
Unseen Horizons: Unveiling the Real Capability of
LLM Code Generation Beyond the Familiar

Yuanliang Zhang∗, Yifan Xie∗, Shanshan Li†, Ke Liu, Chong Wang, Zhouyang Jia, Xiangbing Huang,
Jie Song, Chaopeng Luo, Zhizheng Zheng, Rulin Xu, Yitong Liu, Si Zheng, Xiangke Liao

College of Computer Science and Technology
National University of Defense Technology

Changsha, China
{zhangyuanliang13, xieyifan, shanshanli, liuke23, jiazhouyang, xbhuang, songj19, luochaopeng18, zhengzhizheng23,

xurulin11, liuyitong22, xkliao}@nudt.edu.cn, {ridicious1997, si.zheng1009}@gmail.com

Abstract—Recently, large language models (LLMs) have shown
strong potential in code generation tasks. However, there are
still gaps before they can be fully applied in actual software
development processes. Accurately assessing the code generation
capabilities of large language models has become an important
basis for evaluating and improving the models. Some existing
works have constructed datasets to evaluate the capabilities
of these models. However, the current evaluation process may
encounter the illusion of “Specialist in Familiarity”, primarily
due to three gaps: the exposure of target code, case timeliness, and
dependency availability. The fundamental reason for these gaps
is that the code in current datasets may have been extensively
exposed and exercised during the training phase, and due to the
continuous training and development of LLM, their timeliness
has been severely compromised.

The key to solve the problem is to, as much as possible,
evaluate the LLMs using code that they have not encountered
before. Thus, the fundamental idea in this paper is to draw
on the concept of code obfuscation, changing code at different
levels while ensuring the functionality and output. To this end, we
build a code-obfuscation based benchmark OBFUSEVAL. We first
collect 1,354 raw cases from five real-world projects, including
function description and code. Then we use three-level strategy
(symbol, structure and semantic) to obfuscate descriptions, code
and context dependencies. We evaluate four LLMs on OBFU-
SEVAL and compared the effectiveness of different obfuscation
strategy. We use official test suites of these projects to evaluate
the generated code. The results show that after obfuscation, the
average decrease ratio of test pass rate can up to 62.5%.

Index Terms—Large Language Model, Code Generation Ca-
pability, Code Dataset

I. INTRODUCTION

With the rapid development of the Large Language Model
(LLM), the code generation capability of LLMs has attracted
lots of attention [1]–[8]. However, how to accurately assess
the code generation capability of LLMs in production-level
software development is still an open question. A variety
of benchmark tests for code generation have been proposed,
however, there are still gaps between these benchmark tests
and the actual software development process.

Traditional datasets as evaluation benchmarks [9]–[12] play
key roles in evaluating the capabilities of LLMs. However,
∗Co-first authors
†Corresponding author

New
Code

Similar
Code

Training Data

Evolution Timeline

LLM Release

Fig. 1: The familiarity level of code to LLM. The more
transparent elements indicate less familiarity.

they focus mainly on standalone functions based on algorith-
mic problems, which cannot reflect the complexity of real
software development, as LLMs may face potential chal-
lenges in handling code that is interdependent with other
contextual elements of the project [13]. There have been
several benchmarks [13]–[16] which are built based on real-
world production projects, while there remain three gaps for
these benchmarks to objectively evaluate the code generation
capability of LLM: exposure of target code, case timeliness,
and dependency availability.
Gap 1: Target code has been exposed in the pre-training
stage. Previous benchmarks [13], [15], [16] have only rewrit-
ten the functional descriptions without modifying the code
itself. This could result in the target code being exposed
to LLMs during training, making the evaluation results not
objective as the code has been exercised extensively.
Gap 2: Collected case is time-sensitive. With the rapid
development of LLMs, data will be continuously trained.
Although previous benchmark [14] has collected modified
code from history after LLMs training, the modified code may
still have been exposed to LLMs because of the existence of
code clones. In addition, benchmarks that rely on historical
data will suffer from the timeliness problem and cannot be
used to evaluate subsequent releases of LLMs.
Gap 3: Precise dependencies are difficult to provide in real
usage scenarios. Existing benchmarks [13], [15] directly pro-
vide the model with all the dependencies needed to generate
the target code. However, such conditions can not be always
satisfied in real development.

ar
X

iv
:2

41
2.

08
10

9v
2

 [
cs

.S
E

]
 1

5
Ja

n
20

25

In conclusion, existing evaluation process may suffer
from the “Specialist in Familiarity” problem, which means
LLMs can perform well on code that they are very familiar
with, often due to extensive experience or repeated exposure.
This term highlights the individual’s strength in specific, well-
known domains, but it also implies that their expertise may
not extend beyond these familiar areas. The primary reason
is that the code used to evaluate LLMs may be extensively
exposed and exercised for training. As shown in Fig. 1, the
unfamiliarity of code to LLM is increased along with the
timeline. Unfortunately, even for the code collected after LLM
training and release may be similar to the training data due to
the existence of code reuse.

To solve these problems, we need to evaluate using code
that LLMs have not encountered before as much as possible.
To this end, we propose a new obfuscation-based benchmark
OBFUSEVAL to evaluate LLMs’ code generation capability.
Our main target is to evaluate the LLM on the code generation
tasks that it has never encountered before and simulate real
software development process. OBFUSEVAL has three key
characteristics: 1) To solve Gap 1, we collect highly starred
projects from GitHub [17] and select functions from them
that are introduced after a certain time point. These functions
are covered by the official test suites. 2) To solve Gap
2, all the raw data have been obfuscated by different-level
strategies (symbol, structure, and semantic) to rewrite both
functional descriptions and code. The process of code obfus-
cation can ensure that datasets are reused without the concern
that they might still become training data in the future (the
code obfuscation process can be repeated). 3) To solve Gap
3, we provide relevant code dependencies in a compromise
manner, simulating real-world development scenarios without
deliberately sacrificing the generation capabilities of LLM. We
identify all the contextual dependencies necessary for each
function, including necessary API calls, structures, macros,
etc., and also add some dependencies that are not related to
the target function code for obfuscation.

To effectively utilize our dataset and evaluate LLM’s real
capability on generating unfamiliar code, we built a project-
level execution platform that provides an off-the-shelf run-
time environment to automatically evaluate the functional
correctness of the generated code. We developed this platform
based on Docker, cloning and building the environment for
all projects. Given a model-generated code, the code will
automatically replace the original code. Then the projects will
be compiled and tested to see whether there are compilation
errors or test failures.

We comprehensively evaluated four state-of-the-art code
generation models (ChatGPT3.5, ChatGPT4-1106, ChatGPT4-
0125, and DeepSeek-Coder-V2) on OBFUSEVAL. We analyzed
each model’s effectiveness under different obfuscation strate-
gies. The results show that after code obfuscation, the average
decrease ratio of test pass rate can up to 62.5%. In addition, we
found that even passing all the tests, code generated by LLMs
may still suffer from non-functional code issues (e.g., code
robustness), which can guide the developers to better discern

and utilize the code generated by LLMs.
The main contributions of the paper are as follows:

• We reveal that existing benchmarks are insufficient for
objectively evaluating the code generation capabilities of
LLMs, primarily due to three gaps: exposure of target code,
case timeliness, and dependency availability.

• We propose an obfuscation-based approach to rewrite the
functional descriptions, code, and dependencies to prevent
the target code from being exposed in the training stage. We
design different levels of obfuscation strategies and examine
their effectiveness. Future research can design sophisticated
obfuscation process to better explore the potential of LLM’s
capability based on our results.

• We build an obfuscation-based benchmark OBFUSEVAL1

using code from real-world projects. We evaluated four
state-of-the-art code generation models on OBFUSEVAL.
The results show that after code obfuscation, the average
decrease ratio of test pass rate is 15.3%-62.5%, demonstrat-
ing the inflated capabilities of LLMs. We also identify non-
functional code issues in the passed cases which can be
studied in future work.

II. BACKGROUND

In this section, we first conduct a comprehensive exami-
nation of the latest advancements in Large Language Models
(LLMs) within code generation. Subsequently, we delve into
the related work of evaluations crafted for code generation,
along with the limitations and challenges encountered in
assessing the performance of LLMs. Finally, we introduce the
motivation for incorporating code obfuscation in the evaluation
of large language models.

A. Large Language Models for Code Generation.

The process of code generation, which involves the au-
tomatic creation of complete program code or the comple-
tion of code snippets from higher-level representations, such
as natural language descriptions, models, or specifications,
plays a pivotal role in enhancing programming efficiency and
mitigating human error [18]–[21]. Recent advancements in
Large Language Models (LLMs) for code generation have
garnered significant attention in the realm of computer science
research. These LLMs, such as GPT-4 [22], ChatGLM [23],
CODEX [9], and CodeGen [24], have demonstrated remark-
able capabilities not only in general natural language pro-
cessing tasks [25] but also in the specific area of code
generation. Notably, GPT-4 achieved the highest pass rate on
the HumanEval benchmark [9], indicating a growing trend to
evaluate the code generation capacity of general LLMs [26].

Code-specific LLMs, which are trained primarily on mas-
sive code-specific corpora, often outperform general LLMs in
code generation tasks [26]–[33]. Diverse training approaches
have been employed, with some models like InCoder [34] and
StarCoder [35] being trained with the ”filling-in-the-middle”
capability for infilling missing code based on context. Varieties

1 https://github.com/zhangbuzhang/ObfusEval

TABLE I: LLM’s code generation performance on code com-
petition problems of different time

OJ Website
GPT3.5-turbo (2023.06) GPT4.0-preview (2023.11)

zero-shot few-shot zero-shot few-shot

LeetCode
19.7% 22.0% 39.4% 40.9%

2023.11-2024.01

LeetCode
95.6% 93.3% 96.7% 95.6%

2018.09-2018.11

of code LLMs have been proposed, such as WizardCoder [29],
Instruct-StarCoder [36], and Instruct-CodeGen [37], each de-
signed with different training objectives.

B. Evaluations for LLM’s Code Generation

Benchmark construction. Current benchmarks built based
on real projects usually rewrite only the functional descriptions
without modifying the code [11], [13]–[15], [38], [39], which
may lead to the “code leak” issue. SWE-BENCH [14] collects
modified code from the project’s history. However, the code
may be in the training set of subsequent releases of LLMs. Fu-
ture LLMs may become experts in solving problems in SWE-
BENCH, but they may still struggle with new code problems in
real-world scenarios. EvoCodeBench [40] periodically update
the dataset, but there is still possibility of introducing similar
code due to the existence of code clones.

Context dependencies. Traditional benchmarks focus on
generating independent code units, ignoring the contextual
relationships between code [9], [41]–[45]. For example, SWE-
BENCH does not provide the complete dependencies of the
generated code, so it is hard to distinguish the capability
of LLMs to generate the target code and its dependencies.
However, current studies indicate that only about 30% of meth-
ods in open-source projects are relatively independent [13]
in real-world scenarios, methods often depend on each other
or share variables, which is not considered in these tradi-
tional benchmarks. Some works [13], [15] provide complete
dependencies but do not include useless and obfuscated de-
pendencies. This discrepancy does not align with software
development scenarios and fails to accurately measure the
ability of LLMs to assist developers in practical settings.
Therefore, we need evaluation methods closer to real-world
scenarios to comprehensively assess LLMs’ performance in
real-world software development.

Evaluation methods. When evaluating the code generation
capabilities of LLMs, existing studies and benchmarks focus
on the basic correctness of the code, which is usually verified
by executing simple test cases (e.g., unit tests) [46]–[48].
In our work, we try to assess both syntactic and functional
correctness of LLMs-generated code in real scenarios, by
leveraging both compile checking and systematic testing,
which aligns more closely with the requirements of real-
world development. In addition, previous benchmarks were
compared to Humaneval [9] to prove their validity [13], [15],
[49], [50]. However, since the length of code to be generated

Fig. 2: Examples of code obfuscation.

by these benchmark tests does not match the distribution
of code lengths in Humaneval, this comparison is inherently
unfair. It therefore does not accurately reflect the validity of
the benchmark tests.

C. Motivation of Using Code Obfuscation

As LLMs are continuously trained and released, traditional
datasets would constantly be learned and trained by these
models. Therefore, the timeliness of code may be a crucial
factor when testing the generation capacity of LLM. In other
words, code may become easier to generate because it already
exists (or similar) in the training set.

To validate our conjecture, we conduct a pilot study to
check whether the timeliness of code will affect the result of
LLM generation capability. We use GPT-3.5-turbo (released at
2023.06.13) and GPT 4.0-preview (released at 2023.11.06) to
do code competition problems from LeetCode [51]. We collect
the problems from 2018.09 to 2018.11 (90 problems) and the
problems from 2023.11 to 2024.01 (127 problems) as our test
data. The later 127 problems came out after the release of two
models, which were theoretically not presented in the model’s
training data.

Table I shows the results. We find that the pass rates of the
early 90 problems are much higher than later problems. Due to
the fact that code competition websites contain problems of
varying difficulty levels, and there is no deliberate increase
of the difficulty of new problems, the reason is that these
older problems appeared in the model’s training dataset so
that models can handle them more easily.

Relying solely on the latest code as a dataset is not a sus-
tainable approach in the long run (as models will continuously
train and evolve), and due to the existence of code reuse,
even code written after the training cutoff date may still be
similar to code in the training set. During the construction of
our dataset, to mitigate the impact that LLMs may have seen
the code, we have drawn inspiration from code obfuscation
techniques [52]–[54], which are originally used for making
applications difficult to be decompiled or disassembled. Fig. 2
illustrates two examples of code obfuscation (changing the
variable names and changing the code implementation of the
same logic). After obfuscation, the code will become different
from the training set while maintaining its functionality and
output.

Fail

Manual
Check

Raw Data Collection

Semantic
Obfuscation

Structure
Obfuscation

Symbol
Obfuscation

System Test

Functionally
correct code

Symbol
Obfuscation

Code
Generation

Code
Completion

Code

Pass

Pass

Fail

Source Code
Replacement

Systematic Testing
and Code Review

Interactive
Generation

PRs Extraction and
Function Filtering
Modified Function

...

Repository Selection

...

Mature Software

Complete Test Suite
...

Contextual
Dependency Identification

Global Variable

Structs

...

Human Labeling

Add Requirement
Relabel Requirement

Test Case Coverage

Code Obfuscation

Non-functional
Issues

Compilation
Errors

Functional
Errors

Compile

Fig. 3: Workflow of dataset construction and testing

III. BENCHMARK CONSTRUCTION AND TESTING

In this section, we describe the approach of building and
testing OBFUSEVAL to show the capability of LLM, and the
workflow is shown in Fig. 3. The building process mainly
includes two phases: collecting raw data from open-source
projects (Section III-A), and obfuscating code (Section III-B).
After that, we construct a testing framework to evaluate the
effectiveness of code generation and code completion by the
models on OBFUSEVAL (Section III-C).

A. Raw Data Collection

To construct OBFUSEVAL, we first need to collect the raw
data. The raw data includes functions modified after the large
model training data cutoff date from real-world open source
projects, as well as the context information these functions
depend on within the project. Overall, we divide the raw
data collection process into two parts: function collection and
contextual dependency provision.

1) Functions Collection: Function collection includes three
main steps:

Step 1: Repository Selection. The existing dataset mainly
covers Java and Python projects. To demonstrate the code gen-
eration capabilities of the large language models in other pro-
gramming languages, we chose C projects to build OBFUSE-
VAL. We set two conditions to filter repositories from GitHub:
1) The repository should be mature and well-maintained;
2) The project should have a comprehensive test suite for
systematic testing. Finally, we selected five projects [55]–[59],
with over 20k average stars.

Step 2: PRs Extraction and Function Filtering. We se-
lected merged PRs from the chosen repositories and extract
functions that meet the task criteria. Specifically, we extracted
PRs and filter functions based on the following four criteria:
1) The PRs are merged after a certain time point to coincide
with the training data cutoff date of specific models we tested;
(more discussion in Section IV-A2); 2) The PRs modify the
repository’s test files to verify the modified code’s functional
correctness; 3) The functions are modified in the PR to ensure
that LLM had not seen modified code in previous code base;
4) The functions are covered by the test suites to ensure that
the functionality of the functions is effectively verified.

TABLE II: The statics of PRs Extraction and Function Filter-
ing.

Software Merged PRs with Modified Test-Covered
PRs Tests Modified Functions Functions

redis 740 114 3,142 681
libvips 236 14 1,285 203
lvgl 1,718 36 1,447 303
libgit2 118 17 618 78
fluent 160 46 419 89

Total 2,972 227 6,911 1,354

Based on the above criteria, we finally selected 1,354 func-
tions for constructing code generation and code completion
tasks and the statistical results are shown in Table II.

Step 3: Human Labeling. In this step, we manually pro-
vide functional descriptions for each test-covered function.
Specifically, we assembled a team of seven senior software
engineers, each with at least five years of C programming
experience. The team is responsible for rewriting the existing
functional descriptions and providing manually written de-
scriptions for functions without descriptions, aiming to reduce
the model’s dependence on the original functional descriptions
encountered during the pre-training phase. During this process,
we implemented a double-check mechanism. When any two
engineers have a disagreement, a third engineer is brought in
to discuss and reach a final consensus together.

2) Contextual Dependency Provision: Previous work [13]
has shown that more than 70% of the functions depend on
other contextual information in the project, therefore, the
inability to provide dependencies can lead to a significant
decline in the generative capabilities of large language models.
However, accurately providing the dependencies required for
code generation is extremely difficult and does not align with
real-world development scenarios. Consequently, we adopt a
conservative approach to providing dependencies.

We first use syntax tree analysis to identify and collect
all relevant contextual dependencies in the code. we ex-
tract dependencies from project files, including the names
of functions, declarations, function bodies, global variables,
structures, macros, as well as function comments. Next, we

TABLE III: The composition of OBFUSEVAL

Soft. Original Symbol Obfuscation Structure Obfuscation Semantic Obfuscation Symbol + Structure Symbol + Semantic
Functions Functions Functions Functions Obfuscation Functions Obfuscation Functions

redis 681 681 215 106 215 106
libvips 203 203 58 17 58 17
lvgl 303 303 115 15 115 15
libgit2 78 78 32 10 32 10
fluent 89 89 30 11 30 11

Total 1,354 1,354 450 159 450 159

compile the code to obtain the LLVM IR intermediate code
representation of the files. By matching keywords in the IR
syntax (such as ”call” to indicate a function invocation), we
traverse the IR files to acquire the names of those dependen-
cies. By cross-referencing the results from the first step, we
can obtain the contextual information of the target function.
We also provide similar but different dependencies for each
contextual dependency to simulate the disturbances caused by
irrelevant information in the actual development process.

B. Code Obfuscation

Despite selecting code from the project revision history
that was modified after the training time of the large model,
we also applied additional code Obfuscation techniques to
the dataset to enhance protection against ”code leakage” and
ensure the applicability of our benchmarks in future releases of
the large model. Fig. 4 shows the example process of Obfus-
cating the dataset with three strategies. To objectively evaluate
the effectiveness of the LLM when dealing with obfuscated
code, we constructed code generation and code completion
scenarios, considering the code completion task as a subtask
of the code generation task. We apply symbol obfuscation and
structure obfuscation strategies in code generation scenarios
and symbol obfuscation and semantic obfuscation strategies
in code completion scenarios (the strategies can be used in
combination).

Distinguishing different obfuscation strategies for various
task scenarios is due to the fact that only in the code com-
pletion scenario can semantically obfuscated code fragments
be retained and a LLM be required to generate complete
code. This is to test the LLM’s true generation capability
when faced with semantically obfuscated code. We do not
fully integrate the three types of obfuscation together because
different obfuscation strategies are suitable for different types
of code. Next, we will discuss in detail the effects and practice
of each obfuscation.

1) Symbol Obfuscation: We first use a comprehensive
symbol obfuscation strategy to not only rewrite the func-
tional descriptions of the functions but also perform thorough
identifier rewrites for all meaningful identifiers in the target
code and the provided context. This means that all identifiers
for functions, variables, class names, etc. in the code are
obfuscated regardless of the context in which they appear
in the source code. We use NLTK [60] to do the word
segmentation and replacement. This strategy is designed at

the token-level to change the LLM’s familiarity to the target
code.

2) Structure Obfuscation: After symbol obfuscation, we
further change the code structure automatically using a struc-
ture obfuscation strategy. In this stage, we employ the strategy
to adjust and integrate the calling structure of the target func-
tion so that the execution path and organization of the function
are changed. Specifically, we use LLVM [61] to unfold and
integrate the functions that are called in the objective function
to change the structure of the code. We extract all the called
functions and their implementations within the target function
based on the context, and then utilize the abstract syntax tree
(AST) to handle parameter passing and automatically unfold
the called functions.

3) Semantic Obfuscation: In semantic obfuscation, we
meticulously rewrite code snippets within functions to ensure
that the new code is semantically equivalent to the original, yet
the implementation logic differs. The goal of this process is to
maintain the functional consistency while introducing a new
implementation method, effectively obfuscating the code at
the method-level. Through semantic transformation, we ensure
that the code can still achieve the same functionality, but for
the model, its generative logic is completely different from
the original code. This semantic obfuscation provides a more
challenging task to test the code understanding and generative
capabilities of LLM. Since this obfuscation method relies on
specific semantics of the code, the current approach involves
manually rewriting the code and conducting a double-check.
We highly recommend that future research should delve deeper
into semantic obfuscation strategies and design templates to
automate this process.

Through raw data collection and code obfuscation, we
constructed the OBFUSEVAL, which is shown in Table III.
Apart from symbol obfuscation, we did not apply structure
and semantic obfuscation to all the original data. This is partly
because the characteristics of the code may be suitable for
specific obfuscation methods (such as nested structures), and
partly due to the cost of manual inspection. The code examples
from Redis are more numerous and regular, so we applied
more semantic obfuscation to them. Future research could
design automated code obfuscation framework for obfuscation
and inspection.

C. Systematic Testing and Code Review

To evaluate the LLM’s code generation capabilities on
the OBFUSEVAL and the effectiveness of our code obfus-

{
 const int isStringNull = (stringPtr == NULL);
 const int responseType = customerPtr->responseType;
 const char *response = (isStringNull && responseType == 2) ? "$-1\r\n" :
 (isStringNull) ? "_\r\n" : stringPtr;
 const size_t responseLength = (isStringNull && responseType == 2) ? 5 :
 (isStringNull) ? 3 :
 strlen(stringPtr);

}

Struct:
typedef struct ClientInfo {
 uint64_t uniqueId; /* Incremental unique ID for the client. */

 char *buffer;
} ClientInfo;
API:
void appendResponseNull(ClientInfo *c)
void appendResponseBulk(ClientInfo *c, robject *obj)

void appendResponseBulkCString(ClientInfo *c, const char *s)
{
 if (s == NULL) {
 appendResponseNull(c);
 } else {
 appendResponseBulkCBuffer(c, s, strlen(s));
 }}

{
 if (s == NULL) {
 if (c->resp == 2) {
 addReplyProto(c, "$-1\r\n", 5);
 } else {
 addReplyProto(c, "_\r\n", 3);
 }
 } else {
 addReplyLongLongWithPrefix(c, strlen(s), '$');

}

Struct:
typedef struct client {
 uint64_t id; /* Client incremental unique ID. */

 char *buf;
} client;
API:
void addReplyProto(client *c, const char *s, size_t len) /*This...objects. */
void addReplyBulk(client *c, robj *obj)... ...

The function sends a response to a designated client, incorporating the content from the C string parameter
s. If s is NULL, it replies with a NULL type; otherwise, it converts s into a C buffer and responds with a
binary block (Bulk) type, specifying a length corresponding to strlen(s).

void addReplyBulkCString(client *c, const char *s)
{
 if (s == NULL) {
 addReplyNull(c);
 } else {
 addReplyBulkCBuffer(c, s, strlen(s));
 }}

Struct:
typedef struct client {
 uint64_t id; /* Client incremental unique ID. */

 char *buf;
} client;
API:
void addReplyNull(client *c)
void addReplyBulk(client *c, robj *obj) /* Add a Object as a bulk reply */
... ...
The function sends a response to a designated client, incorporating the content from the C string parameter
s. If s is NULL, it replies with a NULL type; otherwise, it converts s into a C buffer and responds with a
binary block (Bulk) type, specifying a length corresponding to strlen(s).

① Project Contexts

② Requirement
③ Signature

④ Reference Code

① Project Contexts

② Requirement
③ Signature

④ Reference Code

void addReplyBulkCString(client *c, const char *s)

The function sends a response to a designated client, incorporating the content from the C string parameter
s. If s is NULL, it replies with a NULL type; otherwise, it converts s into a C buffer and responds with a
binary block (Bulk) type, specifying a length corresponding to strlen(s).

① Project Contexts

② Requirement
③ Signature

④ Reference Code

The function sends a response to a designated client, incorporating the content from the C string parameter
s. If s is NULL, it replies with a NULL type; otherwise, it converts s into a C buffer and responds with a
binary block (Bulk) type, specifying a length corresponding to strlen(s).
void appendResponseBulkCString(ClientInfo *c, const char *s)

Struct:
typedef struct ClientInfo {
 uint64_t uniqueId; /* Incremental unique ID for the client. */

 char *buffer;
} ClientInfo;
API:
void appendResponseNull(ClientInfo *c)
void appendResponseBulk(ClientInfo *c, robject *obj)
... ...

① Project Contexts

② Requirement
③ Signature

④ Reference Code

Semantic Obfuscationstructure obfuscation

symbol
obfuscation

Fig. 4: An example of code obfuscation process

cation methods, we designed an automated code execution
and verification platform. The platform is built on Docker
images, providing an isolated sandbox environment to ensure
that the tested codes do not interfere with each other. The
evaluation process of generated code mainly includes two
parts: systematic testing and code review.

1) Systematic Testing: We use the systematic testing pro-
cess to evaluate the model and the dataset. We utilize com-
pilation checks and official test suites to detect syntax and
semantic errors. We construct the prompt to guide the large
model in code generation scenarios and code completion
scenarios. The composition of the prompt is detailed below:
• Instruction: We provide explicit instructions to guide the

LLMs to generate code related to the software.
• Context: We provide detailed context information, includ-

ing structs, macros, functions, global variables, etc. These
contexts include both the necessary dependencies for imple-
menting the target function and the context that is irrelevant
to the target function.

• Function description: We provide a functional description
of the target function to guide LLMs in generating code.
Based on this description, we provide only the declaration
of the target function for code generation scenarios and
partial code implementation details of the target function
for code completion scenarios.
Fig. 5 shows an example of the prompt for the code

generation scenario. We provide functional descriptions in the
[prompt input] to guide the large model’s code generation.
After obtaining the code generated by the model, we integrate

Instruct:
From now on, you play the role of the C code generator. You can generate the
corresponding function code according to the function description provided by the
user. Please do not return anything other than the target code. Don't return anything
other than the function code. The process is as follows:
[prompt-input]
[output]

[prompt-input]
This is objective Function Description :
This function sends a reply to the specified type reply with a length of strlen(s).

This is the declaration of the objective function:
void addReplyBulkCString(client *c, const char *s)

[output]

Context:
Here are some function context details you may need to know when writing objective
function for the project:
Functions may be used:
void addReplyNull(client *c)
... ...
Structs may be used:
... ...
Macros may be used:
... ...
Global variables may be used:
... ...

Fig. 5: Example of prompt for code generation scenarios

it into the software for compilation and system testing. If errors
occur, we separately record compilation errors and test errors,
then analyze the error information. For code that passes the
tests, we will conduct a manual code review.

2) Code Review: We used compilation checks and test
suites to evaluate the syntactic correctness and functional
correctness of the generated code, respectively. However,

TABLE IV: The performance of LLMs in code generation scenarios. ”Original” means the pass rate of all raw code tasks.
”Original(Structure)” means the pass rate of those raw code tasks which later perform structure obfuscation. All the numbers
have omitted the percentage sign.

Software Model
Original Symbol Original (Structure) Structure Symbol+Structure

CPR TPR CPR TPR CPR TPR CPR TPR CPR TPR

redis

GPT3.5 38.2 11.9 19.0 ⇓ 9.7 ↓ 44.7 10.7 36.3 ↓ 6.5 ⇓ 29.3 ⇓ 2.9 ⇓
GPT4-1106 37.0 17.6 31.7 ↓ 17.1 ↓ 34.4 13.9 36.5 ↑ 7.0 ⇓ 19.6 ⇓ 4.7 ⇓
GPT4-0125 39.9 20.4 31.8 ↓ 17.3 ↓ 53.0 13.9 34.9 ⇓ 9.8 ⇓ 19.5 ⇓ 2.8 ⇓
DeepSeek 39.6 7.2 28.8 ↓ 11.5 ⇑ 47.4 5.1 32.1 ⇓ 5.1 = 22.4 ⇓ 4.7 ↓

Average 38.7 14.3 27.8 ↓28.2% 13.9 ↓2.8% 44.9 10.9 35.0 ↓22.0% 7.1 ⇓34.9% 22.7 ⇓49.4% 3.8 ⇓65.1%

libvips

GPT3.5 58.6 18.2 44.8 ↓ 18.7 ↑ 70.7 20.7 74.1 ↑ 20.7 = 46.6 ⇓ 12.1 ⇓
GPT4-1106 42.9 21.7 32.5 ↓ 19.2 ↓ 44.8 15.5 44.8 = 20.7 ⇑ 27.6 ⇓ 13.8 ↓
GPT4-0125 43.8 25.6 41.4 ↓ 22.2 ↓ 51.7 27.6 50.0 ↓ 24.1 ↓ 48.3 ↓ 19.4 ↓
DeepSeek 50.8 29.6 41.3 ↓ 24.6 ↓ 53.5 25.9 56.9 ↑ 22.4 ↓ 44.8 ↓ 15.5 ⇓

Average 49.0 23.8 40.0 ↓18.4% 21.2 ↓10.9% 55.2 22.4 56.5 ↑2.4% 22.0 ↓1.8% 41.8 ↓24.3% 15.2 ⇓32.1%

lvgl

GPT3.5 36.7 19.8 35.8 ↓ 17.5 ↓ 27.3 11.6 27.0 ↓ 6.9 ⇓ 13.9 ⇓ 6.9 ⇓
GPT4-1106 38.9 26.7 39.7 ↑ 24.8 ↓ 22.6 13.9 23.5 ↑ 12.1 ↓ 16.5 ↓ 10.4 ↓
GPT4-0125 46.2 31.0 43.3 ↓ 28.1 ↓ 28.7 15.7 27.0 ↓ 11.3 ↓ 20.0 ⇓ 11.3 ↓
DeepSeek 44.2 30.4 42.6 ↓ 28.4 ↓ 29.6 14.8 28.7 ↓ 9.6 ⇓ 17.4 ⇓ 7.0 ⇓

Average 41.5 27.0 40.4 ↓2.7% 24.7 ↓8.5% 27.1 14.0 26.6 ↓1.8% 10.0 ↓28.6% 17.0 ⇓37.3% 8.9 ⇓36.4%

libgits

GPT3.5 14.1 14.1 11.5 ↓ 7.7 ⇓ 13.1 13.1 12.5 ↓ 12.5 ↓ 6.2 ⇓ 3.1 ⇓
GPT4-1106 38.5 23.1 18.0 ⇓ 9.0 ⇓ 31.3 25.0 12.5 ⇓ 12.5 ⇓ 0.0 ⇓ 0.0 ⇓
GPT4-0125 39.7 20.5 12.8 ⇓ 6.4 ⇓ 34.4 18.8 12.5 ⇓ 12.5 ⇓ 0.0 ⇓ 0.0 ⇓
DeepSeek 23.1 21.8 14.1 ⇓ 12.8 ⇓ 18.8 15.6 15.6 ↓ 15.6 = 18.6 ↓ 9.2 ⇓

Average 28.9 19.9 14.1 ⇓51.2% 9.0 ⇓54.8% 24.4 18.1 13.3 ⇓45.5% 13.3 ↓26.5% 6.2 ⇓74.6% 3.1 ⇓82.9%

fluent

GPT3.5 27.0 19.1 18.0 ⇓ 9.0 ⇓ 33.3 30.0 23.3 ⇓ 10.0 ⇓ 30 ↓ 3.3 ⇓
GPT4-1106 25.3 20.2 12.4 ⇓ 10.1 ⇓ 30.0 26.7 13.3 ⇓ 10.0 ⇓ 0.0 ⇓ 0.0 ⇓
GPT4-0125 34.8 29.2 15.7 ⇓ 12.4 ⇓ 43.0 33.3 20.0 ⇓ 10.0 ⇓ 16.7 ⇓ 6.7 ⇓
DeepSeek 19.1 14.6 14.6 ↓ 9.0 ⇓ 13.3 16.7 13.3 = 10.0 ⇓ 10.0 ↓ 3.3 ⇓

Average 26.6 20.8 15.2 ⇓42.9% 10.1 ⇓51.4% 29.9 26.7 17.5 ⇓41.5% 10.0 ⇓62.5% 14.2 ⇓52.5% 3.3 ⇓87.6%

Average 36.9 21.1 27.5 ↓25.5% 15.8 ↓25.1% 36.3 18.4 29.7 ↓18.2% 12.5 ⇓32.1% 20.4 ⇓43.8% 6.9 ⇓62.5%
1 ↑ / ↓ means that the pass rate has increased / decreased by less than 30% (ratio). ⇑ / ⇓ means that the pass rate has increased / decreased by more than 30% (ratio) .
2 The change magnitudes are calculated by comparing to ”Original” and the ”Original(Structure)”.

through manual inspection, we found that even the code was
functionally correct, i.e., it was able to pass the tests, there
were still some non-functional code quality issues. These
problems may include deficiencies in code efficiency, code
robustness, etc. Therefore, we manually analyzed these non-
functional code quality issues (Section IV-B3).

IV. EVALUATION

In this section, we describe our experimental setup and the
evaluation results of four LLMs on our dataset. Our evaluation
focuses primarily on the performance of LLMs on our dataset,
and whether code obfuscation can further reveal the true
capabilities of these LLMs.

A. Evaluation Setup

1) Model selection: We chose a general-purpose large
language model, ChatGPT, and a code-focused large language
model, DeepSeek. Both of them are mature and widely-used
LLMs. For ChatGPT, we use the “gpt-3.5-turbo-1106” [62],
”gpt-4-turbo-1106” [63], and ”gpt-4-turbo-0125” [63] in our
experiments. For DeepSeek, we use DeepSeek-coder-v2 [64]
with the default settings. We use default value for LLM’s
parameters when generating code.

2) Raw data selection: Note that the training datasets
for gpt-4-turbo-1106 were finalized as of April 2023 (gpt-
3.5-turbo-1106 is also before that time). We selected the

code starting from May 2023 to Dec 2023 as the original
data. Therefore, for gpt-3.5-turbo-1106 and gpt-4-turbo-1106,
these codes were not included in the training set, while for
gpt-4-turbo-0125 and DeepSeek-coder-v2, they might have
encountered some of these code snippets during training. By
doing so, we not only ensure a balanced distribution in our
dataset (with both seen and unseen data), but also objectively
and authentically demonstrate the generative capabilities of
LLMs across different types of code.

3) Evaluation Metrics: To assess the correctness of the
generated code snippet, we employed two key performance
metrics to measure the code generation capabilities of the
LLMs in real-world development scenarios: Compile Pass
Rate (CPR) and Test Pass Rate (TPR). We first replace the
original function with the function generated by the LLMs and
then compile the software. After that, we perform system tests
associated with that function.

CPR and TPR are representative metrics that can illustrate
generated code that passes compilation and tests respectively.
CPR demonstrates the basic ability of large language models
to generate syntactically correct code, while TPR reflects
the capability of large language models to understand and
correctly generate complex functional code. Specifically, TPR
can demonstrate whether the LLM can be used directly in
production scenarios. Both CPR and TPR use pass@5 rate to
eliminate fluctuations.

TABLE V: The performance of LLMs in code completion scenarios. ”Original” means the pass rate of all raw code tasks.
”Original(Semantic)” means the pass rate of those raw code tasks which later perform semantic obfuscation. All the numbers
have omitted the percentage sign.

Software Model
Original Symbol Original (Semantic) Semantic Symbol+Semantic

CPR TPR CPR TPR CPR TPR CPR TPR CPR TPR

redis

GPT3.5 19.0 9.0 30.9 ⇑ 11.5 ↑ 17.9 13.2 13.2 ↓ 7.5 ⇓ 36.4 ⇑ 11.2 ↓
GPT4-1106 41.5 25.4 32.9 ↓ 14.2 ⇓ 51.9 36.8 44.3 ↓ 25.5 ⇓ 39.6 ↓ 20.7 ⇓
GPT4-0125 39.3 15.4 36.1 ↓ 15.9 ↑ 43.4 17.9 38.7 ↓ 24.5 ⇑ 49.1 ↑ 25.5 ⇑
DeepSeek 40.6 24.8 30.9 ↓ 4.0 ⇓ 54.7 40.6 56.6 ↑ 31.1 ↓ 53.8 ↓ 32.1 ↓

Average 35.1 18.7 32.7 ↓6.8% 11.4 ⇓39.0% 42.0 27.1 38.2 ↓9.0% 22.2 ↓18.1% 44.7 ↑6.4% 22.4 ↓17.3%

libvips

GPT3.5 19.7 8.4 31.0 ⇑ 13.3 ⇑ 41.2 11.8 29.4 ↓ 5.9 ⇓ 41.2 = 10.6 ↓
GPT4-1106 36.0 22.2 31.5 ↓ 18.2 ↓ 35.3 23.5 41.1 ↑ 23.5 = 35.3 = 17.7 ↓
GPT4-0125 44.3 27.1 33.5 ↓ 22.2 ↓ 47.0 29.4 47.0 = 23.5 ↓ 29.4 ⇓ 29.4 =
DeepSeek 36.9 25.1 37.0 ↑ 21.7 ↓ 41.1 23.5 41.1 = 23.5 = 35.3 ↓ 23.5 =

Average 34.2 20.7 33.3 ↓2.6% 18.9 ↓8.7% 41.2 22.1 39.7 ↓3.6% 19.1 ↓13.6% 35.3 ↓14.3% 20.3 ↓8.1%

lvgl

GPT3.5 22.4 18.2 27.2 ↑ 20.5 ↑ 6.7 0.0 6.7 = 0.0 = 6.7 = 0.0 =
GPT4-1106 39.6 30.0 31.4 ↓ 24.1 ↓ 20.0 13.3 20.0 = 13.3 = 13.3 ⇓ 13.3 =
GPT4-0125 44.2 33.00 36.3 ↓ 27.1 ↓ 20.0 13.3 20.0 = 13.3 = 13.3 ⇓ 6.7 ⇓
DeepSeek 35.2 29.4 28.2 ↓ 11.9 ⇓ 20.0 13.3 20.0 = 13.3 = 13.3 ⇓ 13.3 =

Average 35.4 27.7 30.8 ↓13.0% 20.9 ↓24.5% 16.7 10.0 16.7 = 10.0 = 11.7 ↓29.9% 8.3 ↓17.0%

libgits

GPT3.5 15.4 12.8 15.4 = 12.8 = 10.0 10.0 10.0 = 10.0 = 20.0 ⇑ 10.0 =
GPT4-1106 10.3 10.3 6.4 ⇓ 6.4 ⇓ 60.0 30.0 50.0 ↓ 30.0 = 20.0 ⇓ 20.0 ⇓
GPT4-0125 12.8 10.3 7.7 ⇓ 7.7 ↓ 50.0 40.0 50.0 = 30.0 ↓ 40.0 ↓ 30.0 ↓
DeepSeek 25.6 21.8 23.0 ↓ 19.2 ↓ 30.0 30.0 40.0 ⇑ 20.0 ⇓ 30.0 = 20.0 ⇓

Average 16.0 13.8 13.1 ↓18.1% 11.5 ↓16.7% 37.5 27.5 37.5 = 22.5 ↓18.2% 27.5 ↓26.7% 20.0 ↓27.3

fluent

GPT3.5 11.2 7.87 16.9 ⇑ 11.2 ⇑ 0.0 0.0 0.0 = 0.0 = 18.2 ⇑ 0.0 =
GPT4-1106 25.8 23.6 16.9 ⇓ 11.2 ⇓ 9.1 9.1 18.2 ⇑ 9.1 = 9.1 = 9.1 =
GPT4-0125 30.3 27.0 20.2 ⇓ 19.1 ↓ 18.2 18.2 18.2 = 9.1 ⇓ 18.2 = 9.1 ⇓
DeepSeek 21.4 18.0 14.6 ⇓ 11.2 ⇓ 18.2 18.2 18.2 = 18.2 = 9.1 ⇓ 9.1 ⇓

Average 22.2 19.1 17.2 ↓22.5% 13.2 ⇓30.9% 11.4 11.4 13.7 ↑20.2% 9.1 ↓20.2% 13.7 ↑20.2% 6.8 ⇓40.4%

Average 28.6 20.0 25.4 ↓11.2% 15.2 ↓24.0% 29.7 19.6 29.1 ↓2.0% 16.6 ↓15.3% 26.6 ↓10.4% 15.6 ↓20.4%
1 ↑ / ↓ means that the pass rate has increased / decreased by less than 30% (ratio) . ⇑ / ⇓ means that the pass rate has increased / decreased by more than 30% (ratio) .
2 The change magnitudes are calculated by comparing to ”Original” and the ”Original(Semantic)”.

B. Results and Analysis

To evaluate the performance of large models on our dataset,
we conduct experiments on four large models using OBFUSE-
VAL. Specifically, we explore the effectiveness of code obfus-
cation and the various among different obfuscation strategies.
We investigate the following three research questions:
• RQ1: How effective are large language models in generating

code on our datasets?
• RQ2: How does code obfuscation further reveal the capa-

bilities of LLMs, and how effective are different obfuscation
strategies?

• RQ3: What are the issues hidden in LLM-generated code?
1) RQ1: How effective are large language models in

generating code on our datasets: The model usually performs
better on the code similar to training data. Thus, we collected
code data after model training and utilized code obfuscation
methods to further eliminate code leakage. In this research
question, we conduct experiments with several widely used
and proven effective large language models on our collected
dataset. The overall results are presented in Table IV and
Table V.

The CPRs are among 16.0% to 49.0% on original raw code,
with an average of 32.8%, which is significantly lower than the
LLM’s performance on traditional datasets (e.g., humaneval).
The average TPRs are 21.1% and 20.0% on original code

generation and completion. After we applied different levels
of code obfuscation, this result dropped to 6.9% and 15.6%.
This indicates that the code generated by LLMs is difficult
to pass the official tests of software and be directly used in
production environments. Developers still need to manually
fix and adjust the code.

¨ Conclusion for RQ1: Large Language Models still fall sig-
nificantly short of meeting the requirements for unfamiliar code
generation/completion tasks in real-world production environments.
The basic pass rate of compilation remains a significant bottleneck.
Even if it passes the compilation, it may still not meet the actual
functional requirements of the software.

2) RQ2: How does code obfuscation further reveal the
capabilities of LLMs, and how effective are different ob-
fuscation strategies: We use three obfuscation strategies
(Section III-B) to modify the collected raw code to minimize
the possibility that the code might resemble the training data.
We specifically compare the TPR before and after different
code obfuscations to evaluate the syntactic and functional
correctness of generated code. We try them separately and also
their combinations. The results are shown in Fig. 6 (detailed
data can be found in Table IV and Table V).

Overall effect. All obfuscation strategies have reduced
the TPR of code generation by LLMs. Since we did not
deliberately increase the difficulty and complexity of the code

Original Symbol0

10

20

30

40
TP

R
(%

)

13.9 13.2

22.1

15.4

24.0

17.8

22.3

15.4

GPT3.5
GPT4-1106
GPT4-0125
DeepSeek

(a) symbol obfuscation

Original (Structure) Structure Symbol+Structure0

10

20

30

40

TP
R

(%
)

17.2

11.3

5.7

19.0

12.5

5.8

21.9

13.5

8.6

15.6
12.5

7.9

GPT3.5
GPT4-1106
GPT4-0125
DeepSeek

(b) Stucture(&symbol) obfuscation

Original (Semantic) Semantic Symbol+Semantic0

10

20

30

40

TP
R

(%
)

7.0
4.7

6.4

22.5
20.3

16.2

23.8
20.1 20.1

25.1

21.2
19.6

GPT3.5
GPT4-1106
GPT4-0125
DeepSeek

(c) Semantic(&symbol) obfuscation

Fig. 6: TPR under different code obfuscation strategies. After introducing various degrees of obfuscation, the rankings of
four LLMS tend to be stabilize and consistent.

in code obfuscation (discussed in Section V), code obfuscation
can make the tested code less familiar to large models. Even
though the decline may not be particularly significant, it
represents the trend of the LLMs’ capabilities, and if applied
in a large-scale production environment, it could still have a
considerable impact.

As for tested LLMs, GPT4-1106, GPT4-0125 and DeepSeek
Code are obviously better than GPT3.5. However, the ranking
of their capability on the Original code is inconsistent. Af-
ter obfuscation, their ranking becomes more stable (GPT4-
0125>DeepSeek Code>GPT4-1106>GPT3.5). This further
proves that using code obfuscation can more accurately
demonstrate the capabilities of the models.

Strategy comparison. In this paper, we intuitively deter-
mine the effectiveness of code obfuscation strategies by the
TPR decrease ratio comparing to the Original code tasks (elim-
inate the inflated capabilities of the large model). Symbol and
structure obfuscation can be very effective with the average
TPR decrease ratio of 24.6% and 32.1%. Semantic obfuscation
is not that effective, with an average decrease ratio 15.3%. This
is mainly because our current semantic obfuscation strategies
are still relatively simple (using some heuristics to rewrite
code manually), without making in-depth modifications to
the code. We also find that the use of mixed strategies can
lead to a further decrease in TPR (Symbol + Structure can
have an average decrease ratio of 62.5%), demonstrating the
effectiveness of mixed strategies.

Although different obfuscation methods have different ef-
fectiveness, we still recommend that future researchers should
try various obfuscation strategies and their combinations,
which can not only ensure the fairness of code obfuscation
but also explore the performance of LLMs on more types of
code implementations.

¨ Conclusion for RQ2: All obfuscation strategies can help
eliminate the inflated code generation capabilities of LLMs. symbol
and structure obfuscation are particularly effective. Future research
could further explore more sophisticated semantic obfuscation
methods and additional strategies, and automate the entire obfus-
cation process efficiently.

3) RQ3: What are the issues hidden in LLM-generated
code: To enable developers to better utilize the code generated
by large language models for downstream development tasks,

we further analyzed common issues hidden in the generated
code that may affect development tasks. Due to the large
size of the OBFUSEVAL, we employed stratified sampling for
manual code review. The sample size was calculated through
the finite population correction, ensuring our sample accurately
represents the dataset. We set the confidence level to 95%
and the margin of error to 5%, which are standard statistical
thresholds. Through this method, we extracted 299 pieces of
LLM-generated code from five software and identified the
following three categories of issues:
• Syntax errors: Codes lead to compilation errors.
• Functional errors: Codes fail to meet the functional re-

quirements of development (fail the official tests).
• Non-functional code quality issues: Codes potentially

causing performance and reliability issues.
Due to the target software being from diverse domains, the
functionalities and the code semantics are various, so we
mainly focus on syntax errors and non-functional code
quality issues.

Syntax Errors. We refer to the LLM-generated code that
causes compilation errors in the software as syntax error code.
Such errors significantly impact development efficiency. We
extract error logs and manually analyze the code that failed to
compile, ultimately categorizing the syntax errors into 5 major
categories and 21 subcategories, as shown in Table VI.

In summary, large language models perform worst in han-
dling function and type declarations, particularly implicit
function declarations and type conflicts. And LLMs perform
poorly in generating code related to structures, often resulting
in issues such as accessing non-existent members. These errors
may be due to the presence of similarly named functions or
structures in the training data of the LLMs, leading to the
use of functions or structures outside the provided context in
code generation tasks. We recommend that developers focus on
checking external dependencies such as called functions and
structures when using LLMs to generate code. Additionally,
LLMs often perform poorly when handling code involving
pointers, leading to errors such as converting integers to
pointers without casting, and incompatible pointer types.

Non-functional code quality issues. For LLM-generated
codes that have passed systematic testing, we conducted a
manual code quality review and found that the code often

TABLE VI: Syntax errors of LLM-generated code

Category Proportion

Function and Type Declaration Errors 45.24%
Implicit declaration of function 30.56%
Type conflict 13.35%
API parameter count mismatch 1.02%
Undeclared type 0.31%

Data Structure and Member Access Errors 26.70%
Non-existent structure member 19.87%
Misuse of structure pointer 6.60%
Use → operator to access an integer member 0.23%

Type Conversion and Assignment Errors 12.82%
Making a pointer from an integer without a cast 8.57%
Incompatible pointer type 1.25%
Incompatible type assignment 1.50%
Redefinition 1.50%

Scope and Definition Errors 1.89%
Conflict between static and non-static declarations 1.50%
Incorrect access to structure or union member 0.39%

Other Syntax Errors 13.35%
Lvalue required as the left operand of assignment 6.60%
Incorrect use of array, pointer, or vector 1.73%
Assignment to expression with array type 0.63%
Incorrect use of parentheses 0.63%
Invalid binary operands 0.55%
Expected expression error 0.47%
Array subscript is not an integer 0.23%
Subscripted value is pointer to function 0.23%
Others 2.28%

had non-functional quality issues such as poor performance,
and security vulnerabilities. These issues do not directly affect
the normal execution of the code, but they can pose potential
threats to the software. For example, poor performance may
cause system response time delays, affecting user experience
and overall performance; security vulnerabilities may be ex-
ploited by malicious attackers, leading to data breaches or
system crashes. We have summarized common non-functional
code quality issues into the following three categories:

• Resource Management: In LLM-generated code, resource
management code is often inadequate, especially in terms of
memory or file management. For example, LLM-generated
code often does not free dynamically allocated memory at
the end of the program. Such code can pass compilation and
testing, but it may lead to potential memory leaks, resulting
in software performance issues.

• Code Efficiency: Fig. 7(a) shows an example of low
code efficiency. Wtiff pack2tiff is an image data conversion
function in the libvips software. In the original code, the
function adopts corresponding processing methods accord-
ing to different image encoding formats, while the LLM-
generated code uses an inefficient loop to process each
pixel, modifying and copying pixel by pixel. Although the
LLM-generated code can meet functionality, its performance
is far inferior to the original code, affecting the overall
performance of the software.

• Code Robustness: The robustness of the generated code
is not guaranteed, including missing error checking code,
incomplete error handling and inadequate feedback message.

/* Original code */
Void wtiff_pack2tiff(Wtiff *wtiff, VipsRegion *in,VipsRect *area,

VipsPel *q){ // Different condition -> Differenet method
for(int y = area->top;y < RECT_BOTTOM(area);y++) {

VipsPel *p = (VipsPel *) REGION_ADDR(in,area->left,y);
if(wtiff->ready->Coding == CODING_LABQ)

LabQ2LabC(q, p, area->width);
else if ······ // Omit multiple branches
else

memcpy(q,p,area->width *IMAGE_SIZEOF_PEL(wtiff->ready));
······

/* LLM-generated code */
Void wtiff_pack2tiff(Wtiff *wtiff, VipsRegion *in,VipsRect *area,

VipsPel *q){ // Loop through each pixel point
for(int y = area->top;y < RECT_BOTTOM(area);y++) {

for(int x = area->left;x < area->left + area->width;x++){
VipsPel *p = (VipsPel *) REGION_ADDR(in, x, y);
memcpy(q,p,IMAGE_SIZEOF_PEL(wtiff->ready));
······

(a) An example of low efficiency code.
/* Original code */
Void clusterUpdateMyselfAnnouncedPorts(void) {

if (!myself) return; // Error Handling
deriveAnnouncePorts(&myself->port,&myself->pport,
&myself->cport);

}

/* LLM-generated code */
Void clusterUpdateMyselfAnnouncedPorts(void) {

myself->port = server.cluster_announce_port;
myself->cport = server.cluster_announce_bus_port;
myself->pport = server.cluster_announce_tls_port;

}

(b) An example of missing error handling.

Fig. 7: Examples of non-functional code quality issue.

Fig. 7(b) shows an example of missing error handling. In
the original code, the program first checks if the myself
pointer is NULL to prevent null pointer reference. However,
the LLM-generated code does not perform null pointer
checks, which could lead to accessing the pointer when it
is uninitialized or freed, causing software crashes.

¨ Conclusion for RQ3: Function and Type Declaration Errors
are the most common syntax error of LLM generated code. While,
even if the code passes compilation and system testing, it may still
have non-functional issues which will negatively affect software
reliability and performance. Future research should establish more
comprehensive evaluation metrics to evaluate the quality of code
generated by LLMs.

V. THREATS TO VALIDITY

Raw data collection. To simulate real-world development
scenarios, we select mature system software from the real
world as the target software for our research. We chose
these software systems because they are widely used, have
a rich development history, and contain mature test suites.
We believe our study is representative, although some results
may not apply to all kinds of software and all kinds of code
language. There are other human efforts evolved in the data
collection process (e.g., description rewriting). To minimize
the impact of human error, we organize a team of seven senior
software engineers, each with at least five years of experience
in C programming. Additionally, we conduct a double-check
progress in each step.

Code complexity. Obfuscation strategies can introduce
changes in code complexity, primarily in structural and seman-
tic obfuscation. For example, function inlining in structural
obfuscation may lead to an increase in the number of lines
of code, potentially affecting the generation capabilities of
large models. In practice, we did not intentionally increase
the complexity of the code in any obfuscation method; our
guiding principle was to ensure that the semantics of the code
remained the same before and after obfuscation.
Testing process. Due to the presence of flaky tests, the testing
environment of real software projects can be unstable. Even
correct code may fail tests due to contextual or environmental
issues. Therefore, for each case, we run tests at least five times
to mitigate intermediate test results. Official test suites may not
comprehensively test the correctness of functionality, but this
represents the best efforts, allowing for a better assessment of
whether the code meets development requirements.

VI. CONCLUSION

Accurately assessing the code generation capabilities of
LLMs is crucial for their evaluation and improvement. While
existing works have constructed datasets to gauge these ca-
pabilities, three main gaps persist in objectively evaluating
LLMs’ real potential: the exposure of target code, case time-
liness, and dependency availability. These gaps arise because
the code in current datasets may have been exposed during
the training phase of LLMs, and the continuous training and
development of LLMs severely compromise their timeliness.
To address the problem, this paper adopts the concept of code
obfuscation, altering code at various levels while preserving
its functionality and output. We developed a code-obfuscation-
based benchmark, OBFUSEVAL, by collecting 1,354 raw cases
from five real-world projects, which include function descrip-
tions and code. We then obfuscated descriptions, code, and
context dependencies using a three-level strategy (symbol,
structure, and semantic). Evaluating four LLMs on OBFUSE-
VAL and comparing the effectiveness of different obfuscation
strategies, we found that after obfuscation, the average test
pass rate can decreased by 15.3%-62.5%.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments. This research was funded by NSFC No.62272473,
the Science and Technology Innovation Program of
Hunan Province No.2023RC1001, NSFC (No.U2441238,
No.62202474) and National University of Defense Technology
Research Project No.ZK24-01.

REFERENCES

[1] M. Liu, J. Wang, T. Lin, Q. Ma, Z. Fang, and Y. Wu, “An empirical study
of the code generation of safety-critical software using llms,” Applied
Sciences, vol. 14, no. 3, p. 1046, 2024.

[2] J. Wang and Y. Chen, “A review on code generation with llms:
Application and evaluation,” in 2023 IEEE International Conference on
Medical Artificial Intelligence (MedAI). IEEE, 2023, pp. 284–289.

[3] F. Lin, D. J. Kim et al., “When llm-based code generation meets the
software development process,” arXiv preprint arXiv:2403.15852, 2024.

[4] M. Kazemitabaar, X. Hou, A. Henley, B. J. Ericson, D. Weintrop, and
T. Grossman, “How novices use llm-based code generators to solve cs1
coding tasks in a self-paced learning environment,” in Proceedings of
the 23rd Koli Calling International Conference on Computing Education
Research, 2023, pp. 1–12.

[5] H. Koziolek, S. Grüner, R. Hark, V. Ashiwal, S. Linsbauer, and N. Es-
kandani, “Llm-based and retrieval-augmented control code generation,”
in Proc. 1st Int. Workshop on Large Language Models for Coffice
(LLM4Code) at ICSE, vol. 2024, 2024.

[6] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” arXiv preprint arXiv:2305.01210, 2023.

[7] C. S. Xia, Y. Deng, and L. Zhang, “Top leaderboard ranking= top coding
proficiency, always? evoeval: Evolving coding benchmarks via llm,”
arXiv preprint arXiv:2403.19114, 2024.

[8] J. Liu, S. Xie, J. Wang, Y. Wei, Y. Ding, and L. Zhang, “Evalu-
ating language models for efficient code generation,” arXiv preprint
arXiv:2408.06450, 2024.

[9] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[10] F. Cassano, J. Gouwar, D. Nguyen, S. Nguyen, L. Phipps-Costin,
D. Pinckney, M.-H. Yee, Y. Zi, C. J. Anderson, M. Q. Feldman et al.,
“Multipl-e: A scalable and extensible approach to benchmarking neural
code generation,” arXiv preprint arXiv:2208.08227, 2022.

[11] Y. Hao, G. Li, Y. Liu, X. Miao, H. Zong, S. Jiang, Y. Liu, and
H. Wei, “Aixbench: A code generation benchmark dataset,” arXiv
preprint arXiv:2206.13179, 2022.

[12] Y. Lai, C. Li, Y. Wang, T. Zhang, R. Zhong, L. Zettlemoyer, W.-
t. Yih, D. Fried, S. Wang, and T. Yu, “Ds-1000: A natural and
reliable benchmark for data science code generation,” in International
Conference on Machine Learning. PMLR, 2023, pp. 18 319–18 345.

[13] H. Yu, B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma, G. Liang, Y. Li,
Q. Wang, and T. Xie, “Codereval: A benchmark of pragmatic code
generation with generative pre-trained models,” in Proceedings of the
46th IEEE/ACM International Conference on Software Engineering,
2024, pp. 1–12.

[14] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and
K. Narasimhan, “Swe-bench: Can language models resolve real-world
github issues?” arXiv preprint arXiv:2310.06770, 2023.

[15] J. Li, G. Li, Y. Zhao, Y. Li, Z. Jin, H. Zhu, H. Liu, K. Liu, L. Wang,
Z. Fang et al., “Deveval: Evaluating code generation in practical software
projects,” arXiv preprint arXiv:2401.06401, 2024.

[16] Q. Zhu, J. Cao, Y. Lu, H. Lin, X. Han, L. Sun, and S.-C. Cheung,
“Domaineval: An auto-constructed benchmark for multi-domain code
generation,” arXiv preprint arXiv:2408.13204, 2024.

[17] “Github,” https://github.com/, 2024.
[18] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu, “Automatic

code generation from design patterns,” IBM systems Journal, vol. 35,
no. 2, pp. 151–171, 1996.

[19] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
1433–1443.

[20] X. Huang, Y. Ma, H. Zhou, Z. Jiang, Y. Zhang, T. Wang, and S. Li,
“Towards better multilingual code search through cross-lingual con-
trastive learning,” in Proceedings of the 14th Asia-Pacific Symposium
on Internetware, 2023, pp. 22–32.

[21] M. Geng, S. Wang, D. Dong, H. Wang, G. Li, Z. Jin, X. Mao, and
X. Liao, “Large language models are few-shot summarizers: Multi-intent
comment generation via in-context learning,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, 2024, pp.
1–13.

[22] Openai, “gpt-4 technical report, ” corr, vol. abs/2303.08774, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2303.08774

[23] Z. Du, Y. Qian, X. Liu, M. Ding, J. Qiu, Z. Yang, and J. Tang, “Glm:
General language model pretraining with autoregressive blank infilling,”
arXiv preprint arXiv:2103.10360, 2021.

[24] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

https://doi.org/10.48550/arXiv.2303.08774

[25] Y. Chang, X. Wang, J. Wang, Y. Wu, K. Zhu, H. Chen, L. Yang, X. Yi,
C. Wang, Y. Wang et al., “A survey on evaluation of large language
models,” arXiv preprint arXiv:2307.03109, 2023.

[26] B. Shen, J. Zhang, T. Chen, D. Zan, B. Geng, A. Fu, M. Zeng, A. Yu,
J. Ji, J. Zhao et al., “Pangu-coder2: Boosting large language models for
code with ranking feedback,” arXiv preprint arXiv:2307.14936, 2023.

[27] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi,
A. Tang, D. Pykhtar, J. Liu, Y. Wei et al., “Starcoder 2 and the stack
v2: The next generation,” arXiv preprint arXiv:2402.19173, 2024.

[28] D. Zan, B. Chen, F. Zhang, D. Lu, B. Wu, B. Guan, W. Yongji, and J.-G.
Lou, “Large language models meet nl2code: A survey,” in Proceedings
of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2023, pp. 7443–7464.

[29] Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin,
and D. Jiang, “Wizardcoder: Empowering code large language models
with evol-instruct,” arXiv preprint arXiv:2306.08568, 2023.

[30] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen,
X. Bi, Y. Wu, Y. Li et al., “Deepseek-coder: When the large language
model meets programming–the rise of code intelligence,” arXiv preprint
arXiv:2401.14196, 2024.

[31] Y. Ma, Y. Liu, Y. Yu, Y. Zhang, Y. Jiang, C. Wang, and S. Li, “At
which training stage does code data help llms reasoning?” arXiv preprint
arXiv:2309.16298, 2023.

[32] B. Lin, S. Wang, Z. Liu, Y. Liu, X. Xia, and X. Mao, “Cct5: A code-
change-oriented pre-trained model,” in Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2023, pp. 1509–1521.

[33] Y. Dong, G. Li, and Z. Jin, “Codep: grammatical seq2seq model for
general-purpose code generation,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2023, pp. 188–198.

[34] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
W.-t. Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A generative model
for code infilling and synthesis,” arXiv preprint arXiv:2204.05999, 2022.

[35] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[36] “(2023) instruct-starcoder.” https://huggingface.co/
GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct, 2023.

[37] “Chatgpt,” https://chatgpt.com, 2024.
[38] J. Li, Y. Li, G. Li, Z. Jin, Y. Hao, and X. Hu, “Skcoder: A sketch-

based approach for automatic code generation,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 2124–2135.

[39] T. Huang, Z. Sun, Z. Jin, G. Li, and C. Lyu, “Karecoder: A new
knowledge-enriched code generation system,” in Proceedings of the
2024 IEEE/ACM 46th International Conference on Software Engineer-
ing: Companion Proceedings, 2024, pp. 270–271.

[40] J. Li, G. Li, X. Zhang, Y. Dong, and Z. Jin, “Evocodebench: An evolving
code generation benchmark aligned with real-world code repositories,”
arXiv preprint arXiv:2404.00599, 2024.

[41] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

[42] Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue, Z. Wang,
L. Shen, A. Wang, Y. Li et al., “Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x,” arXiv
preprint arXiv:2303.17568, 2023.

[43] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago et al., “Competition-
level code generation with alphacode,” Science, vol. 378, no. 6624, pp.
1092–1097, 2022.

[44] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman et al., “Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-to-sql task,”
arXiv preprint arXiv:1809.08887, 2018.

[45] F. He, J. Zhai, and M. Pan, “Beyond code generation: Assessing code llm
maturity with postconditions,” arXiv preprint arXiv:2407.14118, 2024.

[46] F. Liu, Y. Liu, L. Shi, H. Huang, R. Wang, Z. Yang, and L. Zhang, “Ex-
ploring and evaluating hallucinations in llm-powered code generation,”
arXiv preprint arXiv:2404.00971, 2024.

[47] C. Spiess, D. Gros, K. S. Pai, M. Pradel, M. R. I. Rabin, A. Alipour,
S. Jha, P. Devanbu, and T. Ahmed, “Calibration and correctness of
language models for code,” arXiv preprint arXiv:2402.02047, 2024.

[48] J. J. Wu and F. H. Fard, “Benchmarking the communication com-
petence of code generation for llms and llm agent,” arXiv preprint
arXiv:2406.00215, 2024.

[49] X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng,
C. Sha, X. Peng, and Y. Lou, “Classeval: A manually-crafted benchmark
for evaluating llms on class-level code generation,” arXiv preprint
arXiv:2308.01861, 2023.

[50] J. Li, Y. Zhao, Y. Li, G. Li, and Z. Jin, “Acecoder: An effective
prompting technique specialized in code generation,” ACM Transactions
on Software Engineering and Methodology, 2024.

[51] “Leetcode,” https://leetcode.cn/, 2024.
[52] S. Schrittwieser and S. Katzenbeisser, “Code obfuscation against static

and dynamic reverse engineering,” in Information Hiding: 13th Interna-
tional Conference, IH 2011, Prague, Czech Republic, May 18-20, 2011,
Revised Selected Papers 13. Springer, 2011, pp. 270–284.

[53] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?” Acm computing surveys (csur), vol. 49,
no. 1, pp. 1–37, 2016.

[54] A. Balakrishnan and C. Schulze, “Code obfuscation literature survey,”
CS701 Construction of compilers, vol. 19, p. 31, 2005.

[55] “Redis,” https://github.com/redis/redis, 2024.
[56] “Libgit2,” https://github.com/libgit2/libgit2, 2024.
[57] “Libvips,” https://github.com/libvips/libvips, 2024.
[58] “Fluent,” https://github.com/fluent/fluent-bit, 2024.
[59] “lvgl,” https://github.com/lvgl/lvgl, 2024.
[60] “Nltk,” https://www.nltk.org/, 2024.
[61] “Llvm,” https://llvm.org/, 2024.
[62] “gpt-3.5-turbo,” https://platform.openai.com/docs/models/gpt-3-5-turbo,

2024.
[63] “gpt-4.0-turbo,” https://platform.openai.com/docs/models/gpt-4o, 2024.
[64] “Deepseek-coder-v2,” https://github.com/deepseek-ai/DeepSeek-Coder-

V2, 2024.

	Introduction
	BACKGROUND
	Large Language Models for Code Generation.
	Evaluations for LLM's Code Generation
	Motivation of Using Code Obfuscation

	Benchmark Construction and Testing
	Raw Data Collection
	Functions Collection
	Contextual Dependency Provision

	Code Obfuscation
	Symbol Obfuscation
	Structure Obfuscation
	Semantic Obfuscation

	Systematic Testing and Code Review
	Systematic Testing
	Code Review

	Evaluation
	Evaluation Setup
	Model selection
	Raw data selection
	Evaluation Metrics

	Results and Analysis
	RQ1: How effective are large language models in generating code on our datasets
	RQ2: How does code obfuscation further reveal the capabilities of LLMs, and how effective are different obfuscation strategies
	RQ3: What are the issues hidden in LLM-generated code

	Threats to validity
	Conclusion
	References

