studied data

to train SafeTune. ideal: replacing labels of expanded data (may contain incorrect ones) in the training dataset with manually checked labels.

5.1.1 Accuracy of Tuning Guidance. We evaluate SafeTune on

PostgreSQL [44], Squid [53] and Apache Spark [57]. These soft-

ware are not included in our study, but are also popular (at least 1k

GitHub stars) and from different domains, written in different pro-

gramming languages. Thus, we believe they can provide sufficient

generality. The three software have 252, 266 and 217 parameters

respectively. We follow the same methodology as in § 2.1 to manu-

ally label the parameters and use them as the test set. We use the

1,292 studied parameters (not including the above three software)

as the initial training set. SafeTune then expands the training

set and obtain 24,528 pieces of training data. Each item in this

dataset is in the form of <parameter name, description (embedded),

labellevel-1, labellevel-2>, where labellevel-1 is one of the two values

{"Performance-related", "Performance-unrelated"}, and labellevel-2 is

one of: {"Lower reliability", "Lower security", "Reduced functionality",

"Lower performance (for other workloads)", "Higher cost", "Limited

side-effects"}. Last, SafeTune is trained with this dataset.

To measure the accuracy of predicting performance-related pa-

rameters (PR for short in Table 4), we use precision and recall.

To assess the accuracy of predicting side-effects (SE for short in

Table 4), we calculate the averaged precision and recall of each

type (i.e., Micro-precision/recall [4] of six side-effects) to measure

SafeTune as a whole. SafeTune applies data expansion to improve

the accuracy. To evaluate the usefulness of this component, we

remove it (using only the initial 1,292 parameters as the training

set) and conduct experiments with identical test data to draw a

comparison. This is denoted as SafeTunew/o exp. in Table 4.

Result and Analysis. First, SafeTune can identify performance-

related parameters with a precision of 85.1% and a recall of 67.7%.

The false negatives occur because many of them contain technical

terms in documents that are difficult for SafeTune to understand.

For example, ssl_ecdh_curve is documented as "sets the curve to use

for ECDH ", but this does not explain that "ECDH" is an agree-

ment protocol that allows two parties to establish a shared secret,

which affects performance. Worse yet, these technical terms rarely

appear in the dataset. The false positives occur mainly because

some expressions mislead SafeTune. For example, the document of

spark.eventLog.overwrite is "whether to overwrite any existing files",

but whether or not "overwrite" is performed does not affect perfor-

mance in this case; however the word "write" misleads SafeTune

into identifying the parameter as related with persisting data to

disk, thereby affecting performance. Moreover, technical terms are

one of the main causes of false positives.

Table 4 demonstrates the results of predicting side-effects on the

non-performance intentions of these performance-related parame-

ters. Overall, SafeTune can reach a precision of 81.3% and a recall

of 67.6%. These false positives occur because many parameters

have very complex logic described in the long document, making it

challenging even for human to identify the type of side-effect. For

example, in PostgreSQL, wal_level controls "the level of information

written to the WAL"; this parameter is falsely identified as lower

reliability, but all levels of WAL can ensure the "necessary infor-

mation needed to recover from a crash or immediate shutdown"

(reliability). Higher levels is only used to support extra functionali-

ties (e.g., logical decoding). It makes challenging for SafeTune to

distinguish such subtle logic. Another reason is that some expert

knowledge cannot be precisely captured by SafeTune. The false

negatives occur mainly because the descriptions may miss context.

For example, cpu_tuple_cost is described as "sets the planner’s esti-

mate of the cost of processing each row during a query"; however,

the context of this description is that the "planner" is a compo-

nent that will choose the quickest query plan, while the "cost" is a

workload-dependent argument of the choosing algorithm. Without

this context, SafeTune will fail to identify it as "Lower performance

(other user)".

The 6th - 9th columns of Table 4 show the results after remov-

ing the data expansion component from SafeTune. Without this

data expansion, SafeTune cannot fully learn features in parame-

ter documents, i.e., the precision drop by 26.0-35.3% and the recall

drop by 10.0-23.7% respectively. Therefore, data expansion is es-

sential for SafeTune. In conclusion, the result indicates that Safe-

Tune can achieve good precision and acceptable recall in pre-selecting

performance-related parameters and predicting side-effects.

5.1.2 Accuracy of Data Expansion. SafeTune uses data expansion

to enlarge training data. Thus, the quality of enlarged data may

affect the effectiveness of the final tuning guidance provided by

SafeTune. Therefore, we also evaluate the correctness of the data

expanded by the expansion method. To achieve this, we need the

ground truth of these data. We therefore manually label all 7,349

parameters and cross-check them in the same way as described in

§ 2.2. This process took 700+ working hours and lasted 10 weeks.

Wemake all these data publicly available in the repository. Note that

this manual work is only needed in this paper to evaluate SafeTune,

but not for users of SafeTune. We use precision to measure the

correctness of the data expanded by the expansion step, along with

expansion rate to measure the rate of the data that can be correctly

1437

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA H. He, Z. Jia, S. Li, Y. Yu, C. Zhou, Q. Liao, J. Wang and X. Liao.

Table 5: Precision and expansion rate of the expanded data

Data Label Precision Expansion rate

Lower reliability 0.847 0.393

Lower security 0.808 0.372

Reduced functionality 0.832 0.585

Lower performance (for other workloads) 0.819 0.552

Consuming more resource 0.910 0.670

Limited side-effect 0.801 0.464

Performance-unrelated 0.931 0.702

Overall 0.854 0.534

expanded to all the unlabeled data (100% expansion rate means all

the unlabeled data can be correctly expanded). Moreover, we use

averaged precision and expansion rate to measure the overall result.

Furthermore, we evaluate the impact of the incorrectly-expanded

data on SafeTune. Thus, we replace the labels of expanded data

in the training set in § 5.1 with manually annotated labels (ground

truth), and keep other experimental settings the same. We denote

the model trained by this data set as SafeTuneideal in Table 4.

As described in § 3, SafeTune only keeps rules for which the

confidence is higher than a given threshold to improve precision.

Therefore, we evaluate the influence of different thresholds (from

0.30 to 0.95) on the precision and expansion rate of the expanded

data. Another interesting question is that of how much studied

(labeled) data we need to conduct the expansion. Obviously, it is

less useful if the expansion approach requires a majority of studied

data and can only expand the remaining minority. Therefore, we

evaluate the influence of proportion on the precision and expansion

rate of the expanded data. Note that, in our evaluation, all data

are manually labeled to provide the ground truth, thus, we can

simulate any proportion 𝑝 of studied data against those that need
to be expanded. For each 𝑝 , we apply the approach in § 3 to expand
the remaining 1 − 𝑝 data. This process is repeated 10 times to

eliminate the occasionality caused by the random sampling. We use

averaged precision and expansion rate to measure the remaining

1 − 𝑝 expanded data.

Result and Analysis. Table 5 shows the precision and expansion

rate of the expanded data of each type of side-effects. SafeTune

performs well in expanding the performance-unrelated parameters

and those that may cause higher cost. For the remaining types,

like Lower reliability and Lower security, the number of parame-

ters in these types are fewer than in the initially studied data set

and thus do not have many distinct features compared with other

types. The result of the impact on SafeTune of those incorrectly-

expanded data is shown in the last four columns in Table 4. The

incorrectly-expanded data cause at most 3.5-5.4% degradation to

precision (comparing the SafeTune with SafeTuneideal series);

without this data expansion approach, however, the precision will

reduce significantly. Moreover, with the expansion, we can reduce

expensive manual effort by about 73.8% (100% means manual-free).

This greatly outweighs the drawback of the incorrectly expanded

data.

The result of choosing a proper threshold for rule confidence and

proportion of studied data is shown in Fig. 3. First, Fig. 3a shows

0.3 0.5 0.7 0.9
0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

P
re
ci
si
o
n

(a) Confidence threshold

0.2 0.4 0.6 0.8
0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

E
x
p
an
si
o
n
ra
te

(b) Proportion(𝑝) of studied data

Figure 3: The influence of two model arguments on the pre-

cision and expansion rate of the expanded data.

the precision and expansion rate changes against different thresh-

old values. As expected, the precision increases as the confidence

threshold of the mined rules increases, while the expansion rate

is the opposite. As described in § 3, SafeTune honors precision

rather than expansion rate. When the threshold increases from 0.85

to 0.9, the precision does not increase while suffering a expansion

rate drop of 12.8%; this means that about 640 parameters cannot

be automatically expanded but the precision improvement is small.

We therefore set the confidence threshold as 0.85 in SafeTune.

Fig. 3b shows the averaged precision and expansion rate of dif-

ferent proportions 𝑝 of studied data. It is shown that, generally,

with increasing data studied, the precision of the mined rules will

drop slightly while the expansion rate will increase. This is because

variety increases alongside increasing studied data, meaning that

more rules can be generated and more unlabeled parameters can be

expanded. This increases expansion rate but also the likelihood of

mistakes. Thus, we use 𝑝 = 0.2 since SafeTune honors precision.

5.2 RQ2: Comparison with State-of-the-art Tool

We compare SafeTune with [38], a state-of-the-art tool for select-

ing important parameters by running performance experiments and

choosing parameters that lead to significant performance changes

via machine learning techniques. This work [38] opens up their

results, which include the Top-n important parameters (32 in total)

in PostgreSQL and Cassandra that they predicted. We therefore

evaluate SafeTune on these two software to compare with this

work [38]. The two software have 252 and 117 configuration param-

eters respectively. We train SafeTune on the same dataset (does

not include PostgreSQL) as in § 5.1 but excluding Cassandra. To

obtain the ground truth of performance-related parameters in the

two software, we manually label the parameters in the same way

as 2.1. Note that this manual work is only for the evaluation, but is

not needed for users of SafeTune.

Note that the existingwork [38] predicts the performance-related

parameters via concrete performance experiments. For its part,

SafeTune is based on configuration documents. To prove that

the performance-related parameters predicted by SafeTune do

have impacts on performance, we run performance tests under

different parameter values; we further measure the performance

impact by the factor of performance change before and after the

parameter value change. We collect the performance tests from

popular benchmarks, including: TPC-C/H [15, 16], tlp-stress [14],

NoSQLBench [8] and ca-stress [6]. Each test is repeatedly run 10

times to obtain stable results. We refer to the performance as the

tail latency, mean throughput and query execution time.

1438

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

Multi-Intention-Aware Configuration Selection for Performance Tuning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 6: Part of performance-related parameters missed by

state-of-the-art tool (full result in public repository).

Parameter Missed Workload Chg. Metric

PG.enable_sort TPC-H.q17 14.6x Exe. Time†

CA.native_transport_max_concurrent ca-stress.w 13.5x Tail Lat.‡

CA.hinted_handoff_throttle_in_kb ca-stress.w 6.7x Tail Lat.

PG.enable_nestloop TPC-H.q2 6.4x Exe. Time

PG.enable_indexscan TPC-H.q13 3.6x Exe. Time

Chg.: Performance change before and after parameter change; PG: Post-

greSQL; CA: Cassandra; †Query Execution Time; ‡Tail Latency.

Result and Analysis. Experimental results show that SafeTune

can identify 117 performance-related parameters that are missed

by the existing work [38]. Among the 117 parameters, 48 show

significant performance impacts (up to 14.6x) in our performance

testing. Table 6 shows the Top-5 parameters that have large per-

formance impacts on the two software. For example, changing

enable_sort from 1 to 0 causes the execution time of TPC-H.q17 to

degrade from 19.1 seconds to 279 seconds (14.6x). However, this pa-

rameter never even appears in the rank-list of the existing work [38].

This occurs because enable_sort only affects queries that both

contain GROUP BY and ORDER BY operations, but the workload used

by this work [38] does not contain that. Another interesting thing

is that the top-ranked parameter fsync given by the this work [38]

only has 1.7x performance impact and achieves rank-12 during our

testing. The reason is similar to the above. Note-worthily, Safe-

Tune gets this result without any heavy performance experiments

(the existing work [38] consumes 3,750 machine hours). The per-

formance testing in our evaluation cost about 700 machine hours,

while SafeTune only consumes two hours for the one-time-effort

training step and less than 10 seconds for the prediction step.

SafeTune can successfully cover 29 out of 32 (90.6%) parame-

ters that are given by the existing work [38]. In total, SafeTune

produces 17 false positives (precision: 87.3%), and misses 45 out of

191 parameters (recall: 76.4%) that are manually confirmed from

the documents to be performance-related. Most of the false pos-

itives are parameters that require a long description to explain

the domain knowledge behind the parameter, rather than what

turning the parameter on or off will affect. The explanations may

also contain phrases that appear frequently in performance-related

parameters, thereby misleading SafeTune. For example, turning

on zero_damaged_pages only reports a warning (performance-

unrelated), but its description explains a lot why this warning hap-

pens. The three cases that the existing work [38] identifies but that

are missed by SafeTune are: 1) commitlog_segment_size_in_mb, which

controls commitlog file segments; this requires strong domain

knowledge to understand, but there are rare similar cases in the

training set. 2) compaction_throughput_mb_per_sec, whose description is

too brief to be understood by SafeTune. 3) default_statistics_target,

whose description contains too many performance-unrelated ex-

planations that distract SafeTune.

Note that both this existing work [38] and our evaluation are

limited by the workload. Some parameters do not trigger substantial

performance change under the selected workload. For example,

max_logical_replication_workers controls maximum workers a logical

replication transaction can use. This parameter affects performance

only when PostgreSQL is in a replication process, but this workload

is not included in any of the selected benchmarks. In the evaluation,

we use richer types of workloads in the evaluation, and thus we

observe more performance-related parameters than this work [38].

In conclusion, SafeTune can identify many performance-related

parameters with large performance impacts that the state-of-art

tool [38] fails to detect, and covering most of those identified by this

tool. Also, SafeTune is more efficient and lightweight.

5.3 RQ3: User Study

SafeTune can help tuning tools (e.g., OtterTune [50], BestCon-

fig [61]) avoid potential side-effects on other user intentions. To

illustrate the effectiveness of SafeTune, we conduct a user study

on one of the auto-tuners and manually validate the result. Among

these publicly available auto-tuners, OtterTune is the most popular,

with 1.1k Github stars. OtterTune supportsMySQL and PostgreSQL;

thus we run OtterTune in these two software and apply SafeTune

(trained in §5.1) to check if SafeTune can warn about potential

side-effects. Furthermore, to prove that those side-effects do have

severe consequences, we manually validate if the corresponding

user intentions are violated. In the case study, we simulate four

users who leverage OtterTune to improve performance (with their

non-performance intention shown in the end):

• User A: military communication service provider who is

obligated to preserve data reliably. – High reliability

• User B: free service provider who uses free cloud instances

with limited resources. – Low cost (resource)

• User C: system administrator who is responsible for moni-

toring unexpected behavior of the database. – Functionality

• User D: social network application provider who faces many

different user requests. – Good performance (most workloads)

Result and Analysis. Overall, SafeTune warns about eight side-

effects (covering four types, excluding "lower security" and "limited

side-effect", OtterTune does not touch any security related param-

eters) on other user intentions caused by OtterTune. We discuss

how the intentions of User A-D are violated in detail, and put the

other four cases in the public repository.

For User A, fsync is turned off by OtterTune during tuning; it is

documented [11] as: "While turning off fsync is often a performance

benefit, this can result in unrecoverable data corruption in the

event of a power failure or system crash." Although the workload

performance improved by ∼70% after tuning by OtterTune, the

database becomes unreliable. As shown in Fig. 4(a), we simulate

an occasional power loss when PostgreSQL is serving requests

normally by issuing kill -9 to the postgres server process and

clear the system cache, which would not survive during a power

loss. After restarting the process, we observe that User A’s data

is corrupted (yellow/red text). This is because, by turning off this

parameter, PostgreSQL will only persist data once the buffer is full.

We also observed that when fsync is turned on, simulated power

loss never causes data corruption. By applying SafeTune, this pa-

rameter is clearly warned about this reliability impact. For User

B, innodb_buffer_pool_size is increased from 128MB to 16.4GB by

OtterTune as shown in Fig. 4(b). This is because, using the large

innodb buffer, more data can be cached, improving the perfor-

mance. But User B uses MySQL in a free cloud virtual machine.

1439

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA H. He, Z. Jia, S. Li, Y. Yu, C. Zhou, Q. Liao, J. Wang and X. Liao.

(a) Lower reliability

(b) Higher cost

(c) Reduced functionality

(d) Lower performance (other user)

Start MySQL with default configuration (innodb_buffer_pool_size=128M)
Bash# top -p [mysqld-pid]

run OtterTune and startup MySQL with the configuration suggested
by OtterTune (innodb_buffer_pool_size=16.4G)

Bash# top -p [mysqld-pid]

More Cost (30 $USD/month for single node, ecs.hfc7.xlarge)

Show the data files MySQL is monitoring (performance_schema=ON):
mysql> SELECT * FROM performance_schema.file_instances LIMIT 3;

-- Run OtterTune and startup MySQL with the configuration suggested
by OtterTune (performance_schema=OFF)

-- Then, user may want to monitor the status of data files via:

mysql> SELECT * FROM performance_schema.file_instances LIMIT 3;

Reduced Functionality

 (performance schema monitoring not work)

-- Startup PostgreSQL with the default configuration (fsync=ON)

Bash# ./tpcc_run.lua & # TPC-C, which is write intensive
Bash# kill -9 [postgresql-pid]
-- Then, restart PostgreSQL, clear cache to force reading from disk.

postgres=# SELECT * FROM test_table LIMIT 10000;

(Disk: Intel P4510 SSD, with disk-failure guard)

-- run OtterTune and startup PostgreSQL with the configuration
suggested by OtterTune (fsync=OFF)

Bash# ./tpcc_run.lua & # TPC-C, which is write intensive
Bash# kill -9 [postgresql -pid]
-- Then, restart PostgreSQL, clear cache to force reading from disk.

postgres=# SELECT * FROM test_table LIMIT 10000;

 (Data corruption)

-- Startup MySQL with the default configuration (innodb_flush_method=fsync)

Bash# ./tpcc_run.lua # User A: TPC-C workload

mysql> source tpch/query-14.sql; # User B: TPC-H workload

-- run OtterTune and startup MySQL with the configuration suggested
by OtterTune (innodb_flush_method=O_DIRECT)

Bash# ./tpcc_run.lua

1.36x faster for TPC-C workload (User A)
mysql> source tpch/query-14.sql;

4.09x performance drop for TPC-H workload (User B)

Figure 4: Side-effects on other intentions caused by Otter-

Tune without the aid of SafeTune.

Using a large amount of memory leads to extra budget of ∼30$ per

month (depending on the cloud provider). Such a consequence is

warned about through the prior use of SafeTune. For User C, Ot-

terTune suggests turning off performance_schema, because by doing

so, the performance improves by ∼25%. This parameter enables

MySQL monitoring on various entities, including events, opened

files, status information, etc. User Cmonitors unexpected behavior

(e.g., too many contentions on data files) using this functionality.

However, after turning it off, as shown in Fig. 4(c), any monitoring

action (i.e., monitoring which files are being opened by how many

entities) does not work, hurting User C’s initial intention. User

D is affected by innodb_flush_method. As shown in Fig. 4(d), after

running OtterTune, this parameter is tuned from fsync to O_DIRECT.

The former value allows each write first touch the kernel’s cache

and followed by a fsync system call. Since MySQL implements

buffering itself especially for write [9], the kernel level caching may

conflict with MySQL’s buffering. The latter value causes MySQL

to bypass the kernel cache. Thus, if User D uses the configuration

suggested by OtterTune, the write workload (green text in Fig. 4(d))

can be improved by ∼36%. However, User D is facing many kinds

of users (i.e., workload). As the red text in Fig. 4(d) shows, the read

performance degrades dramatically under this configuration. The

reason lies in the ability of the kernel cache to keep more hot data

in memory, thereby increasing read speed.

In conclusion, auto-tuners may cause critical side-effects on other

intentions; SafeTune is complementary to them, which helps to pre-

vent bad consequences.

6 RELATEDWORK

Configuration Tuning. Some works aim to improve software

performance by tuning configurations. They can be classified into

model-based [17], measurement-based [25], search-based [20, 41,

42, 52, 54, 61] and learning-based [19, 36, 43] methods. These tools

tune the parameters using certain heuristics and measure software

performance to build a model that can find the fastest configuration.

However, they only consider the performance impacts of configu-

rations, meaning that they may cause side-effects such as reducing

reliability. SafeTune can help to support these tools; this can be

done both by reducing the search space and warning about the

side-effects to prevent severe consequences.

Pre-selecting Performance-related Parameters. Some works

target on per-selecting important parameters to accelerate the con-

figuration tuning process. They use performance experiments to dy-

namically select parameters that have a significant influence on per-

formance using statistical [38] or machine learning [24] techniques.

Similarly, these works focus only on the performance of software

and pay no attention to other users intentions. While SafeTune

covers their targets and is also aware of multi-intentions. It fully

leverages the document of parameters to predict the performance-

related parameters and potential side-effects.

Understanding Relationship between Performance and Con-

figuration. Some works target understanding the relationship be-

tween performance and configuration parameters. A group ofworks

has endeavored to understand the relationship from code via static

or dynamic code analysis [34, 39, 56]. While they cannot capture the

1440

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

Multi-Intention-Aware Configuration Selection for Performance Tuning ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

side-effects of configuration parameters from code, but SafeTune

leverages documents thus taking multiple intentions into consider-

ation. The other group of works mines useful information related to

configuration to help both developers and users improve software

performance. Some works mine configuration documents to detect

performance bugs [32], and others mine performance constraints

of configurations to prevent users from performance misconfigura-

tions [55]. Compared with all these works, SafeTune has a different

focus: it utilizes documents to obtain multi-intentions of configura-

tion parameters to pre-select performance-related parameters and

warn about potential side-effects. Many works focus on the non-

functional properties and feature interactions of software product

lines (SPL) configuration [27, 47–49]. SafeTune focuses on run-

time configurations, which are different from SPL features. The SPL

tools usually rely on expert knowledge from developers as input to

ensure non-functional properties. The run-time configurations are

tuned by users, so it is hard to provide such input.

7 DISCUSSION

Ability of Generalization. The six types of side-effects on non-

performance intentions are concluded from the studied software. To

make SafeTune as generalized as possible, we selected 13 widely-

used open-source software systems from four representative cate-

gories as targets. While our evaluation in §5.1 and §5.2 shows that

SafeTune can achieve good results on un-studied software, we

still cannot claim that our approach is able to be generalized to all

software domains. SafeTune leverages configuration documents to

predict tuning guidance. Thus, the tuning guidance that SafeTune

provides relies on the quality of the configuration documents of

the target software systems. We expect following improvements

in documents: 1) explain the context of parameters’ functionality,

2) tell user what will result in by changing parameter values, 3)

split the description and additional information (e.g., recommen-

dations, constraints) into different paragraphs. Our future work

will extend SafeTune by using more information (i.e., source code)

as additional input and new techniques to further understand the

side-effects on non-performance intentions.

Effectiveness onReducing the Search Space for Tuning. Safe-

Tune may produce many performance-related parameters (e.g.,

occupying 38.9% of all parameters in §5.2) for performance tuning,

directly using them may still make the search space big during tun-

ing. However, the parameters suggested by SafeTune are labeled

with side-effects, thus many of the parameters may not be actually

tuned during tuning (when given some of other user intentions

as input). In fact, there are only a small proportion (8.4% of all

parameters in §5.2) of performance-related parameters that have

limited or no side-effects. Also, we argue that SafeTune identi-

fies performance-related parameters in general and independent of

workload. So users can further choose parameters according to their

workload. Our future works will focus on automatically identifying

workloads affected by a given performance-related parameter.

Triggering Conditions of the Side-effects. Tuning parameters

with side-effects may not necessarily violate user intentions. The

triggering conditionsmay come from productionworkloads, system

environment and the values of other parameters. For instance, if

User A of §5.3 turns off fsync, but he/she has battery-backed

RAM in the event of power failure, the intention of high reliability

would not be violated. SafeTune is not able to extract all triggering

conditions, while existing tools [26, 55, 60] may help extract some

conditions. And we claim SafeTune warns about potential side-

effects on other user intentions.

8 CONCLUSION

To improve performance, many works automatically pre-select and

tune configuration parameters, but only for specific workloads,

and are unaware of other user intentions. We argue that the con-

figuration document contains rich information and can be lever-

aged to pre-select important parameters while retaining other non-

performance intentions. We conclude six types of non-performance

side-effect of the performance-related parameters from an empirical

study on 13 software systems. Based on the findings, we design and

implement SafeTune to predict the tuning guidance. Experiments

show that SafeTune can identify 22-26 performance-related param-

eters that have substantial performance impacts but are missed by

state-of-the-art tools. Moreover, SafeTune can help auto-tuners to

prevent eight potential side-effects that have severe consequences.

ACKNOWLEDGMENTS

This paper is supported by National Key R&D Program of China

(Project No.2018YFB0204301); National Natural Science Foundation

of China (Project No.61872373); Guangdong Major Project of Ba-

sic and Applied Basic Research (Project No.2019B030302002); The

Major Key Project of PCL.

REFERENCES
[1] 2016. MySQL 8.0 Reference Manual : 15.14 InnoDB Startup Options and System

Variables. Retrieved 2021 from https://dev.mysql.com/doc/refman/8.0/en/innodb-
parameters.html#sysvar_innodb_flush_log_at_trx_commit

[2] 2017. ISO/IEC/IEEE International Standard - Systems and software engineering–
Vocabulary. ISO/IEC/IEEE 24765:2017(E) (2017), 1–541.

[3] 2020. Category:Computing - Wikipedia. Retrieved 2021 from https://en.
wikipedia.org/wiki/Category:Computing

[4] 2021. sklearn.metrics.average_precision_score-scikit-learn 0.24.2 documentation.
Retrieved 2021 from https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.average_precision_score.html

[5] Accessed 2021. AWS Cloud Products. https://aws.amazon.com/products
[6] Accessed 2021. The cassandra-stress tool. https://cassandra.apache.org/doc/4.0/

cassandra/tools/cassandra_stress.html
[7] Accessed 2021. Google Cloud products. https://cloud.google.com/products
[8] Accessed 2021. The Open Source, Pluggable, NoSQL Benchmarking Suite (NoSQL-

Bench). https://github.com/nosqlbench/nosqlbench
[9] Accessed 2021. Optimizing InnoDB Disk I/O: store system tablespace files on

Fusion-io devices. https://dev.mysql.com/doc/refman/8.0/en/optimizing-innodb-
diskio.html

[10] Accessed 2021. Oracle Cloud Infrastructure Products by Category. https:
//www.oracle.com/cloud/products.html

[11] Accessed 2021. PostgreSQL documentation. https://www.postgresql.org/docs/
13/index.html

[12] Accessed 2021. Principal component analysis. https://en.wikipedia.org/wiki/
Principal_component_analysis

[13] Accessed 2021. StackOverFlow #27176623. https://stackoverflow.com/questions/
27176623/

[14] Accessed 2021. tlp-stress: A workload centric stress tool and framework. https:
//github.com/thelastpickle/tlp-stress

[15] Accessed 2021. Transaction Processing Performance Council Benchmark C
(TPC-C). http://www.tpc.org/tpcc/

[16] Accessed 2021. Transaction Processing Performance Council Benchmark H
(TPC-H). http://www.tpc.org/tpch/

[17] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
2004. Model-based performance prediction in software development: A survey.
IEEE Transactions on Software Engineering 30, 5 (2004), 295–310.

1441

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA H. He, Z. Jia, S. Li, Y. Yu, C. Zhou, Q. Liao, J. Wang and X. Liao.

[18] Liang Bao, Xin Liu, Fangzheng Wang, and Baoyin Fang. 2019. ACTGAN: au-
tomatic configuration tuning for software systems with generative adversarial
networks. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE 19). 465–476.

[19] Liang Bao, Xin Liu, Ziheng Xu, and Baoyin Fang. 2018. Autoconfig: Automatic
configuration tuning for distributed message systems. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE 18). 29–40.

[20] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. The Journal of Machine Learning Research 13, 1 (2012), 281–305.

[21] L Breiman. 2001. Random Forests. Machine Learning 45 (2001), 5–32.
[22] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. 2013. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning. 108–122.

[23] Andrew Butterfield, Gerard Ekembe Ngondi, and Anne Kerr. 2016. A dictionary
of computer science. Oxford University Press.

[24] Zhen Cao, Geoff Kuenning, and Erez Zadok. 2020. Carver: Finding important
parameters for storage system tuning. In 18th USENIX Conference on File and
Storage Technologies (FAST 20). 43–57.

[25] Bihuan Chen, Yang Liu, and Wei Le. 2016. Generating performance distributions
via probabilistic symbolic execution. In 38th International Conference on Software
Engineering (ICSE 16). 49–60.

[26] Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu.
2020. Understanding and discovering software configuration dependencies in
cloud and datacenter systems. In 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 20). 362–374.

[27] Franz Franchetti, Tze Meng Low, Doru Thom Popovici, Richard M Veras,
Daniele G Spampinato, Jeremy R Johnson, Markus Püschel, James C Hoe, and
José MF Moura. 2018. SPIRAL: Extreme performance portability. IEEE 106, 11
(2018), 1935–1968.

[28] Chuancong Gao, Jianyong Wang, Yukai He, and Lizhu Zhou. 2008. Efficient
mining of frequent sequence generators. In 17th international conference on World
Wide Web (WWW 08). ACM, 1051–1052.

[29] Yoni Gavish, Jerome O’Connell, Charles J Marsh, Cristina Tarantino, Palma
Blonda, Valeria Tomaselli, and William E Kunin. 2018. Comparing the perfor-
mance of flat and hierarchical Habitat/Land-Cover classification models in a
NATURA 2000 site. ISPRS Journal of Photogrammetry and Remote Sensing 136
(2018), 1–12.

[30] Hui Han,Wen-YuanWang, and Bing-HuanMao. 2005. Borderline-SMOTE: ANew
over-Sampling Method in Imbalanced Data Sets Learning. In 2005 International
Conference on Advances in Intelligent Computing (ICIC 05). 878–887.

[31] Xue Han, Tingting Yu, and David Lo. 2018. PerfLearner: Learning from Bug
Reports to Understand and Generate Performance Test Frames. In 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE 18). 17–28.

[32] Haochen He, Zhouyang Jia, Shanshan Li, Erci Xu, Tingting Yu, Yue Yu, Ji Wang,
and Xiangke Liao. 2020. CP-Detector: Using Configuration-related Performance
Properties to Expose Performance Bugs. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE 20). 623–634.

[33] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.
2020. spaCy: Industrial-strength Natural Language Processing in Python. https:
//doi.org/10.5281/zenodo.1212303

[34] Yigong Hu, Gongqi Huang, and Peng Huang. 2020. Automated Reasoning and
Detection of Specious Configuration in Large Systems with Symbolic Execution.
In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). 719–734.

[35] ISO/IEC 25010. 2011. ISO/IEC 25010:2011, Systems and software engineering —
Systems and software Quality Requirements and Evaluation (SQuaRE) — System
and software quality models.

[36] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling of
configurable systems: An exploratory analysis. In 32nd International Conference
on Automated Software Engineering (ASE 17). 497–508.

[37] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and Detecting Real-World Performance Bugs. In 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
12). 77–88.

[38] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman.
2020. TooMany Knobs to Tune? Towards Faster Database Tuning by Pre-selecting
Important Knobs. In 12th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 20).

[39] Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu. 2020. Statically inferring per-
formance properties of software configurations. In Fifteenth European Conference
on Computer Systems (EuroSys 20). 1–16.

[40] Andy Liaw and Matthew Wiener. 2002. Classification and Regression by ran-
domForest. R News 2, 3 (2002), 18–22.

[41] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using bad
learners to find good configurations. In 2017 11th Joint Meeting on Foundations of
Software Engineering and Symposium on the Foundations of Software Engineering
(ESEC/FSE 17). 257–267.

[42] Rafael Olaechea, Derek Rayside, Jianmei Guo, and Krzysztof Czarnecki. 2014.
Comparison of exact and approximate multi-objective optimization for software
product lines. In 18th International Software Product Line Conference (SPLC 14).
92–101.

[43] Cheng Peng, Canqing Zhang, Cheng Peng, and Junfeng Man. 2017. A rein-
forcement learning approach to map reduce auto-configuration under networked
environment. International Journal of Security and Networks 12, 3 (2017), 135–140.

[44] PostgreSQL Global Development Group. 2008. PostgreSQL. http://www.
postgresql.org.

[45] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management 24, 5 (1988),
513–523.

[46] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. In 26th symposium on mass storage systems
and technologies (MSST 10). 1–10.

[47] Norbert Siegmund, Marko Rosenmüller, Christian Kästner, Paolo G Giarrusso,
Sven Apel, and Sergiy S Kolesnikov. 2013. Scalable prediction of non-functional
properties in software product lines: Footprint and memory consumption. Infor-
mation and Software Technology 55, 3 (2013), 491–507.

[48] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner,
Sven Apel, and Gunter Saake. 2012. SPL Conqueror: Toward optimization of
non-functional properties in software product lines. Software Quality Journal 20,
3 (2012), 487–517.

[49] Larissa Rocha Soares, Pasqualina Potena, Ivan Do Carmo Machado, Ivica
Crnkovic, and Eduardo Santana de Almeida. 2014. Analysis of non-functional
properties in software product lines: a systematic review. In 40th EUROMICRO
Conference on Software Engineering and Advanced Applications. 328–335.

[50] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In 2017 ACM International Conference on Management of Data (SIGMOD
17). 1009–1024. https://github.com/cmu-db/ottertune

[51] ShuWang, Chi Li, HenryHoffmann, Shan Lu,William Sentosa, andAchmad Imam
Kistijantoro. 2018. Understanding and Auto-Adjusting Performance-Sensitive
Configurations. In 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 18). 154–168.

[52] TiantianWang, Mark Harman, Yue Jia, and Jens Krinke. 2013. Searching for better
configurations: a rigorous approach to clone evaluation. In 2013 9th Joint Meeting
on Foundations of Software Engineering and Symposium on the Foundations of
Software Engineering (ESEC/FSE 13). 455–465.

[53] Duane Wessels, Henrik Nordström, Amos Jeffries, Alex Rousskov, Francesco
Chemolli, Robert Collins, and Guido Serassio. 1996. Squid: Optimising Web
Delivery. http://www.squid-cache.org/.

[54] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. 2015. Deep
parameter optimisation. In 2015 Annual Conference on Genetic and Evolutionary
Computation (GECCO 15). 1375–1382.

[55] Chengcheng Xiang, Haochen Huang, Andrew Yoo, Yuanyuan Zhou, and Shankar
Pasupathy. 2020. PracExtractor: Extracting Configuration Good Practices from
Manuals to Detect Server Misconfigurations. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 265–280.

[56] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early detection of configuration errors to reduce
failure damage. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 619–634.

[57] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (2016),
56–65.

[58] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yang-
tao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic cloud
database tuning system using deep reinforcement learning. In 2019 International
Conference on Management of Data (ICMD 19). 415–432.

[59] Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei Dong,
and Tianyin Xu. 2021. An Evolutionary Study of Configuration Design and
Implementation in Cloud Systems. In 43rd International Conference on Software
Engineering (ICSE 21). 175–176.

[60] Shulin Zhou, Xiaodong Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Teng
Wang, Wang Li, and Xiangke Liao. 2021. ConfInLog: Leveraging Software Logs
to Infer Configuration Constraints. In 29th International Conference on Program
Comprehension (ICPC 21). 94–105.

[61] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. Bestconfig: tapping the perfor-
mance potential of systems via automatic configuration tuning. In 2017 Sympo-
sium on Cloud Computing (SoCC 17). 338–350.

1442

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:58:51 UTC from IEEE Xplore. Restrictions apply.

