
A Two-Stage Framework for Ambiguous
Classification in Software Engineering

Jiaying Li†, Yan Lei‡*, Shanshan Li†*, Haifang Zhou†, Yue Yu†, Zhouyang Jia†, Yingwei Ma†, Teng Wang†
†National University of Defense Technology, China

Email: {lijiaying, shanshanli, haifang zhou, yuyue, jiazhouyang, myw, wangteng13}@nudt.edu.cn
‡Chongqing University, China

Email: yanlei@cqu.edu.cn

Abstract—Classification tasks are prevalent and play a crucial
role in the field of software engineering. However, when two
classes exhibit similar features at the class level, the classification
model is prone to misclassification, which we refer to as ambigu-
ous classification, and the corresponding classes as ambiguous
classes. Ambiguous classification may impact the security and
reliability of software engineering classification systems.

To correct ambiguous classification, we propose a two-stage
framework. Our key insight is to combine two different classi-
fication models and utilize their complementary knowledge to
maximize the classification ability of the two-stage framework.
Specifically, we identify ambiguous classes according to the
confusion matrix of the original model. Then, we construct
a two-stage model, where the first stage utilizes the original
model and the second stage utilizes a different model trained
on the same dataset. The second-stage model is responsible for
reclassifying the samples that are predicted as ambiguous classes
by the first-stage model. We evaluate our method on two software
engineering tasks. Experimental results indicate that our method
can effectively correct ambiguous classification and achieve a
relative improvement of 19.8% in F1-score for ambiguous classes.

Index Terms—software reliability, classification task, software
repair

I. INTRODUCTION

Classification is a prominent research area in computer

science encompassing various fields such as computer vision,

speech recognition, natural language processing, and other

fields [1]–[8]. In the field of software engineering, classifica-

tion tasks are equally prevalent, examples of which include

vulnerability detection, software requirement classification,

code author attribution, and algorithm classification [9]–[16].

With the emergence and development of Deep Neural Net-

works(DNNs), automated classification methods are gradually

applied in software engineering-related classification tasks,

such as classification models based on LSTM [17] and BERT

[18], which further improve the accuracy and efficiency of

classification models [19]–[22].

However, despite the success of automated classification

methods in software engineering-related classification tasks,

some unexpected classification errors are still possible. For

instance, when the BERT-based classification model is used

to classify vulnerability code, the probability of misclassify-

ing the class Input validation error as the class Privilege
escalation reaches 35%, which is significantly higher than the

*Corresponding authors.

Fig. 1. A classification model is prone to misclassify class Love as class Joy.

misclassification rate of the models for other classes, as shown

in Fig. 1.

We studied classification errors in software engineering and

found that these classification errors typically manifest as mod-

els confusing two classes, resulting in a high misclassification

probability. Different from the misclassification of a single

instance concerned by existing studies [23]–[27], our research

focuses on the misclassification of two classes by the models

at the class level.

We refer to these classification errors in software engi-

neering classification models as ambiguous classification and

the corresponding classes as ambiguous classes. Essentially,

ambiguous classification occurs when the model struggles to

distinguish between two classes due to their similar class-level

features, which we call ambiguous features. These features

make it challenging for the model to differentiate between

the classes effectively. It’s important to note that ambiguous

features affect the entire class, unlike the unique features of

individual samples. This means that when two classes share

ambiguous features, all samples within those classes are prone

to be misclassified by the model. However, not every sample

will be misclassified. For instance, a classification model

may easily misclassify class Input validation error and class

275

2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/23/$31.00 ©2023 IEEE
DOI 10.1109/ISSRE59848.2023.00070

20
23

 IE
EE

 3
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

So
ftw

ar
e

R
el

ia
bi

lit
y

En
gi

ne
er

in
g

(I
SS

R
E)

 |
97

9-
8-

35
03

-1
59

4-
3/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
SR

E5
98

48
.2

02
3.

00
07

0

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

Privilege escalation, while some individual code that falls

under Input validation error can still be correctly predicted.

Similar to software errors that can lead to serious conse-

quences, classification errors present a risk to the security and

reliability of classification systems. Existing research focuses

on addressing misclassification at the instance level and dataset

level. It includes solving the instance-level error of classifica-

tion models based on adversary training, so as to improve

the robustness of the models [23]–[29]. And through data

augmentation and retraining technology to improve the overall

accuracy of the model on the dataset [30]–[34]. However, there

is a gap in research on correcting the ambiguous classification

error in models, which is caused by the confusion of models

at the class level.

In this paper, we propose a two-stage framework to correct

ambiguous classification errors in the software engineering

classification model, which can be seen as an Ensemble

Learning method [35]. Our key insight is that different models

may focus on different aspects of the data. By combining

two distinct models, we can leverage their complementary

knowledge to maximize the classification ability of our two-

stage framework.

Specifically, we first identify the ambiguous classes accord-

ing to the confusion matrix [36] of the original model on the

test set. When the confusion matrix shows that the model has

much higher misclassification probabilities in some classes

than in others, we believe there is an ambiguous classifica-

tion in the classification model, and the corresponding two

classes are ambiguous classes. Next, we construct a two-stage

classification framework. The first stage employs the original

model, while the second stage uses a different model trained

on the same dataset. We believe that the samples predicted by

the first-stage model as an ambiguous class and at the decision

boundary are more likely to be misclassified. Therefore, we set

an uncertainty threshold to filter these samples and reclassify

them by the second-stage model.

We conduct experiments to evaluate the effectiveness of our

method on two software engineering tasks, i.e., software en-

gineering emotion recognition and vulnerability classification.

The experimental results show that our two-stage framework

can effectively correct ambiguous classification errors without

affecting the performance of other classes, and achieve a

relative improvement of 19.8% in F1-score for ambiguous

classes. Furthermore, we conduct an ablation study to examine

the contributions of the first-stage model and the second-stage

model, respectively. The results indicate that these models can

focus on different features of the same data. When combined

in the two-stage framework, their performance surpasses that

of using them separately.

The main contributions of this paper can be summarized as

follows:

• We define ambiguous classification in classification mod-

els applied to software engineering. To the best of our

knowledge, we are the first to define this type of error in

software engineering.

• We propose a two-stage framework designed to correct

ambiguous classification errors. This framework lever-

ages the strengths of multiple classification models and

combines their knowledge to improve model perfor-

mance.

• We evaluate our method on two software engineering-

related classification tasks. The results indicate that our

method can effectively correct ambiguous classification.

The rest of the paper is organized as follows. Section II

introduces the background knowledge. Section III depicts our

method. Section IV presents the experimental design. Section

V discusses our experimental results on two tasks. Section

VI is about discussion. Section VII summarizes related work.

Finally, Section VIII concludes the whole study.

II. BACKGROUND

A. Automated Classification Methods in Software Engineering

In software engineering, classification tasks cover crucial

stages such as requirements analysis, software design, devel-

opment, testing, and maintenance, which are closely related

to the security and reliability of software [22]. In recent

years, with the emergence and development of Deep Neu-

ral Networks (DNNs) and Data Mining technologies, auto-

mated classification methods are gradually applied in software

engineering-related classification tasks. Among them, DNNs-

based classification models are a common and widely used

method, such as LSTM [17] and BERT [18].

DNNs are widely used machine learning models that sim-

ulate the interconnection structure between neurons in the

human brain, consisting of a series of connected computing

units called neurons. These neurons are arranged in different

layers in order and transmit information through the trans-

mission of signals between connections. Training the DNNs

requires updating the weight parameters of the connections to

enable the neurons in the last layer to produce the expected

output. In the classification task, the goal of a DNN is to

learn decision boundaries between different classes. Ideally,

all instances belonging to the same class should be classified

consistently, while instances from different classes should be

correctly distinguished [37]. However, in high-dimensional

feature spaces, if the distance between classes is small or

below a predetermined threshold, DNNs may not be able to

fully distinguish them.

B. Testing and Repairing of Classification Models

Existing research has made many efforts in testing and

repairing classification models based on DNNs. In terms of

testing, lots of testing methods based on neuron coverage

have been proposed [38]–[43]. These testing tools use neuron

coverage as a metric to detect instance level errors in models.

Regarding repairing, existing research focuses on improving

the robustness of models to adversarial instances, as well as

improving overall accuracy through data augmentation and

retraining techniques [23]–[25], [28], [30]–[32], [34], [44]. For

example, Ren et al. [33] proposed FSGMix, which maximizes

the utilization of limited failed instances and enhances training

276

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

data through guidance from failed instances. Gu et al. [29]

proposed GCN, which uses hierarchical contraction penalty

and smoothness penalty terms to improve the robustness of

models to adversarial samples by smoothing the model output

mechanism.

While existing research primarily addresses instance-level

and dataset-level errors in classification models, we focus on

the reduction of ambiguous classification in software engineer-

ing, which is a class-level error.

C. Confusion Matrix and Uncertainty Strategy

Confusion matrix [36], a commonly used method in ma-

chine learning to evaluate the performance of classification

models, which is suitable for binary and multi-class classi-

fication tasks. It is a two-dimensional matrix that intuitively

displays the correspondence between the predicted results of

the classification model on the test set and the actual labels.

The values on the main diagonal of the matrix indicate correct

classifications, whereas larger values indicate better perfor-

mance of the model on the corresponding class. The values

outside the main diagonal represent misclassifications, where

larger values indicate higher probabilities of misclassification

and poorer performance on the corresponding class.

Active learning is a subfield of machine learning, more

generally, artificial intelligence [45]. The key idea behind

active learning is that a machine learning algorithm can

achieve greater accuracy with fewer labeled training instances

if it’s allowed to select the most valuable training data from

which it learns. The selection strategy of hard samples is an

important step in active learning [45]. Best-vs-Second-Best

(BvSB) is a widely used uncertainty sampling strategy, which

compares the prediction probabilities of the model for the

two most likely labels [46]. Samples with smaller probability

differences are considered more uncertain. In this paper, we

use a selection strategy similar to BvSB, but we do not use

these samples for retraining. Instead, we identify potential

misclassified samples for reclassifying. Through this approach,

we can more specifically handle samples with a high risk of

error, improving the performance and robustness of the model.

D. Ensemble Learning Methods

Ensemble Learning [35] is a machine learning method that

involves training multiple classifiers and combining them to

achieve improved overall predictive performance. By aggregat-

ing the predictions of multiple classifiers, ensemble learning

can reduce the risk of overfitting and enhance the model’s

robustness and accuracy.

Classic ensemble learning methods include Bagging [47],

Boosting [48], Stacking [49] and Delegation [50]. In Bagging,

multiple classifiers are trained by randomly sampling the

dataset with replacement, and then their results are combined

through voting or averaging. Boosting, sequentially trains a

series of weak classifiers, where each learner tries to correct

the errors made by its predecessor, ultimately forming a strong

learner. Stacking involves building a second-stage meta-learner

that learns from the outputs of the base classifiers and produces

the final prediction. Delegation removes the examples which

are classified with high confidence and leaves the examples

which are classified with lower confidence for subsequent

iterations. Delegation is a layered problem-solving method

similar to the concept of Defence-in-Depth (DiD) in the field

of network security [51]. DiD requires the application of

security at multiple levels, and its working principle is to

provide different types of protection for each level to ensure

that it becomes the best means to prevent attacks.

Compared to other ensemble learning methods, Delegation

offers improved efficiency and interpretability, providing the

possibility to simplify the overall multi-classifier by remov-

ing delegated parts. Our proposed two-stage method shares

similarities with Delegation as both are sequential approaches

triggered by confidence to classify examples in the second

stage. However, they also differ in several aspects. Firstly, the

two-stage method is more flexible than Delegation because

the two classifiers used in the two-stage method are different

and have different knowledge. In Delegation, all classes are

the same. For example, if a decision tree is used as the base

classifier, then the entire classifier is a decision tree. Secondly,

in the Delegation method, the second stage classifier only uses

samples with insufficient confidence in the first stage classifier

for training, which can easily lead to overfitting. However, in

the two-stage method proposed in this paper, the second-stage

classifier is trained using a complete training set.

III. METHODOLOGY

In this section, we will introduce the overall of our two-

stage framework, and then describe the details of each part.

A. Overall Architecture

First, we identify the ambiguous classes according to the

confusion matrix of the original model on the test set. Then,

we construct a two-stage framework. The first stage employs

the original model and the second stage utilizes a different

model trained on the same dataset. We filter out the samples

that are predicted to be ambiguous class and located at the

decision boundary according to the prediction probability of

the first-stage model. Then, we use the second-stage model

to reclassify these filtered samples, so as to correct the

potential ambiguous classification error in the original model.

Fig. 2 shows the overall structure of our proposed two-stage

framework, consisting of three parts:

• Ambiguous class identification: Identify the ambiguous

classes that lead to ambiguous classification error through

the confusion matrix output from the original model.

• Boundary Sample Filtering: By setting the uncertainty

threshold to filter out the samples located at the am-

biguous class decision boundary, which are likely to be

misclassified by the first-stage model.

• Second-stage Model: Reclassify the selected decision

boundary samples of the ambiguous class, in order to

correct the ambiguous classification error in the first-stage

model through knowledge complementarity.

277

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

O

Fig. 2. Overall structure of the two-stage framework.

B. Ambiguous Class Identification

According to the definition, ambiguous classes appear in

pair, which we refer to as ambiguous class pair. We use the

confusion matrix output from the original model on the test set

to determine the ambiguous classes and express them as pair.

For multi-classification tasks, the confusion matrix is an N×N
matrix, where N represents the number of classes, and shows

the difference between the predicted and true label of a model.

For a given confusion matrix, we calculate the third quartile

of all off-diagonal values and select twice the number as the

threshold θ1. When a value in the confusion matrix is higher

than θ1, then the two corresponding classes on both sides of the

diagonal are ambiguous classes, which can be represented by

(ambiguous class A, ambiguous class B). In statistics, quartiles

can help us identify outliers in a data set because they can

better resist the impact of extreme values. In this scenario,

using twice the third quartile as the threshold θ1 can help

us find values that are significantly higher than most of the

proportion of wrong predictions, and thus find the ambiguous

classes. The calculation steps are shown in equations 1 and 2.

θ1 = 2 ·Quartile(CM) (1)

Ci =

{
1 pij > θ1
0 otherwise

(2)

In equations 1 and 2, CM is the confusion matrix of the

original model on the test set. Quartile is used to calculate the

third quartile and get θ1. The probability pij in the confusion

matrix represents the probability that Class i is misclassified

into Class j. And, we use 1 for ambiguous classes and 0 for

other classes.

C. Boundary Sample Filtering

According to the uncertainty of prediction, we select the

samples that are at the decision boundary because they may be

misclassified, and then reclassify these samples in the second

stage. Firstly, we consider the prediction class of the first-

stage model. If the prediction class belongs to the ambiguous

classes, we further calculate the difference δ between the

prediction probabilities corresponding to the two classes in

the ambiguous class pair. This difference reflects the model’s

confidence in the prediction. The smaller the difference, the

lower the model’s confidence in prediction, and vice versa.

Next, we set a threshold called uncertainty threshold θ2. When

the difference in prediction probability δ is less than this

threshold θ2, we believe that the model has low confidence in

the prediction and may experience classification error. Such

samples are considered to be near the decision boundary

of the ambiguous class and need to be reclassified in the

second stage. On the contrary, if the difference in prediction

probability is greater than this threshold θ2, it indicates that

the model is relatively confident in its prediction and does not

need to enter the second stage for further classification.

D. Second-stage Model

The second-stage model is used to reclassify the selected

samples. We will introduce the selection and construction of

the second-stage model in the following steps.

1) Model Selection in the Second Stage: We establish

a model recommendation library, including models that are

currently widely used and perform well. Based on the type of

input data and the selection of the first-stage model, we form

a model recommendation list as shown in Table I.

We drew on the research conclusions of Minaee et al

[52]. Minaee et al. reviewed over 150 DNNs-based text

278

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MODEL RECOMMENDATIONS FOR SOFTWARE ENGINEERING-RELATED

CLASSIFICATION TASKS.

Task Type First-stage Model Second-stage Model

Natural Language
Related

ML, RNN,
LSTM, BERT

BERT, RoBERTa

Source Code
Related

ML, LSTM,
GGNN, CodeBERT

CodeBERT
GraphCodeBERT

classification models proposed in recent years and suggested

that pre-trained models could be prioritized when selecting

classification models. For a given task, we follow the following

principles to select the second-stage model:

• If the first stage is a machine learning model or a general

DNNs-based model, then the second stage selects a pre-

trained model in the corresponding domain.

• If the first stage is a pre-trained model, then the second

stage selects a model with a different structure and is

pre-trained on different datasets.

2) Data Processing: Building upon the preprocessing steps

of the baseline method, we need to tokenize the raw data and

convert them into vectors to enhance the second-stage model’s

understanding and exploration of the input data.

To enable the model to comprehend the data, we need to

encode the token sequence into vectors, thereby transform-

ing unstructured data into structured data. Encoding vectors

involve representing each token as a numerical vector to

facilitate model processing and analysis. These word vectors

are then aggregated into sentence vectors. Finally, input the

sentence vector into the model.

In our framework, we adopt a method of adapting to the

model for tokenization and vector transformation. For BERT

[18], we use BertTokenizer for tokenization. The BertTok-

enizer consists of the BasicTokenizer and the WordpieceTo-

kenizer. The BasicTokenizer preprocesses the input data by

removing special characters and applying case normalization.

The WordpieceTokenizer further splits the tokenized tokens

into smaller subwords. For RoBERTa [53] and CodeBERT

[54], we use Roberta Tokenizer for tokenization. It adopts

byte-level BPE encoding, which can handle the complexity

and flexibility of vocabulary. So it is suitable for handling

complex inputs such as source code. For GraphCodeBERT

[55], in addition to inputting the source code sequence into

the model, we also need to parse the source code into AST

and extract the sequence of variables. Finally, the dependency

relationship between variables is extracted based on variable

sequences and AST. Then, we combine word embedding and

position embedding to generate the embedding vector of the

final input model. Word Embedding converts the semantic

information of the word itself into a vector representation.

Position Embedding converts the positional information of the

word into a vector representation. The position embedding

can represent the relative position of the given token in the

input sequence. Finally, we concatenate the word embedding

and position embedding to generate the input vector for

the Transformer encoder block. Such embedding vectors can

simultaneously capture the semantics of code tokens and their

positions in the input sequence, providing important feature

representations for further code analysis and prediction.

3) Training the Second-stage model: We input the em-

bedding vectors into the second-stage model for training.

In the second stage, the model performs deep coding and

representation learning on these vectors. At the end of the

model, we input them into a simple fully connected layer

that, by learning appropriate weights and bias parameters,

can transform the embedding vectors into a set of probability

prediction values p = [p1, p2, ..., pn], which displays the

probability that the sample belongs to each class. Finally, we

use a softmax function to process this set of probabilities so

that the sum of probabilities for all classes is equal to 1. In

this way, the class with the highest probability can be output

as the final prediction ŷ in equation 3.

ŷ = argmax(softmax(p)) (3)

E. Two-stage Framework in Inference Phase

In the inference phase, we use the first-stage model to

predict the input samples, and then analyze the prediction class

and probabilities. If the predicted class is not the ambiguous

class, we will directly output the predicted class. However, if

the prediction class is the ambiguous class and the sample is

located at the decision boundary, we will use the second-stage

model to reclassify the sample. Finally, the prediction results

of the second-stage model will be used as the final prediction

class for the sample.

IV. EXPERIMENTAL DESIGN

In this section, we conduct experiments on two tasks to

verify the effectiveness of our method, including emotion

recognition in software engineering and vulnerability classi-

fication tasks. We will introduce the objectives of each task,

the corresponding baseline methods, the datasets we use, and

the experimental settings.

A. Dataset and Baseline

We conduct experiments on two different types of software

engineering-related classification tasks, involving source code

and natural language as input data. This design is intended to

verify the effectiveness and generalizability of our method.

1) Software Engineering Emotion Recognition Task: This

task is to predict emotion expressed in software engineering-

related text. Emotions are pervasive in daily software engi-

neering activities, the detection and analysis of developers’

emotions can significantly contribute to maintaining high

productivity. Therefore, it is essential to understand develop-

ers’ emotions, detect negative emotions, and promptly take

necessary actions to ensure their sustained productivity. We

employ SEntiMoji as our baseline method and use the publicly

available dataset from Mia et al.

Baseline: Chen et al. [56] proposed SEntiMoji, a SE-

customized emotion classification model. They conclude that

279

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

SEntiMoji can significantly outperform existing emotion de-

tection methods in software engineering (e.g., DEVA [57],

EMTk [58], MarValous [59]). SEntiMoji is developed based

on DeepMoji [60], which is based on Bi-LSTM and Attention,

and trained on a small amount of labeled software engineering-

related data as well as large-scale emoji-labeled data from both

Twitter and GitHub. To adapt to our two-stage framework,

we used SEntiMoji for multi-classification, while the original

literature used it for binary classification. We replicated the

Delegation method [50] and also used it as the baseline

method.

Dataset: Mia et al. [61] collected 2,000 instances from

pull requests and issues on four popular GitHub repositories

and augmented the data using three strategies: Unconstrained,

Lexicon, and Polarity. We choose the data augmented by the

Polarity strategy because according to the experimental results

in [61], it performed the best. Consequently, the augmented

dataset for the emotion recognition task in software engineer-

ing comprises a total of 15,436 samples.

2) Vulnerability Classification Task: This task is to classify

vulnerability code. Software vulnerabilities are common in

software systems and can lead to various issues, including

deadlocks, data loss, or system failures. By classifying the

code that contains vulnerabilities, we can better understand the

characteristics and patterns of different types of vulnerabilities,

which can provide guidance and support for developers to

identify and fix potential vulnerabilities. So, this task is

important in the fields of software development and security.

Baseline: Our objective is to classify the vulnerable code,

which is different from existing research that primarily fo-

cuses on classifying code as vulnerable or non-vulnerable.

Therefore, instead of comparing with existing work, we select

a widely used BERT [18] model as the baseline for the

multi-classification of vulnerability codes. We replicated the

Delegation method [50] and also used it as the baseline

method.

Dataset: The dataset proposed by Fan et al. [62] is one

of the largest vulnerability datasets, consisting of 144,428

instances collected from 348 open-source Github projects be-

tween 2002 and 2019, covering 91 different CWEs. Benjamin

et al. [63] categorized the samples of the MSR dataset into

five types according to the annotated CWE types, i.e., buffer

overflow, value error, resource error, input validation error,

and privilege escalation. We use the vulnerability code dataset

annotated by Benjamin et al. based on MSR for classification.

After removing the non-vulnerability code, we obtain a total

of 8,379 samples for vulnerability code classification.

B. Model Selection

We use the original model as the first-stage model. For the

selection of the second-stage model, based on the recommen-

dation models listed in Section III, we make the following

choices for two tasks. For the software engineering emotion

recognition task, we select BERT [18] as the second-stage

model, which complements the first-stage LSTM model and

is well-suited for natural language data. For the vulnerability

classification task, considering the input as source code and

should be different from the first-stage model, we choose

CodeBERT [54] as the second-stage model.

C. Experiment Metrics

To evaluate the effectiveness of our method, we choose pop-

ular metrics used to evaluate a classification task: Precision,

Recall, and F1-score, which is the average of the prior two.

We list the formula used for calculating Precision, Recall, and

F1-score below.

Precision is the proportion of true positive observations to

the total predicted positive observations.

Precision =
TP

TP + FP
(4)

Recall is the proportion of true positive observations to all

observations in the actual class.

Recall =
TP

TP + FN
(5)

F1-score is a weighted average of Precision and Recall.

F1-score = 2× Precision ·Recall

Precision+Recall
(6)

Here, TP (True Positive) is the number of samples that

the model correctly classifies into the corresponding class; FP

(False Positive) is the number of samples incorrectly classified

into this class; FN (False Negative) is the number of samples

incorrectly classified into other classes.

D. Environments

All the experiments are conducted on a computer containing

an 8-core Intel CPU with 64GB physical memory, and a single

NVIDIA V100 GPU. The operating system is Ubuntu 18.04.5.

E. Parameter settings

For the software engineering emotion recognition task,

we use an initial model with original hyperparameters. The

second-stage model is based on the PyTorch implementation

of BERT. The padding size is set to 48. The batch size is 16

for training and 32 for validation.

For the vulnerability classification task, the first-stage model

is based on the PyTorch implementation of BERT. The padding

size is set to 512. The second-stage model is based on the

PyTorch implementation of CodeBERT. We use AdamW as

the optimizer, with an initial learning rate of 2e-5 and a

padding size of 512. The batch size is 16 for both training

and validation.

For all models based on BERT implementation, the word

embedding size is 768, and we use BertAdam as the optimizer

with an initial learning rate of 5e-5, which linearly increases

from 0 during a warmup period. For splitting the original

dataset, we follow the same splitting strategy as the original

literature to ensure that the data used for testing and non-

testing parts are consistent with the baseline.

For the Delegation method, we use the parameters set by

Ferri et al. [50] in the paper and trained the second stage

classifier with 50% low confidence data.

280

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

V. RESULTS

Here we discuss the results of our study by placing them

in the context of two research questions, RQ1 and RQ2, as

discussed later.

A. RQ1:How effective is the two-stage framework in correct-
ing ambiguous classification?

To answer this research question, we conduct experiments

on two software engineering classification tasks and compare

the two-stage framework with the baseline method. Similar

to the evaluation method used in the baseline, we assess the

performance using a misclassification rate and three popular

classification metrics, i.e., Precision, Recall, and F1-score.

For the software engineering emotion recognition task, we

identify two ambiguous class pairs, represented by (Fear,
Anger) and (Love, Joy). For the vulnerability classification

task, we identify one ambiguous class pair, represented by

(Input validation error, Privilege escalation).
As shown in Table II and Table III, our two-stage frame-

work improves the performance of the model on ambiguous

classes without affecting its predictive performance for other

classes. However, the Delegation method does not significantly

improve the predictive performance of ambiguous classes

and even has side effects. Fig. 3 further demonstrates the

effectiveness of our method in reducing misclassification rates

of ambiguous classes.

For the software engineering emotion recognition task, our

method achieves an F1-score of 56.52% on the class Anger,

a relative improvement of 5.08% from baseline. Obtains an

F1-score of 67.42% on the class Love, a relative improvement

of 10.2% compared to the baseline. Obtains an F1-score of

61.82% on the class Joy, a relative improvement of 2.42%

compared to the baseline. We achieve an F1-score of 57.97%

on the class Fear, which is 19.8% higher than the baseline.

Overall, our method achieves an F1-score of 61.75%, a relative

improvement of 5.7% compared to the baseline. In terms of

misclassification rate, our method reduces the misclassification

rate of (Fear, Anger) from 36% to 26%, a reduction of 10%,

and the misclassification rate of (Love, Joy) is reduced from

32% to 18%, a reduction of 14%.

For vulnerability classification tasks, our method achieves

an F1-score of 56.35% on the class Input Validation Error,

a relative improvement of 8.62% compared to the baseline.

We achieve an F1-score of 57.07% on the class Privilege
Escalation, a relative improvement of 2.46% compared to

the baseline. Overall, our method achieves an F1-score of

62.52%, a relative improvement of 1.91% compared to the

baseline. In terms of misclassification rate, our method reduces

the misclassification rate of (Input validation error, Privilege
escalation) from 35% to 28%, a reduction of 7%.

We also conduct t-tests on these two tasks to demonstrate

the statistical significance of the performance improvement

brought about by the two-stage framework. Specifically, for

the software engineering emotion recognition task, we obtain

a p-value of 0.026 (p<0.05), indicating a significant difference

between the two sets of data. In the case of the vulnerability

classification task, we obtain a p-value of 0.018 (p<0.05),
which similarly indicates a significant difference between the

two data sets.

We can observe that it is effective to use the second-

stage model to reclassify the samples belonging to the am-

biguous classes and located at the decision boundary. The

effectiveness of our method may be attributed to the ability

of the first-stage model and the second-stage model to capture

different aspects or perspectives of the data. The first-stage

model may emphasize certain features, while the second-stage

model may focus on different aspects and discover additional

discriminative features. By combining two different models,

their complementary knowledge can be utilized to maximize

the classification ability of the two-stage model. However,

the effectiveness of the Delegation method is not ideal for

two possible reasons. Firstly, this method utilizes the same

classifier in both stages, limiting the ability to effectively learn

diverse information from the data. As a result, information

that the first-stage classifier fails to learn is also difficult

to be learned by the second-stage classifier. Secondly, the

reduced dataset used to train the second-stage classifier may

lead to overfitting, thereby diminishing the performance of the

second-stage classifier.

TABLE II
PERFORMANCE OF OUR TWO-STAGE FRAMEWORK AND BASELINE.

Emotion Type Model Precision Recall F1-score
Relative
Improve

in F1-score

Anger
SEntiMoji 0.4937 0.5909 0.5379

5.08%↑Delegation 0.4500 0.5455 0.4932

Two-stage 0.5417 0.5909 0.5652

Love
SEntiMoji 0.6047 0.6190 0.6118

10.20%↑Delegation 0.6048 0.6188 0.6108

Two-stage 0.6383 0.7143 0.6742

Joy
SEntiMoji 0.5795 0.6296 0.6036

2.42%↑Delegation 0.5500 0.5432 0.5466

Two-stage 0.6071 0.6296 0.6182

Sadness
SEntiMoji 0.7500 0.5455 0.6316

Non
Ambiguous

Class

Delegation 0.6744 0.5273 0.5918

Two-stage 0.7500 0.5455 0.6316

Surprise
SEntiMoji 0.6000 0.6774 0.6364

Delegation 0.5375 0.6935 0.6065

Two-stage 0.6000 0.6774 0.6364

Fear
SEntiMoji 0.6250 0.3947 0.4839

19.80%↑Delegation 0.6111 0.2895 0.3929

Two-stage 0.6452 0.5263 0.5797

Overall
SEntiMoji 0.6088 0.5762 0.5842

5.70%↑Delegation 0.5713 0.5363 0.5403

Two-stage 0.6304 0.6140 0.6175

281

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The effectiveness of two-stage frameworks in reducing misclassification rates.

TABLE III
PERFORMANCE OF OUR TWO-STAGE FRAMEWORK AND BASELINE.

Vulnerability
type Model Precision Recall F1-score

Relative
Improve

in F1-score

Buffer overflow
BERT 0.7157 0.6857 0.7007

Non
Ambiguous

Class

Delegation 0.5077 0.8214 0.6276

Two-stage 0.7157 0.6857 0.7007

Value error
BERT 0.8088 0.5978 0.6875

Delegation 0.0000 0.0000 0.0000

Two-stage 0.8088 0.5978 0.6875

Resource error
BERT 0.6105 0.5966 0.6034

Delegation 0.5397 0.3864 0.4503

Two-stage 0.6105 0.5966 0.6034

Input
validation error

BERT 0.6078 0.4526 0.5188

8.62%↑Delegation 0.3708 0.2409 0.2920

Two-stage 0.6174 0.5182 0.5635

Privilege
escalation

BERT 0.4681 0.6875 0.5570

2.46%↑Delegation 0.4746 0.5250 0.4985

Two-stage 0.4910 0.6813 0.5707

Overall
BERT 0.6423 0.6040 0.6135

1.91%↑Delegation 0.3786 0.3947 0.3737

Two-stage 0.6488 0.6159 0.6252

B. RQ2:What are the contributions of different parts to the
two-stage framework?

To answer this research question, we design ablation exper-

iments to test the effect of three important parts of our model,

i.e., the first-stage model, the second-stage model, and the

Boundary Sample Filtering strategy(BSF). The experimental

results are shown in Table IV and Table V.

We conduct experiments by using only the first-stage model

or only the second-stage model. We also experiment with and

without considering BSF, which means that we consider all

samples classified into the ambiguous class by the first-stage

model, not only samples located at the decision boundary of

the ambiguous class. This expands our scope of reclassifica-

tion. The first two rows show the results of using only the

first-stage model and only the second-stage model. The results

with (w/) and without(w/o) boundary sample filtering(BSF)

strategies are displayed in the next two rows.
As shown in Table IV, for the software engineering emotion

recognition task, the two-stage framework achieves higher F1-

scores on many ambiguous classes compared to single-stage

models, particularly in classes such as Love, Joy, and Fear.

Although the F1-score of the two-stage framework on class

Anger is not higher than that of the second-stage model only,

the difference between them is not significant. In the case of

(w/o BSF), the F1-score of the most ambiguous class is sig-

nificantly lower than that of (w/ BSF), including class Anger,

Joy, and Fear. While in the case of (w/o BSF), the F1-score of

the two-stage framework on the class Love is higher than that

of (w/ BSF), this is at the cost of the higher misclassification

probability of the class Joy relative to it. In addition, we are

surprised to find that for the class Fear, the F1-score using

only the first stage model and only the second stage model is

48.39% and 50.00%, but the two-stage framework can improve

the F1-score of the class Fear to 57.97%. This finding can

intuitively illustrate that combining two different models can

make full use of knowledge complementarity to maximize the

ability of the two-stage model.
As shown in Table V, for the vulnerability classification

task, the F1-score of the two-stage framework on ambiguous

classes surpasses that of the first-stage only model. In the

case of (w/o BSF), the F1-score for the ambiguous classes,

including Input Validation Error and Privilege Escalation, is

lower compared to the (w/ BSF) case. Surprisingly, for the

class Input Validation Error, the F1-score using only the first-

stage model and only the second-stage model is only 51.88%

and 50.43%, but the two-stage framework can improve the

F1-score of the class Input Validation Error to 56.35%. This

finding can intuitively illustrate that combining two different

models can make full use of knowledge complementarity to

maximize the ability of the two-stage model.
Combining the ablation experimental results of the two-

stage model on two tasks, we find that the two models used in

the two-stage framework are able to capture different aspects

or perspectives of the data so that the combined effect is

better than that of a single use. When removing the BSF, we

observe a decrease in F1-score. One possible explanation is

that the BSF restricts the second-stage model to focus only on

ambiguous class boundary samples. This means that samples

confidently classified by the first-stage model are not reclas-

282

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
EMOTION CLASSIFICATION: EFFECTIVENESS OF EACH COMPONENT IN TWO-STAGE FRAMEWORK.

Model
F1-score

Anger Love Joy Sadness Surprise Fear Overall

first-stage only 0.5379 0.6118 0.6036 0.6316 0.6364 0.4839 0.5842

second-stage only 0.5738 0.6667 0.6154 0.5825 0.6364 0.5000 0.5958

two-stage w/o BSF 0.5147 0.7083 0.6076 0.6316 0.6364 0.5070 0.6009

two-stage w/ BSF 0.5652 0.6742 0.6182 0.6316 0.6364 0.5797 0.6175

TABLE V
VULNERABILITY CLASSIFICATION: EFFECTIVENESS OF EACH COMPONENT IN TWO-STAGE FRAMEWORK.

Model
F1-score

Buffer overflow Value error Resource error Input validation error Privilege escalation Overall

first-stage only 0.7007 0.6875 0.6034 0.5188 0.5570 0.6135

second-stage only 0.7070 0.6415 0.5785 0.5043 0.6224 0.6107

two-stage w/o BSF 0.7007 0.6875 0.6034 0.5603 0.5608 0.6225

two-stage w/ BSF 0.7007 0.6875 0.6034 0.5635 0.5707 0.6252

sified in the second stage. However, for samples where the

first-stage model lacks confidence in classification, the second-

stage model takes over to reclassify them. By narrowing the

scope of the second-stage model, the probability of incorrectly

reclassifying samples correctly classified by the first-stage

model is reduced. Overall, the F1-score of the two-stage

model outperforms that of the single-stage classification model

alone, particularly in most ambiguous classes. Notably, when

considering the case with BSF (w/ BSF), the improvement is

more pronounced.

VI. DISCUSSION

A. Complementarity of Models

Taking the two model combinations used in Section IV of

this paper as an example, discuss the complementarity of the

two-stage models. We first train and test these models on

the same dataset, and the results are presented through the

confusion matrices shown in Fig. 4.

Confusion matrices (a) and (b) show the classification

performance of the LSTM and the BERT on the dataset

proposed by Mia et al. [61]. It can be observed that BERT

performs better when LSTM tends to misclassify class Anger
and Fear, as well as class Love and Joy. This indicates that the

BERT is able to compensate for the weaknesses of the LSTM

in these classes.

Similarly, confusion matrices (c) and (d) show the classifi-

cation performance of the BERT and the CodeBERT on the

dataset proposed by Benjamin et al. [63]. It can be observed

that the CodeBERT outperforms the BERT in cases where the

BERT tends to misclassify the class Input validation error and

Privilege escalation. This suggests that CodeBERT is able to

compensate for the deficiencies of the BERT in these classes.

In addition, we further analyze the experimental results of

the two-stage framework in two tasks. We find that among

the samples correctly classified by the first-stage model, only

a very small number of samples were misclassified by the

second-stage model, accounting for 0 and 0.03%, respectively.

This indicates that our two-stage framework can maintain the

samples correctly classified by the first-stage model in most

cases, and more importantly, correct the samples with incorrect

classification by the first-stage model.

Based on the above analysis, the different models used in the

two-stage framework have a certain degree of complementar-

ity, which is due to their structural differences and differences

in pre-trained knowledge. Although the second-stage model

cannot completely correct the errors of the first-stage model,

it can largely correct some of the errors, thereby improving the

accuracy of the model’s classification of ambiguous classes.

B. Threats To Validity

Several limitations may impact the interpretation of our

method. We list each of them below.

• A threat to the effectiveness of our study is that we

did not use cross-validation to evaluate the performance

of the method. This experimental setup may limit our

comprehensive evaluation of model robustness. However,

in order to make a fair comparison, we followed the same

data-splitting strategy as the original literature to ensure

that the data used for testing and non-testing parts are

consistent with the baseline.

• Another potential threat is that our experiment consid-

ered only two combinations of the two-stage framework.

However, different tasks and first-stage models can be

combined with various second-stage models to form a

two-stage framework. To reduce this limitation, we have

283

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Performance of different models on the same data.

listed classification model combination recommendations

in section III. We leave the optimization of the second-

stage model selection strategy and extend the model

library for future work.

• Although our method has experimented on two tasks,

its basic principles are also applicable to other software

engineering-related classification tasks that exhibit am-

biguous classification problems. For such scenarios, the

framework can be extended by identifying these ambigu-

ous classes and training another model with complemen-

tary knowledge, thus establishing a two-stage framework.

However, in certain cases where the task does not involve

ambiguous classification problems, our method may not

yield significant performance improvements.

VII. RELATED WORK

A. Classification Model Testing

An increasing number of works focus on DNN-based classi-

fication model testing. Existing research has proposed testing

methods based on neuron coverage [38]–[43]. Pei et al. [38]

designed and implemented DeepXplore, a system for testing

DL, which for the first time introduced neuron coverage as a

metric. DeepXplore was able to discover thousands of erro-

neous behaviors in fifteen state-of-the-art DNNs trained on five

real-world datasets. Ma et al. [39] further defined both neuron

and hierarchical coverage standards to help measure the testing

quality of deep learning models. Sun et al. [40] proposed a

DNNs testing and debugging tool called DeepConcolic, which

has a high neuron coverage rate and can discover a large

number of adversarial instances.

B. Classification Model Repairing

There is a lot of existing research dedicated to correct-

ing bugs in DNN-based classification model. Some research

has primarily aimed at discovering models bug patterns and

building automated methods for repair [44], [64], [65]. For

instance, Zhang et al. [66] studied bug patterns in Tensorflow
using both GitHub and Stack Overflow. They discussed the

new patterns and bug features of Tensorflow users writing

DNNs applications. They also discussed three new challenges

in detecting and locating these bugs. Pham et al. [67] proposed

CRADLE, a method focused on detecting and locating bugs

in deep learning software libraries. Islam et al. [68] conducted

a more comprehensive study by exploring five deep learning

libraries, delving into the specific repair patterns, common

challenges faced by developers, and the potential introduction

of new errors during bug fixing.

Other research has primarily focused on techniques such

as data augmentation and retraining to enhance the overall

accuracy of classification models [30]–[32]. For instance, Ren

et al. [33] proposed FSGMix, a data augmentation-based

repair method that maximizes the utilization of limited failure

cases to enhance training data. Ma et al. [34] proposed and

implemented MODE, an automated neural network debugging

tool driven by state difference analysis and input selection.

This tool can effectively identify defective neurons and select

high-quality training samples to repair model errors.

Additionally, there have been efforts to improve the robust-

ness of models against adversarial instances [23]–[27]. For

example, Papernot et al. [28] introduced defensive distilla-

tion, a technique that effectively defends against adversarial

samples while minimizing changes to the DNNs structure

and minimizing the impact on model accuracy. Gu et al.

[29] presented the Deep Contractive Network(DCN), a novel

end-to-end training process that utilizes layered contraction

penalties and smoothness penalties to improve the robustness

of deep neural networks against adversarial samples. Existing

research focuses on correcting classification errors at the

instance level and across the entire dataset of models. In

contrast, On the contrary, our research is specifically aimed

at reducing ambiguous classification errors in classification

models applied to software engineering-related classification

tasks, which is a class-level error.

VIII. CONCLUSION

In this paper, we define ambiguous classification in software

engineering classification models and present a two-stage

framework to correct ambiguous classification. The exper-

imental results show that our method significantly reduces

ambiguous classification errors without sacrificing the overall

performance of the model, and improves the F1-score of the

ambiguous class. We will expand the second-stage model

library and optimize the second-stage model selection strategy

for future work.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their

insightful comments. This research was funded by NSFC No.

62272473, the Science and Technology Innovation Program of

Hunan Province (No.2023RC1001), and NSFC No.62202474.

284

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Kolek, D. A. Nguyen, R. Levie, J. Bruna, and G. Kutyniok, “Cartoon
explanations of image classifiers,” in Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XII. Springer, 2022, pp. 443–458.

[2] K. Nakata, Y. Ng, D. Miyashita, A. Maki, Y.-C. Lin, and J. Deguchi,
“Revisiting a knn-based image classification system with high-capacity
storage,” in Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVII.
Springer, 2022, pp. 457–474.

[3] Y. Liang, Y. Long, Y. Li, and J. Liang, “Selective pseudo-labeling
and class-wise discriminative fusion for sound event detection,” arXiv
preprint arXiv:2203.02191, 2022.

[4] G. Datta, T. Etchart, V. Yadav, V. Hedau, P. Natarajan, and S.-F.
Chang, “Asd-transformer: Efficient active speaker detection using self
and multimodal transformers,” in ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 4568–4572.

[5] C. Lv, J. Xu, and X. Zheng, “Spiking convolutional neural networks
for text classification,” in The Eleventh International Conference on
Learning Representations, 2023.

[6] X. Hu, X. Kong, and K. Tu, “A multi-grained self-interpretable
symbolic-neural model for single/multi-labeled text classification,” arXiv
preprint arXiv:2303.02860, 2023.

[7] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu,
S.-C. Chen, and S. S. Iyengar, “A survey on deep learning: Algorithms,
techniques, and applications,” ACM Computing Surveys (CSUR), vol. 51,
no. 5, pp. 1–36, 2018.

[8] H. Zhang, L. Yu, X. Xiao, Q. Li, F. Mercaldo, X. Luo, and Q. Liu,
“Tfe-gnn: A temporal fusion encoder using graph neural networks for
fine-grained encrypted traffic classification,” in Proceedings of the ACM
Web Conference 2023, 2023, pp. 2066–2075.

[9] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, and H. Jin, “Vulcnn: an
image-inspired scalable vulnerability detection system,” in Proceedings
of the 44th International Conference on Software Engineering, 2022,
pp. 2365–2376.

[10] M. Fu and C. Tantithamthavorn, “Linevul: a transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories, 2022, pp. 608–620.

[11] C. Baker, L. Deng, S. Chakraborty, and J. Dehlinger, “Automatic
multi-class non-functional software requirements classification using
neural networks,” in 2019 IEEE 43rd annual computer software and
applications conference (COMPSAC), vol. 2. IEEE, 2019, pp. 610–
615.

[12] X. Luo, Y. Xue, Z. Xing, and J. Sun, “Prcbert: Prompt learning for
requirement classification using bert-based pretrained language models,”
in 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022, pp. 1–13.

[13] E. Bogomolov, V. Kovalenko, Y. Rebryk, A. Bacchelli, and T. Bryksin,
“Authorship attribution of source code: A language-agnostic approach
and applicability in software engineering,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2021, pp. 932–
944.

[14] Z. Li, G. Chen, C. Chen, Y. Zou, and S. Xu, “Ropgen: Towards robust
code authorship attribution via automatic coding style transformation,”
in Proceedings of the 44th International Conference on Software Engi-
neering, 2022, pp. 1906–1918.

[15] D. Wang, Y. Yu, S. Li, W. Dong, J. Wang, and L. Qing, “Mulcode: A
multi-task learning approach for source code understanding,” in 2021
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2021, pp. 48–59.

[16] D. Wang, Z. Jia, S. Li, Y. Yu, Y. Xiong, W. Dong, and X. Liao,
“Bridging pre-trained models and downstream tasks for source code
understanding,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 287–298.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[19] V. H. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler,
D. R. Dias, and M. P. Guimarães, “Machine learning applied to software

testing: A systematic mapping study,” IEEE Transactions on Reliability,
vol. 68, no. 3, pp. 1189–1212, 2019.

[20] Z. Xu and J. H. Saleh, “Machine learning for reliability engineering and
safety applications: Review of current status and future opportunities,”
Reliability Engineering & System Safety, vol. 211, p. 107530, 2021.

[21] M. Hossain and H. Chen, “Application of machine learning on software
quality assurance and testing: A chronological survey,” International
Journal of Computers and their Applications, vol. 29, no. 3, pp. 150–
157, 2022.

[22] Y. Yang, X. Xia, D. Lo, T. Bi, J. Grundy, and X. Yang, “Predictive
models in software engineering: Challenges and opportunities,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 3, pp. 1–72, 2022.

[23] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adversarial example
defense: Ensembles of weak defenses are not strong.” in WOOT, 2017,
pp. 15–15.

[24] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks
to adversarial example defenses,” Advances in neural information pro-
cessing systems, vol. 33, pp. 1633–1645, 2020.

[25] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “A rotation
and a translation suffice: Fooling cnns with simple transformations,” Dec
2017.

[26] T. Strauss, M. Hanselmann, A. Junginger, and H. Ulmer, “Ensemble
methods as a defense to adversarial perturbations against deep neural
networks,” arXiv preprint arXiv:1709.03423, 2017.

[27] Z. Zhong, Y. Tian, and B. Ray, “Understanding local robustness of deep
neural networks under natural variations,” in Fundamental Approaches to
Software Engineering: 24th International Conference, FASE 2021, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27–April
1, 2021, Proceedings 24. Springer International Publishing, 2021, pp.
313–337.

[28] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE symposium on security and privacy (SP). IEEE, 2016,
pp. 582–597.

[29] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[30] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz
testing based data augmentation to improve robustness of deep neural
networks,” in Proceedings of the acm/ieee 42nd international conference
on software engineering, 2020, pp. 1147–1158.

[31] J. Sohn, S. Kang, and S. Yoo, “Search based repair of deep neural
networks,” arXiv preprint arXiv:1912.12463, 2019.

[32] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini:
prioritizing massive tests to enhance the robustness of deep neural
networks,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 177–188.

[33] X. Ren, B. Yu, H. Qi, F. Juefei-Xu, Z. Li, W. Xue, L. Ma, and J. Zhao,
“Few-shot guided mix for dnn repairing,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020, pp. 717–721.

[34] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “Mode: automated
neural network model debugging via state differential analysis and
input selection,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 175–186.

[35] T. G. Dietterich et al., “Ensemble learning,” The handbook of brain
theory and neural networks, vol. 2, no. 1, pp. 110–125, 2002.

[36] R. Kohavi, “Glossary of terms,” Special issue on applications of machine
learning and the knowledge discovery process, vol. 30, no. 271, pp. 127–
132, 1998.

[37] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[38] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 1–18.

[39] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
international conference on automated software engineering, 2018, pp.
120–131.

285

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

[40] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening,
“Concolic testing for deep neural networks,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2018, pp. 109–119.

[41] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 146–157.

[42] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct:
Tomographic combinatorial testing for deep learning systems,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2019, pp. 614–618.

[43] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and
P. Tonella, “Testing machine learning based systems: a systematic
mapping,” Empirical Software Engineering, vol. 25, pp. 5193–5254,
2020.

[44] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 510–
520.

[45] B. Settles, “Active learning literature survey,” 2009.
[46] A. J. Joshi, F. Porikli, and N. Papanikolopoulos, “Multi-class active

learning for image classification,” in 2009 ieee conference on computer
vision and pattern recognition. IEEE, 2009, pp. 2372–2379.

[47] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, pp. 123–
140, 1996.

[48] Y. Freund and R. Schapire, “Experiments with a new boosting al-
gorithm,” International Conference on Machine Learning,International
Conference on Machine Learning, Jul 1996.

[49] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[50] C. Ferri, P. Flach, and J. Hernández-Orallo, “Delegating classifiers,”
in Proceedings of the twenty-first international conference on Machine
learning, 2004, p. 37.

[51] D. Kuipers and M. Fabro, “Control systems cyber security: Defense
in depth strategies,” Idaho National Lab.(INL), Idaho Falls, ID (United
States), Tech. Rep., 2006.

[52] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu,
and J. Gao, “Deep learning–based text classification: a comprehensive
review,” ACM computing surveys (CSUR), vol. 54, no. 3, pp. 1–40, 2021.

[53] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[54] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[55] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[56] Z. Chen, Y. Cao, X. Lu, Q. Mei, and X. Liu, “Sentimoji: an emoji-
powered learning approach for sentiment analysis in software engineer-
ing,” in Proceedings of the 2019 27th ACM joint meeting on european
software engineering conference and symposium on the foundations of
software engineering, 2019, pp. 841–852.

[57] M. R. Islam and M. F. Zibran, “Deva: sensing emotions in the valence
arousal space in software engineering text,” in Proceedings of the 33rd
annual ACM symposium on applied computing, 2018, pp. 1536–1543.

[58] F. Calefato, F. Lanubile, N. Novielli, and L. Quaranta, “Emtk-the
emotion mining toolkit,” in 2019 IEEE/ACM 4th International Workshop
on Emotion Awareness in Software Engineering (SEmotion). IEEE,
2019, pp. 34–37.

[59] M. R. Islam, M. K. Ahmmed, and M. F. Zibran, “Marvalous: Machine
learning based detection of emotions in the valence-arousal space in
software engineering text,” in Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, 2019, pp. 1786–1793.

[60] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, and S. Lehmann,
“Using millions of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sarcasm,” arXiv preprint
arXiv:1708.00524, 2017.

[61] M. M. Imran, Y. Jain, P. Chatterjee, and K. Damevski, “Data aug-
mentation for improving emotion recognition in software engineering
communication,” arXiv preprint arXiv:2208.05573, 2022.

[62] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “Ac/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the
17th International Conference on Mining Software Repositories, 2020,
pp. 508–512.

[63] B. Steenhoek, M. M. Rahman, R. Jiles, and W. Le, “An empirical study
of deep learning models for vulnerability detection,” arXiv preprint
arXiv:2212.08109, 2022.

[64] M. Wardat, B. D. Cruz, W. Le, and H. Rajan, “Deepdiagnosis: Auto-
matically diagnosing faults and recommending actionable fixes in deep
learning programs,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 561–572.

[65] J. Cao, M. Li, X. Chen, M. Wen, Y. Tian, B. Wu, and S.-C. Cheung,
“Deepfd: automated fault diagnosis and localization for deep learning
programs,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 573–585.

[66] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 129–140.

[67] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: cross-backend
validation to detect and localize bugs in deep learning libraries,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 1027–1038.

[68] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing deep neural
networks: Fix patterns and challenges,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp.
1135–1146.

286

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 02:03:21 UTC from IEEE Xplore. Restrictions apply.

