
MissConf: LLM-Enhanced Reproduction of
Configuration-Triggered Bugs

Ying Fu∗
NUDT, China

fuying@nudt.edu.cn

Teng Wang∗
NUDT, China

wangteng13@nudt.edu.cn

Shanshan Li†
NUDT, China

shanshanli@nudt.edu.cn

Jinyan Ding
NUDT, China

dingjinyan20@nudt.edu.cn

Shulin Zhou
NUDT, China

zhoushulin@nudt.edu.cn

Zhouyang Jia
NUDT, China

jiazhouyang@nudt.edu.cn

Wang Li
NUDT, China

liwang2015@nudt.edu.cn

Yu Jiang†
Tsinghua University, China
jiangyu198964@126.com

Xiangke Liao
NUDT, China

xkliao@nudt.edu.cn

ABSTRACT

Bug reproduction stands as a pivotal phase in software develop-
ment, but the absence of configuration information emerges as the
main obstacle to effective bug reproduction. Since configuration
options generally control critical branches of the software, many
bugs can only be triggered under specific configuration settings.
We refer to these bugs as configuration-triggered bugs or CTBugs
for short. The reproduction of CTBugs consumes considerable time
and manual efforts due to the challenges in deducing the missing
configuration options within the vast search space of configura-
tions. This complexity contributes to a form of technical debt in
software development.

To address these challenges, we first conducted an empirical
study on 120 CTBugs from 4 widely used systems to understand
the root causes and factors influencing the reproduction of CTBugs.
Based on our study, we designed and implemented MissConf, the
first LLM-enhanced automated tool for CTBug reproduction. Miss-
Conf first leverages the LLM to infer whether crucial configuration
options are missing in the bug report. Once a suspect CTBug is
found,MissConf employs configuration taint analysis and dynamic
monitoring methods to filter suspicious configuration options set.
Furthermore, it adopts a heuristic strategy for identifying crucial
configuration options and their corresponding values. We evaluated
MissConf on 5 real-world software systems. The experimental re-
sults demonstrate thatMissConf successfully infers the 84% (41/49)
of the CTBugs and reproduces the 65% (32/49) CTBugs. In the re-
production phase, MissConf eliminates up to 76% of irrelevant
configurations, offering significant time savings for developers.

∗Both authors contributed equally to this research.
†Shanshan Li and Yu Jiang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04. . . $15.00
https://doi.org/10.1145/3639478.3647635

KEYWORDS

Bug reproduction, Software configuration, Software maintenance

ACM Reference Format:

Ying Fu∗, Teng Wang∗, Shanshan Li†, Jinyan Ding, Shulin Zhou, Zhouyang
Jia, Wang Li, Yu Jiang†, and Xiangke Liao. 2024. MissConf: LLM-Enhanced
Reproduction of Configuration-Triggered Bugs. In 2024 IEEE/ACM 46th
International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3639478.3647635

1 INTRODUCTION

Bug reproduction is a crucial phase in software development, play-
ing a pivotal role in identifying and resolving issues while ensuring
the overall robustness of the software system. Once developers
receive a bug report, the initial step in debugging is to reproduce
the bug by executing the provided steps in the bug report. How-
ever, previous works found that bug reports from popular security
forums have an extremely low success rate of reproduction(4.5%-
43.8%). The main reason is the lack of information, where more
than 87% reports did not include detailed information on software
configurations and environments [32].

Modern software systems are highly configurable [41], providing
users with a large number of configuration options. By setting the
values of configuration options, software systems can be customized
to achieve specific functionality or performance goals without mod-
ifying their source code [21, 33]. For example, MariaDB has more
than one thousand configuration options [12], which are distributed
across various modules such as storage engines, optimizers, logging
systems, among others. These configuration options often mani-
fest within conditional branch statements, dictating the specific
program path to be executed.

Numerous bug reports [4–6, 8, 34] show that configuration op-
tions with non-default but legal values are crucial factors in bug
reproduction. In other words, these bugs can only be triggered
within specific program paths that are controlled by particular con-
figuration options’ settings. In this paper, we refer to these bugs
as Configuration Triggered Bugs, or CTBugs for short. And we re-
fer to those configuration options with particular values as crucial
configuration options of CTBug. Generally, the bug reporters try to

484

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

https://doi.org/10.1145/3639478.3647635
https://doi.org/10.1145/3639478.3647635
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3647635&domain=pdf&date_stamp=2024-05-23

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Ying Fu∗ , Teng Wang∗ , Shanshan Li† , Jinyan Ding, Shulin Zhou, Zhouyang Jia, Wang Li, Yu Jiang† , and Xiangke Liao

bug-1.png

MariaDB Bug#19632 Replication aborts upon CREATE ... SELECT in ORACLE mode

Reporter’s Steps :
SET binlog_format = 'row’;
SET sql_log_bin = 1;
CREATE TABLE t1 (a DATE);
SET sql_mode = 'oracle';
CREATE TABLE t2 SELECT * FROM t1;
DESC t2;
Reporter’s Output :
| Field | Type |
| a | date |

Developer’s Reproduction:
Default binlog_format = 'statement’;
SET sql_log_bin = 1;
CREATE TABLE t1 (a DATE);
SET sql_mode = 'oracle';
CREATE TABLE t2 SELECT * FROM t1;
DESC t2;
Developer’s Output :
| Field | Type |
| a | datetime |

Bug occurred! Wrong Result.
Server aborts during replication.

Bug not occurred in this config.
Reproduction Failed!

[Critical] The bug caused incorrect binary log and server to abort during replication.
The fix was stalled over a year until the missing configuration was provided by reporter.

Missing in
Bug Report

Figure 1: A real-world example of CTBug reproduction issue.

The bug fix process was stalled for more than a year due to the
lack of crucial configuration information [6].

list the configuration options that they consider important for bug
reproduction in bug reports, which we refer to as reported configu-
ration options. However, the reported option set lacks some crucial
ones with non-default values, making the reproduction of CTBugs
particularly challenging.

Figure 1 illustrates a CTBug in MariaDB [6], the reproduction
and fix of which was stalled for over a year due to the absence
of crucial configuration information. The bug was labeled as crit-
ical, which caused the server to record the incorrect binary log
and abort during replication. As shown in Figure 1, the bug is trig-
gered only when the option binlog_format is set to ‘row’, whose
default value is statement. In the row binlog format, the server
adopts different logging strategies for data manipulation language
(DML) [48] statements and data definition language (DDL) [47]
statements, thereby triggering this bug. There are many CTBugs
that remain unreproducible due to the inability to pinpoint the
missing configuration options. Developers often cannot identify
which crucial configuration options are missing based on the con-
tent of bug reports, resulting in these issues being postponed or
not given sufficient attention. This leads to the persistent existence
of hard-to-reproduce bugs, constantly putting the systems at risk
of potential attacks [49].

Reproducing CTBugs faces substantial challenges. Firstly, dis-
cerning whether the inability to reproduce the CTBug is a result of
missing configuration options poses a challenge. Nonetheless, this
is crucial to avoid investing excessive time in configuring combi-
nations that do not yield meaningful results. Secondly, identifying
the specific configuration option that triggers the bug requires
considerable effort and expertise from developers. This is particu-
larly challenging given the huge number of software configurations
available. Thirdly, selecting the appropriate option values is also a
key factor in triggering CTBugs. Due to the wide range of possible
values for configuration options, making the efficient sampling
of suitable values a challenging task. These challenges result in
a significant time and resource requirement in reproducing CT-
Bugs, consequently contributing to a form of "technical debt" [29]
in software development.

There has been much research on bug reproducing. Some works
utilize in-house methods to collect a variety of failure information
for replicating the environment and inputs necessary to reproduce
bugs, including function call sequences [25, 26], crash stack [31,
35, 46], user interface events [23, 24], and runtime logs [51]. How-
ever, it is hard for those works to reproduce CTBugs, especially
when the only accessible information stems directly from the re-
ports themselves. Many other works [16, 22, 27, 44, 52–54] focus
on converting the steps described in the bug report into test cases.
For example, ReCDroid+ [54] uses natural language processing
(NLP) and deep learning to synthesize event sequences. LIBRO [27]
uses Large Language Models (LLMs) to automate test generation
from general bug reports. However, these works assume that bug
reports contain complete environment and configuration infor-
mation. Consequently, they cannot address the issue of missing
crucial configuration options, which usually hinders the successful
reproduction of CTBugs.

To address these challenges, we first conducted an in-depth em-
pirical study of 120 CTBugs across 4 widely-used software systems.
We found that execution path resulting from the reproduction

steps intersects with the branch statements influenced by the

missing crucial configuration options. Therefore, the potential
missing options could be found in the suspicious option set, which
is encountered at branch statements during the execution. More-
over, the configuration options specified by users in bug reports
can assist in identifying the missing crucial configurations. If some
reported configuration options are not present in the program’s
execution path, a crucial option is probably missing.

Based on the study, we proposeMissConf, an LLM-enhanced
automated CTBug reproducing tool.MissConf takes the hard-to-
reproduce bug and its report as inputs, and outputs whether the bug
report lacks crucial configuration options and the values of the op-
tions.MissConf takes two main steps in this process. 1)MissConf
first infers whether crucial configuration options are missing in
the bug report.MissConf utilizes Large Language Models (LLMs)
to comprehend the semantics of bug reports and execution details
of reported configuration options to infer potential configuration
omissions. 2) If found, MissConf employs taint analysis and dy-
namic monitoring methods to filter suspicious option sets. Then,
it adopts a heuristic strategy to identify the crucial configuration
options and corresponding values.

We evaluate the effectiveness of MissConf in inferring missing
configuration options in CTBug reports, and reproducing CTBugs.
We reproduced 49 known CTBugs which are not included in the
study from 5 popular open-source projects. MissConf can elimi-
nates up to 76% of irrelevant configurations. On average,MissConf
correctly infers the 84% (41/49) of the CTBugs and reproduces the
65% (32/49) CTBugs.

To summarize, this paper makes three major contributions.

• We conducted the comprehensive empirical study of 120
CTBugs across 4 open-source systems, and summarized the
key factors influencing CTBug reproduction.
• We designed and implemented MissConf, the first LLM-
enhanced automated tool for CTBugs reproduction, offering
improvement solutions for this technical debt issue. Miss-
Conf utilizes LLMs to identify CTBugs, and employs taint

485

MissConf: LLM-Enhanced Reproduction of Configuration-Triggered Bugs ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Software systems and CTBugs used in the empir-

ical study. The fifth column shows the number of hard-to-
reproduce CTBugs in each system, which makes developers
encounter difficulties in reproducing these bugs due to the
lack of crucial configuration options.

Project Description # Options # CTBugs

Hard-to-Rep.

CTBugs

MySQL SQL DBMS 1814 68 15

MariaDB SQL DBMS 1253 17 5

Redis NoSQL DBMS 195 17 9

Squid Proxy Cache 336 18 8

analysis and dynamic monitoring to detect the missing cru-
cial configuration options. The source code of MissConf
can be found at:

https://github.com/MISSCONF-2024/MissConf
• We evaluated MissConf on 5 widely-used projects. Miss-
Conf can correctly infer the 84% (41/49) of the CTBugs and
reproduce the 65% (32/49) CTBugs. In the reproduction phase,
MissConf eliminates up to 76% of irrelevant configurations,
offering significant time savings for developers.

The remainder of the paper is organized as follows. We first
conduct an in-depth empirical study of CTBugs in Section 2. Based
on this, we describe the design of MissConf in Section 3. Experi-
mental settings and evaluation results are in Section 4. Discussions
and threats to validity are presented in Section 5 and Section 6.
Section 7 gives an overview of the relevant literature, and Section
8 concludes.

2 UNDERSTANDING CTBUGS

In this section, we will first describe the methodology of our empir-
ical study on CTBugs, then introduce our findings including how
configuration influences CTBug execution, and the factors affecting
CTBug reproduction.

2.1 Study Methodology

The study methodology includes the criteria to choose studied
subjects, and the methods to collect and analyze the bugs.

Studied Subjects. Table 1 shows the 4 software systems used
in our empirical study. We selected these software systems based
on the following criteria: a) These software projects span a diverse
array of domains, including database management, web server, etc.
b) They are highly configurable and well-tested (e.g., MariaDB has
more than 1,200 configuration options). c) They are open-source
and well-maintained by the community, which allows us to delve
into the characteristics and triggering conditions of the bug, based
on the developers’ discussions.

CTBug Collection.We collected CTBugs from three sources:
bug tracking systems (e.g., GitHub Issue Tracker [11], JIRA[3],
Bugzilla[9]), mailing lists, and fix commits. First, We conducted
searches on these sources using heuristic keywords (e.g., assertion

1 if (sql_log_bin == 1){
2 ...
3 }
4 int do_postlock() {
5 if (binlog_format == BINLOG_FORMAT_ROW){
6 ptr->binlog_show_create_table(tables, count);
7 }else{//BINLOG_FORMAT_STATEMENT
8 ... }
9 }
10 int show_create_table(...){
11 field->type_handler = type_handler_for_date();
12 }
13 Type_handler *THD::type_handler_for_date(){
14- if (variables.sql_mode & MODE_ORACLE)
15- return &type_handler_newdate;
16 if (opt_mysql56_temporal_format)
17 return &type_handler_datetime2;
18 return &type_handler_datetime;
19 }

Figure 2: A motivating example of how configurations influ-

ence CTBug execution. The bug has three crucial configura-
tion options: sql_log_bin, binlog_format and sql_mode.

fail, segment fault, crash) to collect bugs. Subsequently, we applied
additional keywords related to configuration options (e.g., config-
uration, option, set) to filter out potential CTBugs. This process
identified 572 candidates.

Validation and Analysis. After collecting the dataset, we iden-
tified the potential CTBug by analyzing whether the test cases in
the bug reports contained configuration option set statements or
configuration file information. We then tried to reproduce each
potential CTBug to confirm these issues were indeed triggered by
special configurations. It would be identified as a CTBug if it can
be reproduced following the steps in the bug report, but became
non-reproducible when certain mentioned configuration options
are removed. Each case was inspected by two evaluators with 7
years of software development experience. In cases of divergence, a
third senior evaluator was consulted to facilitate additional discus-
sions until a consensus was reached. This validation and analysis
process spanned two months. In the end, we accumulated a total
of 120 CTBugs from the 4 projects. Among these bugs, 30% are
hard-to-reproduce due to the lack of crucial configuration options
in the bug report description. We conducted further analysis on
each CTBug to explore the root causes and factors influencing the
reproduction of CTBugs.

2.2 How Configurations Influence CTBug

Execution

To understand how the crucial configuration options affect CTBugs,
we analyzed the bug patch and manually tracked the execution of
each bug, which enabled us to figure out the influence of configu-
rations at the source code level.

Figure 2 shows the root cause of an example CTbug, MariaDB
Bug#19632 [6, 7]. The occurrence of this bug is governed by three
crucial configuration options. Specifically, the bug manifests when
sql_log_bin is set to ‘1’ (line 1), binlog_format is set to ‘row’ (line 5)

486

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Ying Fu∗ , Teng Wang∗ , Shanshan Li† , Jinyan Ding, Shulin Zhou, Zhouyang Jia, Wang Li, Yu Jiang† , and Xiangke Liao

and sql_mode is set to with ‘oracle’ (line 14). Through the propaga-
tion of data and control flow, these crucial configuration options
influence the conditional variables present in branch instructions,
which finally dictate whether the faulty code (line 15) could be
triggered. Given that the code where the bug manifests might be
considerably distant from its crucial configuration options, it is
challenging for developers to pinpoint the missing configuration
options through static analysis.

However, the process of executing reproduction steps and track-
ing the execution trace provided significant insights. We observed
that, the program execution path resulting from the reproduc-

tion steps intersects with the branch statements influenced

by themissing crucial configuration options. This inspires us to
record the set of configurations encountered at branch statements
during the execution of reproduction steps, thereby identifying the
crucial configuration options of the CTBugs.

Moreover, the bug reporters often specify critical configuration
options for bug reproduction in the report, even though these con-
figurations may be incomplete. We refer to these options as reported
configuration options. We discovered that if a particular critical op-
tion is missing, the program execution path might deviate from the
path where the bug manifests. And some other critical options spec-
ified by reporters may not appear on this altered path. For instance,
in Figure 2, if binlog_format is omitted in the report, the program
execution would not pass through the branch statement controlled
by sql_mode (line 14). This observation also informs our approach
to detect configuration omission in reports: After following the

reproduction steps, if the reported configuration options are

not found in the program’s execution path, it is likely that a

crucial configuration option is missing.

Finding 1: Configurations propagate through data and
control flows, influencing the control flow of the software
system, and consequently impacting the execution path of
CTBug.

2.3 Factors Affecting CTBug Reproduction

In order to guide and facilitate CTBug reproduction, we conduct a
comprehensive study of factors affecting the triggering conditions
of CTBug in this section. In specific, we study the following three
sub-questions:

• What are the common types of crucial configuration options
in CTBugs?
• How many missing crucial configuration options are there
in hard-to-reproduce CTBug reports?
• What is the timing of setting crucial configuration options
for CTBugs?

Configuration Types. We undertook a detailed analysis of the
software’s configuration documentation to better understand the
configuration classifications of CTBugs. These configurations are
mainly categorized into three fundamental types: Numeric, Enu-
meration, and String [30]. Software manuals usually offer extensive
details on numeric configurations, delineating their valid ranges,
and listing all potential valid values for enumeration configurations.

Table 2: Proportion of each type of configuration option.

Software Enumeration Numeric String Sum

MySQL 54 (80%) 11(16%) 3(4%) 68
MariaDB 10 (60%) 7 (40%) 0 (0%) 17
Redis 7 (41%) 7(41%) 3 (18%) 17
Squid 10 (56%) 6(33%) 2 (11%) 18

Total 81 (68%) 31 (26%) 8 (6%) 120

The breakdown of each configuration type is presented in Table 2.
We observed that the numeric and enumeration configurations
make up the majority of CTBugs, while the string type configura-
tions account for only a minor portion, representing merely 6.7%.
This inspires us to prioritize enumeration and numerical options,
when detecting missing crucial configuration options.

Finding 2: Most of the configuration types involved in
CTBug are enumeration and numerical types, only a few
bugs (6.7%) are triggered by string configurations.

Number of Missing crucial configuration options. The num-
ber significantly impacts the reproduction of CTBugs: the more
missing crucial configuration options, the larger the search space.
Therefore, we initially studied the number of missing crucial con-
figuration options in all hard-to-reproduce CTBugs. Our survey
results revealed that 91.9% (34/37) of hard-to-reproduce CTBug
reports had only one missing crucial configuration. This suggests
that when searching for the missing crucial configuration options,
we can prioritize cases with just one, thus accelerating the process.

Finding 3:Most (91.9%) of hard-to-reproduce CTBugs have
only one missing crucial configuration option.

Timing of Configuration Setting. Configurations typically
take effect either during system startup or through on-the-fly up-
date while the system is running [43]. Therefore, the timing of
configuration setting would also affect the reproduction of CTBug.
We studied all the hard-to-reproduce CTBugs, and discovered that
in 95% of these CTBug reports, the missing crucial configuration op-
tions are set before the initiation of test case executions. Essentially,
in the majority of cases, the reporters do not miss documenting
on-the-fly configuration updates while the system is running. In
this regard, when reproducing CTBugs, focusing on setting the
missing crucial configuration options before the reproduction steps
can effectively reduce the search space.

Finding 4: In the case of most (95%) hard-to-reproduce
CTBugs, the missing crucial configuration options are set
before the execution of test cases.

487

MissConf: LLM-Enhanced Reproduction of Configuration-Triggered Bugs ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

Config Values
Sampling

LLM-based
Inference

CTBug
Reproduced!

Bug Report

Targeted
Instrument

Filter
Suspicious

Options

Config
Ranking

Configuation Omission Inference CTBugs Reproduction

Taint
Analysis

Potential
CTBug

Config File

Source Code

Figure 3: Overview of MissConf. MissConf mainly contains two parts: Configuration Omission Inference and CTBug Reproduc-
tion. Given a hard-to-produce bug report,MissConf first employs LLMs to infer potential configuration omissions based on

program execution information. Upon obtaining inference results,MissConf conducts bug reproduction.

3 REPRODUCING THE CTBUGS

In this section, we describe the design of MissConf, the first auto-
mated tool to infer missing configuration options and reproduce
CTBugs. We first introduce the overview of MissConf. After that,
we introduce two main components of MissConf, i.e., missing
configuration detection and CTBug reproduction.

3.1 Overview of MissConf

Figure 3 shows the overview of MissConf, which requires three
inputs: source code of the target software, the configuration file,
and the bug report. MissConf consists of two main parts: firstly,
identifying whether crucial configuration options are missing in
the bug report, and secondly, pinpointing the missing configuration
options to reproduce the bug.

Configuration omission inference. When MissConf encoun-
ters a bug report that cannot be immediately reproduced, it begins
with a preliminary assessment to determine if crucial configuration
options are missing in the report. Based on the insights presented in
Section 2.2, a bug report will be considered to have missing crucial
configuration options if some reported configuration options spec-
ified by users are not evident in the program’s execution path after
following the reproduction steps.

To achieve this,MissConf employs taint analysis and targeted
instrumentation techniques to identify which reported configu-
ration options appear in the program’s execution path. However,
inferring missing options remains challenging, as users might spec-
ify irrelevant options in the bug report. To address this challenge,
MissConf utilizes Large Language Models (LLMs) to comprehend
the semantics of the report description and the reproduction steps.
It then reasons about the relationship between the reported configu-
ration options and the bug report, and infers potential configuration
omissions.

CTBugs reproduction. Drawing on the insights from Sec-
tion 2.2, MissConf utilizes the results of instrumented software
execution to identify potential crucial configuration options, whose
affected branch statements intersect with the program execution
path. Then, it searches possible values for these configuration op-
tions and executes the reproduction steps to ascertain if the bug is
reproduced. A major challenge in this task is the huge search space.

To address this challenge, MissConf leverages the findings in Sec-
tion 2.3 and introduce heuristic strategies to guide configuration
prioritization and value sampling.

3.2 Configurations Omission Inference

Software systems have a large number of configuration options
with a wide range of possible values. Blindly attributing the inability
to reproduce a bug to missing configuration options can consume
vast amounts of time and resources, considering the expansive con-
figuration space. Therefore, it is essential to conduct a preliminary
inference on bug reports to identify whether non-reproducibility
stems from missing crucial configuration options.MissConf first
leverages taint analysis and targeted instrumentation methods to
pinpoint reported configuration options present in the program’s
execution path. Then,MissConf utilizes Large Language Models
to infer potential configuration omissions.

3.2.1 Taint Analysis and Instrumentation.
Configuration Analysis. Taint analysis tracks some selected

data of interest as entry points and propagates them along program
execution paths according to a customized policy. Recent work [42]
has investigated the propagation policy of configuration options
and implementing ConfTainter as a taint analysis infrastructure for
configurations. Therefore, we implement a taint analysis prototype
on top of ConfTainter [42] to track the propagation of configura-
tions. In this phase, the entry points are the original variables of the
reported configuration options. The outcome of the sub-component
is a collection of tainted LLVM instructions in Intermediate Repre-
sentation (IR), featuring tainted variables as instruction operands.

Targeted Instrumentation.MissConf performs instrumenta-
tion at the IR level and employs a byte map on shared memory to
log whether tainted instructions are executed. Specifically, Miss-
Conf iterates through the tainted instructions set for each reported
option, inserting several IR instructions before each tainted instruc-
tion to manipulate the byte map. Subsequently, we initialize the
reported option to the values specified in the bug report and execute
the CTBug’s reproduction steps within the instrumented program.
We then record the tainted instructions traversed for each reported
option during this execution.

488

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Ying Fu∗ , Teng Wang∗ , Shanshan Li† , Jinyan Ding, Shulin Zhou, Zhouyang Jia, Wang Li, Yu Jiang† , and Xiangke Liao

Here are some definitions. CTBug: Configuration Triggered Bugs; Recorded Options: Configurations in bug report; Crucial Configuration: Key configurations affecting the
bug execution path.
Assume you are a bug report classifier used to determine whether a hard-to-reproduce bug is due to the absence of crucial configurations. Bugs that are hard to reproduce
due to lack of crucial configuration are classified as Positive, due to other reasons are classified as Negative. The text information from the bug report will be provided as
INPUT, while the program analysis results of the recorded options will serve as SEMANTIC INFO(executed instructions/total tainted instructions).
The following are some bug cases, including input, labels and analysis steps for classification.

INPUT: MDEV-19632 bug report(#description #reproduction case #key comment #recorded options' manual, content is omitted for brevity)
SEMANTIC INFO: <SQL_MODE, 20/252>, < SQL_LOG_BIN, 10/184 >;
CLASSIFICATION: Positive
1. Based on the reproduction case, SQL_MODE and SQL_LOG_BIN both appear in the test cases and are critical recorded options.
2. According to the program analysis results, it is found that the execution rate of configuration-related statements of SQL_MODE and SQL_LOG_BIN is relatively low,
which may be related to the lack of important configurations.

INPUT: MDEV-7791 bug report(#description #reproduction case #key comment #recorded options' manual, content is omitted for brevity)
SEMANTIC INFO: <optimizer_switch, 59/125 >, <materialization, 48/94 >;
CLASSIFICATION: Negative
1. Based on semantic information and configuration documents, optimizer_switch has a high correlation with test cases and is the critical recorded option.
2. The execution coverage of optimizer_switch is relatively high. This bug should not be a CTBug that is difficult to reproduce due to missing crucial configuration.

Let‘s think step by step. Classify the following input bug case. Firstly, list recorded options that you believe are critical for reproducing the bug; Secondly, use the
SEMANTIC INFO of critical recorded options, infer if there is a missing crucial configuration for bug reproduction.
You need to categorize the overall classification of input as Positive or Negative. (Positive means this input bug report is missing crucial configuration.)

INPUT: MDEV-17211 bug report(#description #reproduction case #configuration manual content is omitted for brevity)
SEMANTIC INFO: <optimizer_switch, 10/198 >, < join_cache_level, 8/164 >, < key_buffer_size, 69/139 >
1. Based on the reproduction case, optimizer_switch and join_cache_level both appear in the test cases and are critical recorded options, while key_buffer_size is not.
2. According to the program analysis results, it is found that the execution rate of configuration-related statements of optimizer_switch and join_cache_level is relatively low,
which may be related to the lack of important configurations.
OVERALL CLASSIFICATION: Positive

Description

CTBug
Cases

Command

Result

Figure 4: Example prompt of inferring missing configurations.MissConf first uses the bug description, reproduction steps, and

configuration manual to deduce whether the reported configuration options are crucial for bug reproduction. Subsequently,

MissConf uses the information of reported configuration options in program execution to infer if there is a missing crucial

option. The LLM will give an overall classification conclusion. The above case utilizes two-shot learning for LLM, but in reality,

MissConf employs four-shot learning.

3.2.2 LLM-Based bug inferencer. Large language models (LLMs)
are models that are trained using self-teaching algorithms on large
unlabeled corpora. LLMs deliver substantial enhancements in their
performance across natural language processing (NLP) tasks. Miss-
Conf uses the text processing and inferential learning capabilities
of LLM to discern the relationship between the reported configura-
tion options and the bug report. Then, MissConf can utilize LLM
to further infer whether crucial configuration options are missing
in the bug report, using the runtime information of the reported
configuration options.

Prompt Engineering [39, 45] is the process of devising themost
effective queries for specific tasks in LLMs. Previous research [15,
28, 55] indicates that embedding question-answer examples within
a prompt enhances the performance of LLMs. The prompt con-
struction of MissConf is primarily informed by the Chain-of-
Thought(COT) method [45], which is widely acknowledged as the
state-of-the-art prompting technique.MissConf proposes the ap-
proach of progressive-COT in this phase. Specifically, MissConf
first uses the bug description, reproduction steps, and configuration
manual to deduce whether the reported configuration options are
crucial for bug reproduction. Subsequently, using the information
of reported configuration options in program execution,MissConf
infers if there is a missing crucial option for bug reproduction.

The prompt is structured as follows: MissConf employs four-
shot prompt learning, including two positive and two negative input
examples. If sufficient bug report examples are lacking, MissConf
can still leverage zero-shot learning, given that LLMs have been

demonstrated to possess capabilities in both zero-shot and few-shot
learning scenarios.

Figure 4 illustrates examples of MissConf’s prompts. When
working with a test example, the LLM will adhere to the demon-
stration format, performing step-by-step reasoning according to
the prompt requirements. First, it will list the crucial configuration
options in the reported option set, then determine whether a cru-
cial configuration is missing in the report based on the program
analysis results, and finally give the final classification conclusion.

3.3 CTBug Reproduction

After MissConf infers that crucial configuration options are miss-
ing in the bug report, it attempts to search for the missing ones
and their values. Based on Finding 3&4, MissConf can adjust just
one configuration option and then execute the reproduction steps
to reproduce the bug. This process, however, is non-trivial. Firstly,
a software system might have hundreds of configuration options,
making it impractical and time-consuming to experiment with each
option individually.MissConf should filter out the suspicious op-
tion set to reduce the time for bug reproduction. Secondly, the order
in which suspicious options are tried can also influence the effi-
ciency of bug reproduction. MissConf should prioritize suspicious
options to swiftly identify the missing ones. Thirdly, for each sus-
picious option,MissConf will sample potential values that could
trigger the bug, which may have a vast array of possible values.

489

MissConf: LLM-Enhanced Reproduction of Configuration-Triggered Bugs ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

Filtering Out Suspicious Options. In mature software projects,
the number of configuration options can be huge, making exhaus-
tive enumeration of potential crucial configuration options for unre-
producible CTBugs impractical.MissConf addresses this challenge
by filtering out the suspicious options that might directly influence
the CTBug’s reproduction. As detailed in Section 2.2, an effective
strategy to identify these suspicious options is by monitoring and
recording the set of options that affect the control-flow execution
path of the bug.

To achieve this, MissConf employs similar taint analysis and
targeted instrumentation techniques detailed in Section 3.2.1. Based
on finding 2,MissConf can focus solely on configuration options
of enumeration and numerical types. The entry points for taint
analysis in this phase are the original variables of these two con-
figuration types. Then,MissConf instruments before the tainted
branch instructions of these configuration options. Similarly, we
set the reported configuration options based on the values provided
in the bug report and run the CTBug’s reproduction steps within
the new instrumented software. We subsequently record the op-
tion traversed during this execution and label them as suspicious
options.

Ranking Suspicious Options. While MissConf filters out sus-
picious options to reduce the configuration search space, reproduc-
ing bugs remains a time-intensive task. To mitigate this, MissConf
employs heuristic strategies to prioritize suspicious options. The ra-
tionale behind this prioritization is derived from the insights gained
from our study in Section B on how configurations influence CTBug
execution. We discovered that reported configuration options are
often crucial for reproducing bugs. The fewer reported configura-
tion options that appear in a program’s execution path, the more
likely it is that the path diverges from where the bug occurs. There-
fore, when the execution path after a suspicious option contains fewer
reported configuration options, there’s a higher likelihood that the
current suspicious option needs to be mutated. Conversely, the more
reported configuration options there are, the lower the priority for
mutating the current suspicious option.

To achieve this target, MissConf instruments before the tainted
branch instructions of suspicious options, capturing the timestamps
when the program passes through these branches. Similarly, for the
reported configuration options,MissConf instruments before their
tainted instructions to record the timestamps of program execution
through each reported option. Algorithm 1 illustrates the primary
procedure for ranking suspicious configuration options. For any
two suspicious options, MissConf first compares the number of
reported configuration options that follow each option within the
execution path (calculated by the CNum function). The option with
a smaller number is given higher priority (Line 4-5). If the numbers
are the same, we then compare their initial timestamps within the
execution path. The option with an earlier timestamp is assigned a
higher priority (Line 6-7).

Sampling Configuration Values. After identifying and rank-
ing the suspicious configurations,MissConf proceeds to sample
potential configuration values that might trigger the bug. Depend-
ing on the types of configurations, MissConf employs different
strategies for value sampling.

Algorithm 1: Ranking suspicious configuration options
Input: SArray is the array of suspicious options.
Output: RArray is the array of ranked options.

Configuration options with higher priority are
positioned earlier in the array.

1 RArray← SArray;
2 for i=0; i<RArray.length(); i++ do

3 for j=i+1; j<RArray.length(); j++ do

4 if RArray[i].CNum() > RArray[j].CNum() then
5 Swap(RArray[i], RArray[j]);
6 else if RArray[i].CNum()==RArray[j].CNum() ∧

RArray[i].time > RArray[j].time then
7 Swap(RArray[i], RArray[j]);

8 return RArray

• Enumerated Configurations. The user manual typically out-
lines all permissible values for configurations of the enu-
merated type. For instance, MySQL provides 3 valid values
for the option ‘binlog_format’. Therefore, MissConf sam-
ples all the valid values mentioned in the manual for such
configurations.
• Numeric Configurations. The user manual also specifies the
valid value ranges for numeric configurations. However, the
spectrum of permissible values for numerical configurations
is broader than enumerated ones. For example, the option
‘bulk_insert_buffer_size’ has a valid range of 0 ∼ 232−1 bytes.
Given the challenge of determining an appropriate sampling
density,MissConf adopts the strategy of exponential sam-
pling [43]. Test values for these numerical configurations
commence at the minimal allowable value and escalate ex-
ponentially until they reach the upper limit. For the option
‘bulk_insert_buffer_size’ as an illustration, the test values
would span {0, 1, 2, 4, 8, ... , 232 − 1}.

4 EVALUATION

We evaluated MissConf in terms of its ability to infer missing
configurations and its effectiveness in reproducing CTBugs. Our
evaluation aims to answer the following research questions:

RQ1: How effective is MissConf in inferring configura-

tion omission? This question examines the precision and recall in
distinguishing CTBug reports from other bug reports.

RQ2: How effective is MissConf in reproducing CTBugs?

This question examines the recall of MissConf by calculating the
percentage of bugs that can be reproduced among all CTBugs.

RQ3: How does MissConf perform in narrowing down

the configuration search space? This question evaluates the effi-
ciency by calculating the percentage of suspicious options filtered
from all the options.

RQ4: How does MissConf perform in ranking suspicious

configurations? This question evaluates the efficiency by deter-
mining the relative position of the missing crucial option in the
sorted suspicious option set.

Target Software Systems. We chose MySQL and Squid as the
target software as we found 23 hard-to-reproduce CTBugs in them

490

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Ying Fu∗ , Teng Wang∗ , Shanshan Li† , Jinyan Ding, Shulin Zhou, Zhouyang Jia, Wang Li, Yu Jiang† , and Xiangke Liao

during the empirical study. To avoid over-fitting, we also chose
SQLite[19], Nginx[36] and Httpd[1], which were not included in
the study.We repeated the CTBug collection and validationmethods
on the five systems, and found 26 CTBugs that were not included
in the study in Section 2. Please note that not all collected CTBugs
are hard-to-reproduce bugs, which only make up approximately
30% of the total. Therefore, we removed one crucial configuration
option from the CTBug report and retained all other descriptions
to simulate hard-to-reproduce CTBugs. We evaluated MissConf
on all the 49 bugs.

Evaluation Setup. We perform the evaluation on a machine
with 8 cores (Intel Core i7-9700K CPU @3.6GHz), 32 GiB RAM, and
Ubuntu 20.04 as the operating system.

4.1 Effectiveness of inferring configuration

omission

As mentioned in Section 3.2, the first step of MissConf is to per-
form an initial assessment of bug reports to determine if a hard-
to-produce bug is caused by missing crucial configuration options.
MissConf utilizes taint analysis and targeted instrumentation tech-
niques to gather the runtime information of record options, and
then utilize LLM to further infer whether crucial configuration op-
tions are missing based on bug report text and runtime information.

To evaluate the MissConf’s ability to infer configuration omis-
sion, we first build a new dataset. The dataset includes not only
CTBugs that are hard to reproduce due to missing crucial configu-
ration options, but also bugs that are hard to reproduce for other
reasons. As shown in Table 3, we have constructed a balanced
dataset where the “CTBug report" column represents positive sam-
ples, and the “Other report" column represents negative samples.

We conducted experiments onChatGPT 3.5 [10] using the prompts
described in Section 3.2.2. These experiments encompassed three
different settings: 0-shot, 2-shot, and 4-shot. The 0-shot setting
means no prior knowledge was provided for the LLM. The 2-shot
setting means one positive sample and one negative sample were
given. The 4-shot setting means two positive samples and two
negative samples were provided.

Table 3 demonstratesMissConf’s capability to identify potential
CTBugs. It can be observed that when using the 4-shot prompt, the
average precision reaches 73%, and the recall reaches 84%. Further-
more, through a comparative analysis, it becomes evident that the
LLM few shot learning is indeed necessary, as the recall of 4-shot
has improved 53% compared to the 0-shot setting.

At the same time, we also acknowledge that there are cases
where misclassification occurs. However, the primary objective of
this step is to enhance efficiency and save time in the bug reproduc-
tion process. When we skip the initial screening of bug reports and
directly proceed with subsequent reproduction efforts, we would
need to perform taint analysis on all configuration options of the
software (often numbering in the hundreds). Reproducing a bug un-
der these conditions typically takes around 8 hours. If the attempted
bug reproduction is not hampered by the absence of critical config-
urations, a significant amount of time would be wasted. In contrast,
the initial screening step involves taint analysis of only a small
number of reported configuration options and usually takes just

Table 3: The precision and recall of inferring configuration

omission.

Project

CTBug Other

Setting Precision Recall

report report

MySQL 20 20

0-shot 33% 5/20 (25%)

2-shot 67% 14/20 (70%)

4-shot 74% 17/20 (85%)

Squid 9 6

0-shot 50% 3/9 (33%)

2-shot 86% 6/9 (67%)

4-shot 80% 8/9 (89%)

SQLite 10 10

0-shot 44% 4/10 (40%)

2-shot 55% 6/10 (60%)

4-shot 73% 8/10 (80%)

Ngnix 4 4

0-shot 50% 1/4 (25%)

2-shot 75% 3/4 (75%)

4-shot 80% 4/4 (100%)

Httpd 6 6

0-shot 40% 2/6 (33%)

2-shot 75% 3/6 (50%)

4-shot 57% 4/6 (67%)

Total 49 46

0-shot 41% 15/49 (31%)

2-shot 68% 32/49 (65%)

4-shot 73% 41/49 (84%)

a few minutes. Therefore, we consider the trade-off between bug
reproduction efficiency and precision in this step to be acceptable.

Answer to RQ1: This result indicatesMissConf can effec-
tively infer the configuration omission with the precision
of 73% and recall of 84% (41/49).

4.2 Effectiveness of reproducing CTBugs

As shown in Table 4, the experimental dataset comprises 49 CTBugs
from 5 software systems. Out of these, 41 CTBugs were correctly
inferred, andMissConf successfully reproduced 32 CTBugs. So the
overall bug reproduction success rate of MissConf is 65%. Specifi-
cally, when a potential CTBug report is correctly inferred, the bug
reproduction success rate is 78%.

One significant reason for MissConf’s reproduction failures is
the incorrect inference during the initial screening, with a detailed
analysis provided in Section 4.1. In cases where correct inference
was made, there were 9 cases of MissConf’s reproduction failures,
primarily attributed to three main reasons.

491

MissConf: LLM-Enhanced Reproduction of Configuration-Triggered Bugs ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

Table 4: Effectiveness of reproducing CTBugs.

Project

Known Correctly Reproduced

CTBugs Inferred Bugs Bugs

MySQL 20 17 14
Squid 9 8 6
SQLite 10 8 6
Nginx 4 4 3
Httpd 6 4 3

Total 49 41 32

First, the missing crucial configurations were unable to conduct
taint analysis (4 cases). For example, in MySQL Bug #91980, the
missing crucial configuration option is autocommit, which corre-
sponds to a specific bit in program variable option_bits. To perform
operations like assignment and retrieval on autocommit, it needs to
use bitwise operations on option_bits. Currently, MissConf’s taint
analysis has not achieved the precision required for bit-sensitive
analysis. Second, some bug reproduction requires specific work-
loads (2 cases). For example, reproducing a specific CTBug may
require building a cluster environment. Third, the CTBug reproduc-
tion failed due to the requirement of on-the-fly changes (3 cases).

Answer to RQ2: This result indicates MissConf can ef-
fectively reproduce the CTBugs with the overall bug repro-
duction success rate of 65% (32/49).

4.3 Effectiveness of narrowing down the

configuration search space

As mentioned in Section 3.3, MissConf utilizes taint analysis and
targeted instrumentation techniques to filter out the suspicious
options that could directly impact the CTBug’s reproduction. We
evaluate the effectiveness of narrowing down the configuration
search space in this section. Each subfigure in Figure 5 represents
MissConf’s ability to filter suspicious configuration options for the
corresponding software on the horizontal axis. The vertical axis
in each subfigure represents the percentage of filtered suspicious
configuration options compared to the total number of software
configurations. A smaller ratio indicates that we have successfully
filtered out more irrelevant configuration options. We utilize box
plots to summarize and present the distribution of the data. It can
be observed that, following the filtering process byMissConf, on
average, we only need to traverse the 24% of the total configura-
tion set to reproduce a CTBug effectively. In the best-case scenario,
MySQL CTBug reproduction can be achieved by examining only
11% of the total configuration set. Considering that MySQL has
thousands of configurations available for taint analysis, MissConf
still achieves impressive results, demonstrating the effectiveness of
taint analysis and targeted instrumentation techniques. For SQLite,
MissConf can eliminate approximately 40% of irrelevant configura-
tions. However, since SQLite has a limited number of configuration

options available for taint analysis, only 16 in total, the overall
number of configurations for subsequent reproduction is small, and
it will not impact the subsequent reproduction phase.

Answer to RQ3: This result indicatesMissConf can effec-
tively narrow down the 76% configuration search space on
average.

4.4 Effectiveness of ranking suspicious

configurations

During the CTBug reproduction phase, MissConf employs heuris-
tic strategies aimed at prioritizing suspicious options. One of our
key contributions is the design of Algorithm 1, a sophisticated
method for sorting elements within the suspicious configuration set,
ensuring a streamlined and efficient prioritization process. To com-
prehensively evaluate the performance of the ranking algorithm,
we conducted an extensive series of comparative experiments, di-
rectly comparing Algorithm 1 with a randomized ranking strategy.
Figure 6 illustrates the effectiveness of MissConf in ranking suspi-
cious configuration options compared to the random strategy. After
employing Algorithm 1 as ranking strategy, the missing crucial
option is typically located within the first 30.39% of the suspicious
option set. When employing the random ranking strategy, Miss-
Conf on average needed to traverse the top 60.37% of the relevant
configuration set before locating the missing crucial configuration
options, which was 29.98% less efficient compared to using Algo-
rithm 1.

Answer to RQ4: This result indicates the ranking suspi-
cious configurations algorithm of MissConf improves the
sorting of missing crucial configuration by 29.98% com-
pared to a random strategy.

5 DISCUSSION

Impact of Taint Analysis. Taint analysis on large-scale systems
may introduce enormous overhead. To achieve a lightweight con-
figuration taint analysis, MissConf only tracks the propagation of

Figure 5: Ratio of filtered suspicious configuration options

compared to the total number of software configurations.

492

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Ying Fu∗ , Teng Wang∗ , Shanshan Li† , Jinyan Ding, Shulin Zhou, Zhouyang Jia, Wang Li, Yu Jiang† , and Xiangke Liao

Figure 6: Effectiveness of configuration ranking algorithm.

variables that are tainted by configuration options through assign-
ment operations and prunes call graph by excluding basic blocks
that are not successors of tainted branches. Despite making these
compromises on precision, the time required for taint analysis on a
single option can be limited to a minute level. Further, taint analy-
sis is deployed offline and needs to be run only one time for each
different version of the program.

Noise of Irrelevant Options. The size of the obtained suspi-
cious configuration option set determines the effectiveness of bug
reproduction. Each time a test case is executed,MissConfmonitors
whether the instrumented branches are executed. This informa-
tion reflects the option associated with that particular test case.
However, in server-client systems like MySQL [2], the server runs
in the background for extended periods, potentially continuously
triggering the execution of instrumented branches, which can in-
troduce noise into the data. To address this, MissConf conducts
several dry runs, collecting the range of noise data before the tool’s
formal detection phase. This allows for precise identification of the
relevant options during the actual detection process.

Bug Reproduction. CTBug occurs only when the specific op-
tion value is set. MissConf sets possible candidate values for Enu-
merated and Numerical options. However, some options are string-
type variables and the values are associated with the workload.
MissConf can’t handle string-type options well. So we will explore
how to detect string-type options and set their values to satisfy
different workloads. Besides, some CTBugs require on-the-fly con-
figuration modifications, and MissConf changes configurations
before executing test cases to avoid the explosion of attempting
changes at all possible times. Recent work by Wang et al. aims to
detect on-the-fly bugs [43]. We will refer to the work and address
the issue of reproducing on-the-fly CTBugs in our future work.

6 THREATS TO VALIDITY

Our study may suffer threats to the external and internal validity.

External Threats. The selection of software projects could
potentially impact our empirical study. To mitigate this concern, all
the projects included in our study are mature and widely adopted,
each with a development and maintenance history spanning at least
15 years. Many CTBugs have already been identified and resolved by
developers. However, the bug reporting process in mature software
has been continuously optimized, and recent bug reports often
contain full reproduction information. We believe that in newer and
less mature software applications, there may be a higher occurrence
of real cases where CTBugs cannot be reproduced.

Internal Threats. Another threat lies in the localization and
manual validation process of CTBugs. We acquire bug reports
through web scraping, automatically filter them using keywords,
and manually confirm the relevance of these reports to CTBugs. We
then manually analyze CTBug reports and reproduce the CTBugs,
which could potentially introduce errors due to human mistakes.
To enhance the accuracy of the validation process, three authors
collaboratively examined all reported inconsistencies and reached
a consensus on each of them.

7 RELATEDWORKS

Bug Reproduction. Bug reproduction is a pivotal process in soft-
ware development and quality assurance. By replicating reported
bugs in a controlled environment, developers can analyze the root
causes, leading to quicker and more accurate fixes. Significant re-
search efforts have been dedicated to the field of bug reproduction.
Some studies [23–26, 31, 35, 46, 51] employ in-house methods to
gather a diverse range of failure data, encompassing function call
sequences, crash stack, runtime logs, etc., thereby enabling the
replication of the specific environment and inputs required for bug
reproduction. BUGREDUX [26] aims to generate executions that
replicate observed field failures by utilizing function execution data
collected from real-world scenarios. CrashDroid [46] automates the
process of reproducing a bug by translating the crash call stack into
expressive steps. Some other works [16, 22, 27, 44, 52, 54] translate
the procedural steps provided in bug reports into test cases. For
instance, LIBRO [27] employs Large Language Models (LLMs) to au-
tomate the generation of tests based on bug reports. Furthermore,
Hercules [37] employs symbolic execution techniques to gener-
ate test cases capable of triggering the reported software crashes.
Nonetheless, these reproduction efforts operate under the assump-
tion that the environment and configuration details supplied in the
bug report are complete. As a result, they are unable to tackle the
problem of absent crucial configurations, a common obstacle that
often impedes the successful reproduction of CTBugs.

Missing Information Detection Many research efforts are
dedicated to identifying and addressing missing information cru-
cial for bug reproduction. Some studies utilize various methodolo-
gies, including machine learning, keyword matching, and heuristic
strategies, to locate omitted essential components within bug re-
ports, such as Expected Behavior (EB) and Steps to Reproduce (S2R)
details in bug descriptions [14, 17, 20, 56]. While there exist other
studies[13, 14, 38, 40, 50] focused on the detection of missing source
code snippets or stack traces. RoBin [18] aims to figure out missing
compiled-time configurations to reproduce bugs by analyzing the
binary code. These approaches collectively contribute to addressing

493

MissConf: LLM-Enhanced Reproduction of Configuration-Triggered Bugs ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

the challenge of incomplete information in bug reports, thereby
enhancing the overall effectiveness of bug reproduction processes.
However, restoring the environmental information required for
bug reproduction is a fundamental and challenging task. The above
works are also based on the assumption that the configuration en-
vironment information provided in the bug report is complete and
cannot detect missing crucial configurations.

8 CONCLUSIONS

The absence of configuration information is one of the key reasons
that make bugs challenging to reproduce. This paper focuses on
addressing the issue of reproducing CTBugs. We first conducted
an empirical study on 120 CTBugs from 4 open-source projects
and summarized the characteristics that influence the CTBugs’ oc-
currence and the reproducing factors of CTBugs. Based on these
study findings, we designed and implemented MissConf, which
represents the first LLM-enhanced automated solution for CTBug
reproduction.MissConf first leverages LLMs to identify whether
non-reproducibility stems from missing reported configuration op-
tions. Once the potential CTBug is identified,MissConf attempts to
search for the missing configurations and their values by employing
the heuristic reproduction strategy. The experimental results show
that MissConf effectively infers the configuration omission and
reproduces the CTBugs with an overall success rate of 65% (32/49).
MissConf significantly expedites the process of reproducing CT-
bugs and consequently greatly saves the developer’s time.

ACKNOWLEDGMENTS

Wewould like to thank the anonymous reviewers for their insightful
comments. This research was funded by NSFC No. 62272473, the
Science and Technology Innovation Program of Hunan Province
(No. 2023RC1001) and NSFC No. 62202474.

REFERENCES

[1] 1995. Apache HTTP Server. https://httpd.apache.org/.
[2] 1995. MySQL. https://www.mysql.com/.
[3] 2002. Jira software. https://www.atlassian.com/software/jira.
[4] 2017. Assertion has_error == thd->get_stmt_da()->is_error()failed. https://bugs.

mysql.com/bug.php?id=88273.
[5] 2018. Bug 91975: InnoDB Assertion failure. https://bugs.mysql.com/bug.php?id=

91975.
[6] 2019. Replication aborts in ORACLE mode. https://jira.mariadb.org//browse/

MDEV-19632.
[7] 2020. MDEV-19632 MariDB 10.5 Patch. https://github.com/MariaDB/server/

commit/dd0485fcd795cf82f5e7675312c1755deca04f4f.
[8] 2021. Assertion failed in lock_rec_move. https://jira.mariadb.org//browse/MDEV-

25010.
[9] 2023. Bugzilla keyword descriptions. https://bugzilla.mozilla.org/

describekeywords.cgi/.
[10] 2023. ChatGPT. https://chat.openai.com/.
[11] 2023. GitHub. https://github.com/.
[12] 2023. Server System Variables. https://mariadb.com/kb/en/server-system-

variables/.
[13] Alberto Bacchelli, Anthony Cleve, Michele Lanza, and Andrea Mocci. 2011. Ex-

tracting structured data from natural language documents with island parsing. In
2011 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011). IEEE, 476–479.

[14] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim.
2008. Extracting structural information from bug reports. In Proceedings of the
2008 international working conference on Mining software repositories. 27–30.

[15] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[16] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, Andrian Marcus,
Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. 2019. Assessing the
quality of the steps to reproduce in bug reports. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 86–96.

[17] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting missing
information in bug descriptions. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 396–407.

[18] Ligeng Chen, Jian Guo, Zhongling He, Dongliang Mu, and Bing Mao. 2021. Robin:
Facilitating the reproduction of configuration-related vulnerability. In 2021 IEEE
20th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom). IEEE, 91–98.

[19] D. Richard Hipp. 2000. SQLite. https://www.sqlite.org/.
[20] Steven Davies and Marc Roper. 2014. What’s in a bug report?. In Proceedings of

the 8th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement(ESEM ’14). Association for Computing Machinery.

[21] Raphael Pereira de Oliveira, Paulo Anselmo da Mota Silveira Neto, Qi Hong Chen,
Eduardo Santana de Almeida, and Iftekhar Ahmed. 2022. Different, Really! A
comparison of Highly-Configurable Systems and Single Systems. Information
and Software Technology 152 (2022), 107035.

[22] Mattia Fazzini, Kevin Moran, Carlos Bernal-Cardenas, Tyler Wendland, Alessan-
dro Orso, and Denys Poshyvanyk. 2022. Enhancing mobile app bug reporting
via real-time understanding of reproduction steps. IEEE Transactions on Software
Engineering 49, 3 (2022), 1246–1272.

[23] Steffen Herbold, Jens Grabowski, Stephan Waack, and Uwe Bünting. 2011. Im-
proved bug reporting and reproduction through non-intrusive gui usage moni-
toring and automated replaying. In 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops. IEEE, 232–241.

[24] David M Hilbert and David F Redmiles. 2000. Extracting usability information
from user interface events. ACMComputing Surveys (CSUR) 32, 4 (2000), 384–421.

[25] Yan Hu, Jun Yan, and Kim-Kwang Raymond Choo. 2016. PEDAL: a dynamic
analysis tool for efficient concurrency bug reproduction in big data environment.
Cluster Computing 19 (2016), 153–166.

[26] Wei Jin and Alessandro Orso. 2012. Bugredux: Reproducing field failures for
in-house debugging. In 2012 34th international conference on software engineering
(ICSE). IEEE, 474–484.

[27] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-
shot testers: Exploring llm-based general bug reproduction. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2312–2323.

[28] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[29] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. 2012. Technical debt: From
metaphor to theory and practice. Ieee software 29, 6 (2012), 18–21.

[30] Wang Li, Zhouyang Jia, Shanshan Li, Yuanliang Zhang, Teng Wang, Erci Xu,
Ji Wang, and Xiangke Liao. 2021. Challenges and opportunities: an in-depth
empirical study on configuration error injection testing. In Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
478–490.

[31] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. 2005.
Scalable statistical bug isolation. Acm Sigplan Notices 40, 6 (2005), 15–26.

[32] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao,
and Gang Wang. 2018. Understanding the reproducibility of crowd-reported
security vulnerabilities. In 27th USENIX Security Symposium (USENIX Security
18). 919–936.

[33] CKJDSA Stefan Mühlbauer, Florian Sattler, and N Siegmund. 2023. Analyzing
the impact of workloads on modeling the performance of configurable software
systems. In Proceedings of the International Conference on Software Engineering
(ICSE), IEEE.

[34] MySQL. 2018. int change_master(): Assertion inited failed. https://bugs.mysql.
com/bug.php?id=92073.

[35] Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiene Tahar, and Alf Larsson.
2015. JCHARMING: A bug reproduction approach using crash traces and directed
model checking. In 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, 101–110.

[36] Nginx, Inc. 2004. Nginx. https://nginx.org/.
[37] Van-Thuan Pham, Wei Boon Ng, Konstantin Rubinov, and Abhik Roychoudhury.

2015. Hercules: Reproducing crashes in real-world application binaries. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 891–901.

[38] Luca Ponzanelli, AndreaMocci, andMichele Lanza. 2015. Stormed: Stack overflow
ready made data. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories. IEEE, 474–477.

[39] Laria Reynolds and KyleMcDonell. 2021. Prompt programming for large language
models: Beyond the few-shot paradigm. In Extended Abstracts of the 2021 CHI
Conference on Human Factors in Computing Systems. 1–7.

494

https://httpd.apache.org/
https://www.mysql.com/
https://www.atlassian.com/software/jira
https://bugs.mysql.com/bug.php?id=88273
https://bugs.mysql.com/bug.php?id=88273
https://bugs.mysql.com/bug.php?id=91975
https://bugs.mysql.com/bug.php?id=91975
https://jira.mariadb.org//browse/MDEV-19632
https://jira.mariadb.org//browse/MDEV-19632
https://github.com/MariaDB/server/commit/dd0485fcd795cf82f5e7675312c1755deca04f4f
https://github.com/MariaDB/server/commit/dd0485fcd795cf82f5e7675312c1755deca04f4f
https://jira.mariadb.org//browse/MDEV-25010
https://jira.mariadb.org//browse/MDEV-25010
https://bugzilla.mozilla.org/describekeywords.cgi/
https://bugzilla.mozilla.org/describekeywords.cgi/
https://chat.openai.com/
https://github.com/
https://mariadb.com/kb/en/server-system-variables/
https://mariadb.com/kb/en/server-system-variables/
https://www.sqlite.org/
https://bugs.mysql.com/bug.php?id=92073
https://bugs.mysql.com/bug.php?id=92073
https://nginx.org/

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Ying Fu∗ , Teng Wang∗ , Shanshan Li† , Jinyan Ding, Shulin Zhou, Zhouyang Jia, Wang Li, Yu Jiang† , and Xiangke Liao

[40] Peter C Rigby and Martin P Robillard. 2013. Discovering essential code elements
in informal documentation. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 832–841.

[41] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-influence models for highly configurable systems. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering. 284–294.

[42] Teng Wang, Haochen He, Xiaodong Liu, Shanshan Li, Zhouyang Jia, Yu Jiang,
Qing Liao, and Wang Li. [n. d.]. ConfTainter: Static Taint Analysis For Configu-
ration Options. ([n. d.]).

[43] TengWang, Zhouyang Jia, Shanshan Li, Si Zheng, Yue Yu, Erci Xu, Shaoliang Peng,
and Xiangke Liao. 2023. Understanding and detecting on-the-fly configuration
bugs. In Proceedings of the 45th International Conference on Software Engineering
(ICSE).

[44] Dasarath Weeratunge, Xiangyu Zhang, and Suresh Jagannathan. 2010. Analyzing
multicore dumps to facilitate concurrency bug reproduction. In Proceedings of
the fifteenth International Conference on Architectural support for programming
languages and operating systems. 155–166.

[45] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[46] Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos Bernal-Cárdenas,
and Denys Poshyvanyk. 2015. Generating reproducible and replayable bug re-
ports from android application crashes. In 2015 IEEE 23rd International Conference
on Program Comprehension. IEEE, 48–59.

[47] Wikipedia. 2023. Data definition language. https://en.wikipedia.org/wiki/Data_
definition_language.

[48] Wikipedia. 2023. Data manipulation language. https://en.wikipedia.org/wiki/
Data_manipulation_language.

[49] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.
2019. Fuzzing file systems via two-dimensional input space exploration. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 818–834.

[50] Deheng Ye, Zhenchang Xing, Chee Yong Foo, Jing Li, and Nachiket Kapre. 2016.
Learning to extract api mentions from informal natural language discussions.
In 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 389–399.

[51] Tingting Yu, Tarannum S Zaman, and Chao Wang. 2017. DESCRY: reproducing
system-level concurrency failures. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. 694–704.

[52] Cristian Zamfir and George Candea. 2010. Execution synthesis: a technique for
automated software debugging. In Proceedings of the 5th European conference on
Computer systems. 321–334.

[53] Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. 2019. Automati-
cally extracting bug reproducing steps from android bug reports. In Reuse in the
Big Data Era: 18th International Conference on Software and Systems Reuse, ICSR
2019, Cincinnati, OH, USA, June 26–28, 2019, Proceedings 18. Springer, 100–111.

[54] Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru,
William GJ Halfond, and Tingting Yu. 2022. Recdroid+: Automated end-to-end
crash reproduction from bug reports for android apps. ACM Transactions on
Software Engineering and Methodology (TOSEM) 31, 3 (2022), 1–33.

[55] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910 (2022).

[56] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schroter, and Cathrin Weiss. 2010. What makes a good bug report? IEEE Trans-
actions on Software Engineering(TSE) 36, 5 (2010), 618–643.

495

https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_manipulation_language
https://en.wikipedia.org/wiki/Data_manipulation_language

