
Challenges and Opportunities: An In-Depth Empirical Study on
Configuration Error Injection Testing

Wang Li∗

NUDT
China

liwang2015@nudt.edu.cn

Zhouyang Jia∗

NUDT
China

jiazhouyang@nudt.edu.cn

Shanshan Li2

NUDT
China

shanshanli@nudt.edu.cn

Yuanliang Zhang
NUDT
China

zhangyuanliang13@nudt.edu.cn

Teng Wang
NUDT
China

wangteng13@nudt.edu.cn

Erci Xu
NUDT
China

ercixu08@nudt.edu.cn

Ji Wang
NUDT
China

wj@nudt.edu.cn

Xiangke Liao
NUDT
China

xkliao@nudt.edu.cn

ABSTRACT

Configuration error injection testing (CEIT) could systematically

evaluate software reliability and diagnosability to runtime config-

uration errors. This paper explores the challenges and opportuni-

ties of applying CEIT technique. We build an extensible, highly-

modularized CEIT framework named CeitInspector to experiment

with various CEIT techniques. Using CeitInspector, we quantita-

tively measure the effectiveness and efficiency of CEIT using six

mature and widely-used server applications. During this process,

we find a fair number of test cases are left unstudied by the prior

research work. The injected configuration errors in these cases

often indicate latent misconfigurations, which might be ticking

time bombs in the system and lead to severe damage. We conduct

an in-depth study regarding these cases to reveal the root causes,

and explore possible remedies. Finally, we come up with actionable

suggestions guided by our study to improve the effectiveness and

efficiency of the existing CEIT techniques.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; Software configuration management and version

control systems.

∗Both authors contributed equally to this research.
2Shanshan Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464799

KEYWORDS

Configuration, Testing, Empirical Study

ACM Reference Format:

Wang Li, Zhouyang Jia, Shanshan Li, Yuanliang Zhang, Teng Wang, Erci Xu,

JiWang, and Xiangke Liao. 2021. Challenges andOpportunities: An In-Depth

Empirical Study on Configuration Error Injection Testing. In Proceedings

of the 30th ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’21), July 11ś17, 2021, Virtual, Denmark. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3460319.3464799

1 INTRODUCTION

Configuration error injection testing (CEIT) is a testing technique

to systematically evaluate software reliability and diagnosability re-

garding runtime configuration errors (a.k.a. misconfigurations).

There has been much research on addressing automated CEIT

tools [8, 21, 24, 25, 52, 56]. The main idea is to inject configura-

tion errors into the system under test (SUT), and then observe the

SUT reaction under system test suites. More specifically, the tools

execute the SUT with each injected configuration error against

each test case from the test suite. Then, they evaluate the reaction

of the SUT in terms of reliability (whether the SUT can pass the

test) and diagnosability (whether the SUT can pinpoint the error).

CEIT has attracted much attention, given the severity and preva-

lence of configuration errors [7, 13, 17, 20, 22, 29, 35, 41, 50, 53],

which are reported as the second largest cause of noticeable service-

level disruptions in one of Google’s services [13] and contribute to

16% of production incidents at Facebook [46]. Continuously run-

ning CEIT to actively expose reliability threats has the potential of

reducing production failures caused by configuration errors. More-

over, configuration errors impose a major cost of administration

and ownership, because they are time-consuming and challenging

to diagnose [9ś11, 39, 52, 56]. The essential challenge lies in the fact

that the system users who change the configurations may not know

how the system consumes configuration values internally. CEIT

478

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3460319.3464799
https://doi.org/10.1145/3460319.3464799
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460319.3464799&domain=pdf&date_stamp=2021-07-11

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wang Li, Zhouyang Jia, Shanshan Li, Yuanliang Zhang, Teng Wang, Erci Xu, Ji Wang and Xiangke Liao.

could expose diagnosability issues to improve the system feedback

(e.g., log messages).

The existing CEIT tools detect reliability and diagnosability is-

sues mainly based on the symptoms of the SUT.We find this process

may be limited, since different root causes may result in exactly

the same symptom. Without deep understanding of the root causes

behind the symptom, many test results of the tools may be inde-

terminate. For example, autovacuum_work_mem is a configuration

parameter in PostgreSQL, and its minimal value is 1024. The tools

may generate an error value for autovacuum_work_mem (e.g., 512),

but PostgreSQL will change the value to the minimal value:

1 if (autovacuum_work_mem < 1024){

2 autovacuum_work_mem = 1024;

3 }

This example is regarded as a vulnerability [52] in the SUT (Sys-

tem Under Test), which may change user intentions without any

notification. In another example, EnableMMAP is a configuration

parameter in HTTPD. The tools may generate an error value by

changing the cases (e.g., off toOFF) [21, 56], whereas HTTPD parses

EnableMMAP using ap_cstr_casecmp (a case insensitive method):

1 if (ap_cstr_casecmp(EnableMMAP, "off") == 0) {

2 d->enable_mmap = ENABLE_MMAP_OFF;

3 }

In this example, the injected error (i.e., OFF) is actually a false error.

The SUTs in both the above examples show the same symptom, i.e.,

passing test cases and leaving no log messages. The root causes,

however, are different Ð the former is caused by the vulnerability

in the SUT, while the latter is caused by the limitation of error

generation of the CEIT tool.

In this paper, we build an extensible, highly-modularized CEIT

framework named CeitInspector 1 to understand the challenges and

opportunities of applying CEIT in real-world software engineer-

ing practice. CeitInspector can effectively integrate and test with

various CEIT tools proposed in the literature [8, 21, 24, 25, 52, 56].

Also, it embraces the heterogeneity and complexity of real-world

software systems by supporting different system test suites, config-

uration formats, and operation scripts (e.g., for starting/stopping

the system). With CeitInspector, we further lead our discussion

with the following research questions:

• RQ1: How good are the existing CEIT tools in exposing vulnerabil-

ities?

• RQ2: Despite all previous analysis on the exposed vulnerabilities,

are there still cases left unstudied? If yes, do they matter?

• RQ3: Are there potential approaches to further improve the CEIT

framework?

With dataset analysis, field error injection with CeitInspector,

and validation experiments, we make the following observations

to our research questions:

First, we explore the effectiveness and efficiency of three types of

current CEIT tools, i.e., random-, mutation- and specification-based

tools. These tools expose 12, 15, and 23 vulnerabilities, respectively.

Moreover, the efficiency of the three tools are 10, 3 and 8 vulnera-

bilities per 1000 injections. The random-based tool, while using the

simplest and most efficient configuration-error generation method,

1Our tool is available at https://github.com/ConfEIT-code/CeitInspector

has limited effectiveness (i.e., with only 12 vulnerabilities are ex-

posed). On the other hand, the specification-based tool is the most

effective one, but requires specifications as inputs. The mutation-

based tool is a trade-off between effectiveness and human effort,

but its efficiency is very limited (i.e., with only 3 vulnerabilities are

exposed per 1000 injections).

Second, we discover that previous studies mostly focus on SUT

reactions that have observable symptoms, i.e., failing test cases or

printing log messages. The reactions without symptoms, however,

are still left unstudied. What is worse, the reactions without symp-

toms may hide vulnerabilities that have already been triggered,

thus affect the effectiveness of CEIT tools. We term such reactions

as indeterminate results, which account for 21.3% of test results. By

further analyzing, we conclude three root causes and their distri-

butions: 1) The SUT silently resolves the errors without any log

message (20.2%). 2) The configuration-error generation process is

problematic and injects false errors (58.3%). 3) The test suite is

inadequate and fails to trigger the errors (21.5%).

Third, inspired by the above gaps, we further discuss potential ap-

proaches to improve the CEIT framework: 1) The SUT should print

log messages whenever changing configuration values. Adding log

statements using two simple code patterns can reduce 91.2% of

silent resolutions. 2) The error generation methods should avoid

false errors. Simply removing two inefficient mutation rules can

decrease 79.1% of false errors. 3) The test suite needs to trigger the

injected errors. Automated techniques of generating configuration-

oriented test cases can ideally reduce 59.7% of indeterminate results

caused by inadequate tests. 4) 81% of test cases in the test suite

are redundant w.r.t. code coverages. Randomly sampling 30% test

cases only have 5.1-12.1% loss of code coverages, while 38 out of 45

vulnerabilities still could be exposed.

To sum up, in this paper, we build CeitInspector to extensively

compare the effectiveness and efficiency of the existing CEIT tools.

Moreover, we discuss a previously understudied type of reactions,

i.e., indeterminate results. By analyzing such reactions, we further

observe three existing limitations of the existing CEIT frameworks

and propose corresponding improvements.

2 METHODOLOGY

The workflow of CEIT is to execute the SUT with a configuration

error against a test case. This process contains three components:

configuration errors, SUTs and test cases. In this section, we clar-

ify the methodologies applied, including generating configuration

errors, selecting SUTs, and preparing test cases.

2.1 Generating Configuration Errors

Configuration error generation is a key component of CEIT. The

output of the generation is a set of configuration errors which are

then used to test the SUT. Ideally, the generated configuration errors

should be effective in exposing reliability and diagnosability issues,

and efficient in exposing different types of issues within testing

time budget. In general, existing configuration error generation

methods can be classified into three categories: random-, mutation-

and specification-based methods.

Random. The simplest method of configuration error genera-

tion is to generate a random string as an erroneous configuration

479

Challenges and Opportunities: An In-Depth Empirical Study on Configuration Error Injection Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 1: Specification violation rules used in our study. Control dependencies are used as preconditions of error injection.

Type Specification Generation Rules

B
a
si
c

Bool/Enum Options, value set = {łenum1ž, łenum2ž, ...}. Use a value that doesn’t belong to set.

Numeric

Data type, value set = {Integer, Float, Long, ...}. (1) A type error; (2) out-of-bound values (e.g., INT_MAX+1); (3) an alphabetic string.
Valid range, range = [MIN, MAX]. Use the values beyond the valid range.
Unit of measurements, value set = {łmsž łsž, ...}. Use a non-existent unit (e.g., "nounit").
Value Relationship (𝑃,𝑉 , ⋄) , ⋄ ∈ {<,>,=,≠, ≥, ≤}. Use invalid value relationship (𝑃,𝑉 ,¬⋄)

S
e
m
a
n
ti
c

Path
Syntax, ˆ\/(\w+\/?)+$ Use a random string (e.g., "f5_B0c:146C").

Path existence, value set = {Yes, No}. Use a non-existent file path.

Path type, value set = {Directory, Regular}. Use a path to a file that violates the file type, e.g., for directory file, use a regular file.

URL Syntax, [a-z]+://.* Use a value that violates the pattern, e.g., http//www.google.com

IP Address Syntax, [\d]{1,3}(.[\d]{1,3}){3} Use a value that violates the pattern, e.g., 255255.255.255

Port
Valid range, range = [0, 65535]. Use the values beyond the valid range.
Port should not be occupied. Use an occupied port number.

Permission
Data type, value set = {Octet}. (1) A float-typed number; (2) an alphabetic string.

Valid range, range = [0000, 7777]. Use the values beyond the valid range.
Name/ID Specific value of string. Use an invalid string.

value. Random is a black-box method. It does not require any knowl-

edge of the configurations or the system under tests. We use only

one random string as an erroneous value for every parameter, since

different random strings mostly drive the same execution paths and

runtime behaviors.

Mutation.Mutation is the most widely-used method for config-

uration error generation in existing configuration error injection

testing tools, including ConfErr [21], ConfInject [8], ConfTest [25],

ConfVD [24], and ConfDiagDetector [56]. The key idea is to mutate

a given configuration value (often the default value) to generate

erroneous values based on predefined mutation rules (e.g. omission,

case alteration) to simulate various types of human errors [21].

We implement five mutation rules that used by ConfDiagDetec-

tor [56] (the state-of-the-art mutation-based configuration error

injection testing tool), which represent mutation rules in mutation-

based tools [8, 21, 24, 25, 56]. The five rules are 1) delete the ex-

isting value (e.g., łXMLž→łž), 2) randomly select values of the

same data type from a pre-defined pool (e.g., łXMLž→łTXTž), 3)

randomly select values of a different data type from a pre-defined

pool (e.g., łXMLž→ł123ž), 4) randomly inject spelling mistakes (e.g.,

łXMLž→łXLLž), and 5) change the case of text (e.g., łXMLž→łxmlž).

Therefore, we generate five erroneous values for each parameter.

Specification violation. Recent work, e.g., Spex-Inj [52] and

ConfVD [24], shows that configuration errors can be generated

by violating the specifications of configuration parameters, includ-

ing basic type (e.g., boolean, integer, float, etc), semantic type (file

path, IP address, etc), data range, control dependencies, and value

relationship. We use the generation rule in ConfVD [24] and Spex-

Inj [52] which generate erroneous values based on specifications

defined by basic and semantic types. Table 1 lists the error genera-

tion rules. For example, if the basic type of a configuration value is

NUMERIC with the INTEGER specification, we generate non-integer

values (e.g., a string, a float number, and an out-of-bound value). If

the semantic type is a PATH with the specifications of łan existent

regular file,ž we generate a non-existent file, a file with insufficient

access permissions, and a special file (e.g., a directory).

We collect the specifications for each configuration parameter

from both document (user manuals) and source code. We start

with user manuals Ð we find manual pages often include struc-

tured descriptions from which specifications can be extracted (refer

to [1ś6]). On the other hand, we find that many important fine-

grained specifications are not well documented, mainly value range

of NUMERIC and PATH-related specifications (as łeverything is a filež

on UNIX-like systems). Therefore, we also inspect the source code

to collect value ranges and fine-grained PATH specifications (e.g.,

whether file existence is required).

Note that the specifications we collected including both control

dependencies and value relationships between multiple parame-

ters defined in [52]. We term 𝑃 and 𝑄 for different parameters,

and 𝑉 is a possible value of 𝑃 . A control dependency means the

usage of one parameter depends on another parameter, and can

be represented in the form of (𝑃,𝑉 ,⋄) ↦→ 𝑄 . It means 𝑄 is only

used when 𝑃 ⋄𝑉 returns true where ⋄ denotes an operator such as

=,≠, ≤, ≥, etc. For example, in PostgreSQL, we find the dependency

(logging_collector, on,=) ↦→ log_directory. When injecting

errors upon𝑄 , we will also set 𝑃 to satisfy the condition of 𝑃 ⋄𝑉 . On

the other hand, a value relationship means the value of one parame-

ter should satisfy certain constraints, and can be represented in the

form of (𝑃,𝑉 ,⋄), e.g., (max_connections, max_wal_senders, ≥).

In this case, we will violate the relationship by setting (𝑃,𝑄,¬⋄).

2.2 Selecting Target Systems

We study six large open-source software systems, as listed in Table 2.

The systems are mature, widely-deployed, and representative across

a number of software domains. Similar to prior studies [8, 21, 24,

25, 51, 52, 56], we focus on these SUTs for their high reliability

and diagnosability requirements. The configuration design and

implementation of the studied software systems represent the state-

of-the-art of today’s systems design.

All the studied systems expose a large number of configuration

parameters. We focus on the configuration parameters of the core

modules in studied systems instead of all configuration parameters,

based on our time and resource budget. For example, in Apache

HTTPD, we focus on all the configuration parameters of the Core

and MPM modules. In MySQL, we focus on the configuration of

two main storage modules, InnoDB and MyISAM. We only study

configurations that can be set in configuration files [32]. The second

and third columns of Table 2 show the numbers of parameters and

the numbers of tested parameters in each SUT.

2.3 Preparing Test Cases

CEIT requires system test suites to exercise a SUT and examine the

SUT’s external behavior from the perspective of the system users.

480

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wang Li, Zhouyang Jia, Shanshan Li, Yuanliang Zhang, Teng Wang, Erci Xu, Ji Wang and Xiangke Liao.

Table 2: The SUTs studied in this paper.

SUT # Parameters # Tested para. # Test cases Duration

HTTPD 669 116 1260 5 mins
NGINX 551 277 1451 2 mins
MySQL 461 114 720 25 mins
PGSQL 275 232 178 40 secs
Squid 424 319 6 10 secs
VSFTPD 125 108 4 40 secs

We use the same system tests of the studied systems described in

prior work [21, 24, 25, 51, 52].

To achieve comprehensive testing, we look for more fine-grained

system test suites. In the six target systems, HTTPD, NGINX,MySQL,

and PostgreSQL have comprehensive, well-designed system test

suites, while Squid and VSFTPD do not provide system test suites 2

and none of the prior work share their test code on those two sys-

tems. For the former, we use the official test suites and integrate

them in CeitInspector; for the latter, we build new test suites. To

make sure our tests are reasonable and systematic, we refer to the

manuals or guidebooks of Squid and VSFTPD. The last two columns

of Table 2 show the numbers of test cases in each test suite and the

testing time required to execute the test suite.

3 DESIGN OF CEITINSPECTOR

We design an automated testing framework, i.e., CeitInspector, to

evaluate the abilities of different CEIT tools on exposing vulnera-

bilities. Figure 1 illustrates the components of CeitInspector. Our

aim is to build CeitInspector as an extensive framework that can

be quickly and easily adapted to different software systems and

integrated with various configuration error injection testing tech-

niques. Thus, we follow a modularized style in implementing where

each component in CeitInspectorcan be replaced with alternatives.

Furthermore, CeitInspector provides a number of abstractions to

tackle the heterogeneity and complexity of real-world software

systems, in terms of configuration file formats, operation scripts,

and system test frameworks. The dotted rectangles in Figure 1 show

the replaceable components.

Configuration error generators. We implement there config-

uration error generation methods described in ğ2.1: 1) For random,

CeitInspector returns a random string as an erroneous value for any

configuration parameter. 2) For mutation, CeitInspector implements

all mutation rules presented in the prior work [56]. 3) For specifica-

tion violation, CeitInspector implements the error generation rules

defined in in ConfVD [24] and Spex-Inj [52]. For future integration,

we provide interfaces for developers to implement other generators.

Configuration error injector.We build a versatile configura-

tion error injector based on Augeas [12], which supports a large

number of configuration file formats and can be easily extended to

support other file formats. CeitInspector uses Augeas to parse and

transform the configuration files into tree-based intermediate rep-

resentations. CeitInspector injects generated configuration errors

by modifying the corresponding tree nodes, and finally transforms

the modified trees back to configuration files.

2We confirmed with the developers through mailing lists.

Conf Error
Generators

+Random
+Mutation
+Spec Violation

Conf

Errors

Conf Error
Injector

ConfFile

(Errors)

Sys Tests
Runner

Run Tests

Test

Logs

Log
Analysis

Log
Analyzer

Start SUT

+ callbacks to support
 different test impl.

+Various Conf
File Formats

Stop SUT

Figure 1: CeitInspector modules and their extensibility.

System tests runner. This component runs the SUT with each

configuration error against each test case, and collects the corre-

sponding logs (including both application and system-level logs).

The key challenge comes from the heterogeneity and complexity

of the test suites of different software systems. Here, we adopt the

callback mechanism to enable developers to instrument the test

suite (i.e., the rightmost dotted rectangle in Figure 1). The callbacks

inform CeitInspector about different stages when the test suite is

running (e.g., before and after each test case), so that CeitInspector

can take different actions accordingly (e.g., checking the health of

SUT before each test and collecting logs after each test).

Log analyzer. This component determines the diagnosability

of the logs collected above. As long as the logs contain the injected

configuration errors (either configuration parameters or erroneous

values), CeitInspector assumes they are adequate for error diagnosis.

This standard is widely-used in the existing research [24, 52]. CeitIn-

spector implements the analysis based on Whoosh [49], which

supports tokenization, stop-word filtering, lowercase/camelcase

filtering, and stemming. For parameters, CeitInspector does not

require an exact match. As long as the stemmed, tokenized words of

the parameter name are included in the stemmed, tokenized words

of a log message, CeitInspector considers the logs to be adequate.

For the injected value, CeitInspector requires an exact match.

4 EMPIRICAL STUDY

We conduct study on three types of CEIT tools including random-,

mutation- and specification-based ones. These tools capture not

only the unexpected failures (e.g., runtime crashes and hangs), but

also inadequate diagnostic messages [52, 56]. For each configuration

error injected into the system configuration, we expect the SUT to

1) report the error precisely in error messages to help users resolve

configuration-related issues, saving the developers from going over

the expensive, time-consuming diagnosis cycles [51, 52, 56]; and

2) react to the error early Ð runtime failures in the production

environment may lead to severe impacts like service outages and

downtime [16, 17, 33, 35, 41]. Thus, when the SUT fails to pinpoint

the injected error (i.e., not precisely) or fails at runtime (i.e., not

early), we say the CEIT methods detect a vulnerability.

Figure 2 (a) shows the basic workflow of the CEIT tools. The SUT

runs with a configuration error against a test input. Then, the tools

evaluate the reaction of the SUT in terms of reliability (whether the

SUT can pass the test) and diagnosability (whether the SUT can

pinpoint the error). Thus, the reaction can be classified into four

types as shown in Figure 2 (b), including 1) Pass & Pinpoint (R-I):

the SUT passes the test, and prints log messages pinpointing the

configuration error; 2) Not pass & Pinpoint (R-II): the SUT does not

pass the test, but leaves log messages pinpointing the error; 3) Not

481

Challenges and Opportunities: An In-Depth Empirical Study on Configuration Error Injection Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Reliability

Diagnosability
Pinpoint

Not pinpoint

Not pass Pass

Good reaction
Good reaction

Bad reaction Unstudied

Conf error Test input

SUT

Diagnosability?Reliability?

(a) The CEIT workflow (b) Different types of test results

Bad reaction

R-Ⅱ R-Ⅰ

R-Ⅲ R-Ⅳ

Figure 2: The workflow and test results of CEIT tools.

pass & Not pinpoint (R-III): the SUT neither passes the test, nor

prints related error messages; 4) Pass & Not pinpoint (R-IV): the

SUT passes the test without any log message.

In this section, we explore three research questions:

RQ1: How good are the existing CEIT tools in exposing

vulnerabilities? The existing CEIT tools can be classified into

three types according to their configuration-error generation meth-

ods, i.e., random, mutation and specification violation. We use two

metrics to investigate the abilities of the CEIT tools in exposing vul-

nerabilities: 1) Effectiveness: the total vulnerabilities that a CEIT tool

could find for each SUT. 2) Efficiency: the averaged vulnerabilities

found by a CEIT tool per 1000 injected configuration errors.

RQ2: Despite all previous analysis on the exposed vulner-

abilities, are there still cases left unstudied? If yes, do they

matter? For R-IV reactions, although the SUT passes the test, the

injected configuration error may be ticking time bombs in the sys-

tem and lead to severe damage [50]. The reactions are indeterminate,

since the problem may be in any component of Figure 2 (a): 1) the

injected configuration error may be a valid value; 2) the test input

may not trigger the configuration error; 3) the SUT may correct

the configuration error silently. These reactions, however, are left

unstudied in existing literature [21, 24, 25, 51, 52]. To fill this gap,

we classify these indeterminate reactions into three types according

to their root causes, then investigate their symptoms and impacts.

RQ3: Are there potential approaches to further improve

the CEIT framework? Given that the findings we have in RQ1

and RQ2, we are able to improve the CEIT framework from three

aspects, including error generation methods, SUTs, and test cases.

4.1 RQ1: How good are the existing CEIT tools

in exposing vulnerabilities?

We investigated CEIT tools using three types of error generation

methods (in ğ2.1) in six SUTs (in ğ2.2). We manually collected

1166 parameters from core modules of the SUTs, and injected 1166,

5830, and 3006 configuration errors using random, mutation, and

specification violation, respectively.

4.1.1 Effectiveness. For each configuration error, the reaction of

the SUT is classified into four types as shown in Figure 2 (b). Table 3

summaries the detailed test results. For example, 64, 920, 11 and 171

(the last line in the random sub-table) configuration errors injected

by the random method result in R-I, R-II, R-III, and R-IV reactions,

respectively.

For R-I cases, the SUT usually corrects the configuration error

to a valid value. This is a good reaction, since the configuration

Table 3: Overall results of different CEIT tools.

Err. Injection SUT Reaction† Results

SUT
Conf. R-I R-II R-III R-IV

#Vul.
#Vul./

errors Good Good Bad Bad Ignored 1k err

Random
HTTPD 116 4 39 1 0 72 1 9
NGINX 277 1 255 0 5 16 5 18
MySQL 114 34 79 0 1 0 1 9
PGSQL 232 0 225 0 0 7 0 0
Squid 319 25 248 0 0 46 0 0
Vsftpd 108 0 73 0 5 30 5 46
Total 1166 64 919 1 11 171 12 10

Mutation
HTTPD 580 8 252 6 0 314 2 3
NGINX 1385 4 1112 1 16 252 5 4
MySQL 570 181 280 0 8 101 1 2
PGSQL 1160 2 917 0 4 237 2 2
Squid 1595 143 1008 0 0 444 0 0
Vsftpd 540 0 241 0 21 278 5 9
Total 5830 338 3810 7 49 1626 15 3

Specification Violation
HTTPD 222 13 85 2 0 122 2 9
NGINX 772 1 758 0 8 5 6 8
MySQL 425 129 258 0 3 35 1 2
PGSQL 695 1 676 0 4 14 3 4
Squid 710 48 598 0 4 60 4 6
Vsftpd 182 0 73 0 13 96 7 38
Total 3006 192 2448 2 32 332 23 8

Mixed Method
HTTPD 131 4 47 2 0 78 2 15
NGINX 280 1 255 0 7 17 5 18
MySQL 118 33 82 0 3 0 1 8
PGSQL 250 1 230 0 4 15 3 12
Squid 389 31 287 0 2 69 2 5
Vsftpd 134 0 73 0 11 50 6 47
Total 1302 70 974 2 27 229 19 15

† R-I : pass & pinpoint; R-II : not-pass & pinpoint; R-III : not-pass & not-pinpoint; R-IV : pass &
not-pinpoint.

error is well handled, meaning the CEIT methods do not expose

any vulnerability.

For R-II cases, the SUT does not pass the test but has pinpointing

logs. This happens in the following situations: 1) Early termination:

the SUT refuses to start; 2) Runtime termination: the SUT crashes,

hangs or throws exceptions; 3) Runtime misbehavior: the SUT dys-

functions or outputs wrong results. For early termination, the CEIT

tools consider the SUT has a good reaction, since it prevents run-

time failures, and the pinpointing logs could help to diagnose the

errors. While runtime termination and misbehavior are considered

as bad reactions (or vulnerabilities), even with reasonable log mes-

sages [50]. Taking a HTTPD case as an example of a bad reaction,

the parameter LimitRequestFiledSize limits HTTPD request

field size, whose valid range is [0, INT_MAX]. HTTPD uses atoi

to parse the value, which could translate a randomly-generated

string into 0. During the test, all HTTP requests are denied as their

field size is positive. In this example, a randomly-generated config-

uration error may trigger a runtime failure in HTTPD. The CEIT

tools consider HTTPD has a bad reaction w.r.t. the error, although

HTTPD prints log messages.

For R-III cases, the SUT also does not pass the test. All the three

situations (i.e., early termination, runtime termination and misbe-

havior) are considered as vulnerabilities, as the SUT cannot pinpoint

482

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wang Li, Zhouyang Jia, Shanshan Li, Yuanliang Zhang, Teng Wang, Erci Xu, Ji Wang and Xiangke Liao.

either the misconfigured parameter’s name/value or its location

when configuration errors occur [52].

For R-IV cases, the SUT has no reactions w.r.t. the injected errors.

The CEIT tools are hard to determine if there are vulnerabilities or

not, and thus ignore this type.

The three CEIT tools reported 12, 56 and 34 bad reactions in total

(the fifth and sixth columns). However, we found 16 bad reactions

reported by the mutation-based tool are false positives. Taking

NGINX as an example, The mutation tool uses the case-alteration

rule to change the value "off" into "OFF", which also is a valid

value for case-insensitive parameter fastcgi_keep_conn. When

using "off/OFF", the test fastcgi.t will fail since the parameter

fastcgi_keep_conn is not turned on. This failure is not caused by

the configuration errors, instead, this is an expected behavior when

the feature is turned off.

Therefore, the three tools exposed vulnerabilities for 12, 40 (56 -

16) and 34 injected configuration errors, which involve 12, 15, 23

(the second last column) configuration parameters since one param-

eter may have multiple injected errors. The detailed numbers are

shown in the second last column of Table 3. Specification violation

exposes the most vulnerabilities among the generation methods.

The reason is that a significant percentage of the bad reactions can

only be exposed by semantic errors, i.e., errors generated based on

the semantics of configuration parameters (e.g., file path, URI, IP

address, etc). Taking file path as an example, random and muta-

tion based methods can only generate nonexistent file paths, while

many bad reactions are triggered by file paths that are existent but

have wrong types (e.g., special files like directories and devices)

and wrong permissions. Such errors may pass basic checking such

as syntactic and file existence check most of the time.

4.1.2 Efficiency. According to Table 3, the CEIT tools are able to ex-

pose 10, 3 and 8 (the last column) vulnerabilities per 1000 injections

using random, mutation, and specification violation, respectively.

Random is the most efficient method, given that we only generate

one random value for each parameter. It proves that some SUTs

have poor syntactic checking code that even simple random value

can raise unexpected system failures. For example, the parameter

proxy_store should be a directory path used by NGINX, which

does not check validity of the parameter at startup time. When a

test tries to use the parameter, a randomly-generated configura-

tion error may raise exceptions, leading to runtime misbehavior of

NGINX.

As for efficiency per fixed time-budget, it include two parts:

preparing efficiency (e.g., collecting specifications) and testing ef-

ficiency. The preparing phase is manually performed by testers.

In our study, the specification and mutation techniques require

about 27 and 7 person-hours to expose 32 and 15 vulnerabilities,

respectively. The preparing efficiency is thus around 1.2 and 2.1

vulnerability/hour. Mutation method only requires parameter type

and randommethod does not require preparation. The testing phase

is automatic. The three methods can expose 10, 3 and 8 vulnerabili-

ties per 1000 injections, which take about 21.4 hours on average.

Therefore, the testing efficiency is about 0.47, 0.14 and 0.37 vulner-

ability/hour using random, mutation, and specification violation,

respectively.

4.1.3 Summary. The three error generation methods wield differ-

ent trade-offs among effectiveness, efficiency, and human effort.

Finding 1: Random is the simplest and the most efficient

method with limited effectiveness. At one end of the spectrum

of the trade-offs, random is the simplest generation method, and

achieves the highest efficiency. It does not need to understand any-

thing about the SUT. However, it is hard to generate sophisticated

errors. Take file-path parameter as an example, random is hard to

generate errors regarding file type and existence. Among all the

test results, random exposes 12 vulnerabilities from 1166 injections,

averagely 10 per 1000 injections.

Finding 2: Specification is themost effectivemethodwith

moderate efficiency and great human effort. At the other end

of the spectrum, specification violation takes system-specific knowl-

edge to generate sophisticated errors, as shown in Table 1. This

input requires great human effort. Meanwhile, it exposes the most

effectiveness test results and achieves relatively high efficiency.

With specification violation, specification exposes 23 vulnerabili-

ties from 3006 injections, averagely 8 per 1000 injections.

Finding 3: Mutation has a trade-off between effectiveness

and human effort, but its efficiency is very limited.Mutation

is in the middle of the spectrum. It uses heuristics to generate dif-

ferent errors in order to achieve more effective test results than

random, but does not attempt to understand configuration spec-

ifications. The mutation method can be viewed as a compromise

between specification- and random-basedmethods. A smarter muta-

tion rule is more like to mutate the input according to specifications,

while a less intelligent mutation rule behaves like randomly mutat-

ing. However, mutation leads to a large number of indeterminate

reactions (type 4 in Table 3), which significantly decrease the ef-

ficiency. Using the five state-of-the-art mutation rules, mutation

exposes 15 vulnerabilities from 5830 injections, averagely 3 per

1000 injections.

Implication: The three tools show different advantages. The

specification-based tool is effective to generate sophisticated errors,

while the random-based tool is efficient in exposing shallow vul-

nerabilities. In the regard, we consider combining different error

generation methods. We use the most effective method (i.e., specifi-

cation violation) to test the parameters with semantic types (e.g.,

path in Table 1), which have much more constraints compared to

the basic types. Meanwhile, we use the most efficient method (i.e.,

random) to handle the parameters with basic types (e.g., numeric

in Table 1).

Themixedmethod could bemore balanced between effectiveness

and efficiency with moderate human effort. Compared to specifica-

tion violation, the mixed method only needs to obtain constraints

from 202 of 1166 parameters, and finds 19 vulnerabilities from 1302

injections (15 per 1000 injections) as shown in Table 3.

4.2 RQ2: Despite all previous analysis on the

exposed vulnerabilities, are there still cases

left unstudied? If yes, do they matter?

The existing research mainly focused on the SUT reactions that

have observable symptoms, i.e., failing test cases or printing log

messages. The reactions without symptoms, however, are still left

unstudied, since the root causes of these reactions are indeterminate.

483

Challenges and Opportunities: An In-Depth Empirical Study on Configuration Error Injection Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 4: The overall statistics of indeterminate test results.

Error generation Silent Resolutions False Errors Inadequate Tests
Total

Methods Value correction Type casting String Case alt. Value sel. Dependency Conditions Oracles

Random 6 (3.5%) 41 (24.0%) 52 (30.4%) 0 0 8 (4.7%) 46 (26.9%) 18 (10.5%) 171
Mutation 21 (1.3%) 157 (9.7%) 185 (11.4%) 542 (33.3%) 424 (26.1%) 30 (1.8%) 195 (12.0%) 72 (4.4%) 1626

Specification Violation 18 (5.4%) 188 (56.6%) 0 0 0 0 105 (31.6%) 21 (6.3%) 332

Total 431 (20.2%) 1241 (58.3%) 457 (21.5%) 2129

We manually analyze the test results and source code of these

indeterminate reactions, and find the root causes can be classified

into three situations:

• Silent resolutions. The erroneous value is corrected by the

SUT without any log message for informing the users.

• False errors. The injected error is in fact not erroneous due to

the limitations of error generation techniques.

• Inadequate tests. The test suites are not effective in exposing

the destructive reactions regarding the injected errors.

Table 4 shows the breakdowns of the root causes using the three

existing CEIT tools. We will first discuss the three root causes, and

then conclude our findings in the end.

4.2.1 Silent Resolutions. Silent resolutions refer to the undesired

behaviors that the SUT corrects or ignores the erroneous values,

without informing users with explicit log messages. We find the

SUT may silently resolve the errors in two ways:

Out-of-bound value correction. The injected error value may

be beyond the value range required by the parameter. In this case,

the SUT may intentionally change the value into the minimal, max-

imal, or default value, without informing users about the change.

For example, in PostgreSQL, the minimal value of the parameter

autovacuum_work_mem is 1024. When the injected value is smaller

than 1024, PostgreSQL will correct it to 1024 without any log mes-

sage. In ğ1, we give the code snippet example.

Unsafe type casting. The SUT tries to change the value type,

but unintentionally changes the value at the same time when using

some type casting operations. These operations are unsafe since

they may change users’ intentions and introduce unexpected behav-

iors. For example, HTTPD, Squid, and VSFTPD parse string values

into numeric values using atoi, which is known to be unsafe and

provides no error checking. When users input an error value ‘10O’

(misspelling the last number 0 into the letter O), the SUTs will

translate the value into 10, which is different to the user inten-

tion. Another example is MySQL, which changes the parameter i

nnodb_limit_optimistic_insert_debug (the valid range is [0,

UINT_MAX]) from unsigned long long into unsigned integer.

For values larger than UINT_MAX, the parsed value is undefined and

can accidentally fall into valid ranges.

4.2.2 False Errors. False errors mean the injected errors values are

in fact correct values, indicating the error-generation process is

problematic. In the case of random, not all the random strings are

necessarily erroneous Ð a random string could be a valid text, file

name, or identity. In the case of mutation, not all the mutation rules

can necessarily generate errors Ð a case-insensitive SUT can accept

the values mutated by the case-alternation rule. We find false errors

may occur under four situations:

Arbitrary strings. Some parameters can take arbitrary strings,

such as err_html_text in Squid which is used as łtext to include

in error messagesž. For those parameters, any strings generated by

random ormutation is a false error. Even for strings with constraints

(e.g., file path), random and mutation could also lead to false errors.

For example, a random string for a path type parameter could lead

to false error, the SUT may 1) interprets a string without a slash

(/) as a file name in the current working directory, and 2) creates a

new file with a random string.

Case sensitivity. One rule commonly used in mutation-based

error generation is case alternation [21, 56]. This rule is included in

the five rules of ConfDiagDetector [56] and is adopted by us (ğ2.1).

However, we find that case alternation leads to almost half (47.1%)

of false errors in mutation-based test. This is because the SUTs are

case insensitive to the configuration values. In fact, all the SUTs in

our study are case insensitive for boolean and enumerative typed

configuration values. Therefore, case alternation as a mutation rule

should not be generally applied.

Value selection. Besides case sensitivity, we also find the mu-

tation rule, i.e., random selection in the predefined pool with same

type (e.g., łXMLž→łTXTž), leads to a large number (36.8%) of false

errors in mutation-baed testing. This is because many random se-

lected values fall into the valid data range, especially for numeric

parameters. Therefore, this rule as a mutation rule should not be

generally applied either. In comparison, another rule, using random

value with different data type, causes much less false errors.

Control dependency. For a control dependency (𝑃,𝑉 ,⋄) ↦→ 𝑄 ,

𝑄 is only used when 𝑃 ⋄𝑉 returns true (please refer to ğ2.1). Since

random and mutation does not understand such control dependen-

cies, they simply inject errors to𝑄 without setting 𝑃 to satisfy 𝑃 ⋄𝑉 .

If 𝑃 ⋄𝑉 does not satisfy by default, whatever errors injected to 𝑄

would lead to no effect. Specification violation does not suffer from

this problem, because control dependency is one type of specifica-

tion Ð in order to test the target parameter 𝑄 , CeitInspector will

set 𝑃 to satisfy 𝑃 ⋄𝑉 as the pre-condition for testing 𝑄 .

4.2.3 Inadequate Tests. Inadequate testsmean the test suite shipped

with the SUT does not expose the injected errors. This happens in

two scenarios: the test inputs fail to trigger the errors, or the test

oracles fail to capture the errors.

Missing triggering conditions. The majority of indeterminate

results caused by test inadequacy are caused by missing triggering

conditions. In such cases, the tests fail to drive the execution to

reach the statements that consume the erroneous configuration

values. We inspect these cases and find the following patterns:

Specific workload. Some parameters are used when the SUT per-

forms specific operations. For example, HTTPD uses AddHandler

to assign handler to the specific file. Only if the file is fetched by

484

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wang Li, Zhouyang Jia, Shanshan Li, Yuanliang Zhang, Teng Wang, Erci Xu, Ji Wang and Xiangke Liao.

the user, the handler will be invoked to handle the request. The

configuration can hardly be tested if the tests do not access the file.

Failure events. Some parameters are only used in fault tolerance

or error handling code only executed upon failure events (e.g.,

protection faults and runtime exceptions). Without an effective

mechanisms to emulate those events in the tests, such parameters

cannot be tested.

Specific environment. Some parameters are only used in special

environment, such as browser types. The test suite cannot simulate

different browsers, the configuration values are not exercised.

Disabled macro. Some parameters do not take effect due to dis-

abled macros at the compilation time. The following code snip-

pet shows an example from the PostgreSQL: only if the macro

OPENSSL_NO_ECDH is not defined, the parameter ssl_ecdh_curve

(store in the variable SSLECDHCurve) will take effect.

1 #ifndef OPENSSL_NO_ECDH

2 nid = OBJ_sn2nid(SSLECDHCurve);

3 ecdh = EC_KEY_new_by_curve_name(nid);

4 #endif

Missing oracles.Many indeterminate results come from the fact

that the test cases do not have the oracles to capture the symptoms,

even though the test inputs have triggered the injected errors. One

such example is the injection testing for AddDefaultCharset in

HTTPD, which is exposed by the test execution and cause a HTTP

response with łcharset=errorž. HTTPD’s test does not check the

charset of the response and passes the test. As a comparison, NGINX

has a similar parameter charset_type; NGINX’s test suite checks

the validity of the charset in HTTP responses, and thus do not have

indeterminate results.

4.2.4 Summary. Despite all the indeterminate reactions have the

same symptoms w.r.t. the test results and logs, they might have

extremely different implications.

Finding 4: 20.2% of indeterminate reactions are caused by

silent resolutions, which may change user intentions with-

out notifications. Silent resolutions commonly leads to user con-

fusion and frustration due to mismatches between system behavior

and user intentsÐthe systems ignore or correct users’ configura-

tions without any feedback or notifications. In principle, silent res-

olutions should be seen as vulnerability and CEIT tools should cap-

ture silent resolutions to enhance the system diagnosability [52, 56].

However, in the existing CEIT tools, without manual inspection,

these vulnerabilities will never be exposed since they hide inside

the indeterminate results. In Table 4, silent resolutions contribute

to 47 (6+41), 178 (21+157), 206 (18+188) indeterminate results in

three existing CEIT tools.

Finding 5: 58.3% of indeterminate reactions are caused by

false errors, which lead to useless tests and affect the effi-

ciency of CEIT. False errors fundamentally break the principle of

configuration error injection testing which exercises the system

behavior upon erroneous values. False errors not only waste testing

time, but also lead to indeterminate results that has to be manually

filtered out. CEIT tools should avoid generating false errors. In

our study, false errors lead to 60 and 1181 indeterminate results in

random and mutation. Specification violation can avoid false errors

given the comprehensive understanding of constraints.

Table 5: The test results of prototype logging tool.

Software Silent Resolutions # of the improved Ratio

HTTPD 169 166 98.2%
NGINX 0 0 NULL
MySQL 62 60 96.8%
PostgreSQL 1 0 0.0%
Squid 40 26 65.0%
VSFTPD 159 141 88.7%

Total 431 393 91.2%

Finding 6: 21.5% of indeterminate reactions are caused by

inadequate tests, which may lead to false negatives and af-

fect the effectiveness of CEIT. CEIT tools depend on existing

system tests to expose vulnerabilities. Prior works [21, 56] use a

small number of tests which are unlikely adequate. Even official

system test suites suggested in [52] do not have sufficient coverage.

We use gcov to measure the statement coverage of the SUTs under

the official suites and find the coverage is merely 29%ś68% across

the studied systems. A future direction is to investigate automated

or semi-automated techniques for selecting or generating test cases

for configuration error injection testing based on how each test

exercises configuration parameters. In our study, inadequate tests

result in 64, 267, and 126 indeterminate results in three CEIT tools.

4.3 RQ3: Are there potential approaches to

further improve the CEIT framework?

In ğ 4.1, we find up to 21.3% test results of the existing CEIT tools

are indeterminate and ignored by the prior research work. In ğ 4.2,

we conduct a comprehensive study addressing the indeterminate

results, and found their root causes may come from error generation

methods, SUTs and test cases. In this section, we explore possible

remedies of improving the CEIT framework from three aspects

guided by the above findings.

4.3.1 Improving SUTs. Silent resolutions contribute up to 20.2%

indeterminate reactions (as shown in Table 4), which are regarded

as bad reactions of the SUT. Therefore, improving the SUT could

reduce indeterminate reactions generated by the CEIT framework.

Silent resolutions occur in two situations, i.e., out-of-bound value

correction and unsafe type casting, as discussed in ğ4.2.1. Both the

situations change the parameter values without informing users

with explicit log messages. In this regard, we consider building

a log automation tool to locate the silent resolutions, then add

pinpointing logs. Log automation typically has two tasks: what to

log [54] and where to log [19, 54, 58]. For the what-to-log task, the

warning logs should pinpoint the name, original value, and new

value of the parameter. For the where-to-log task, the log locations

are depended on the different situations of silent resolutions:

1) Out-of-bound value correction. This situation usually has an

explicit assignment statement, which changes the configuration

value. Therefore, the log statement can be placed right after the

assignment statement:

1 foo (string para_name ...){

2 int para_value = read_int_from_conf(para_name);

3 int old_value = para_value;

4 if is_not_correct(old_value):

5 para_value = new_value;

6 + printf("%s: changing the value from %d to %d",

485

Challenges and Opportunities: An In-Depth Empirical Study on Configuration Error Injection Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 6: The evaluation of mutation rules.

Rules Injections Indeterminate False Errors Vulnerabilities

Rule 1 1666 83 33 4
Rule 2 1666 533 432 6
Rule 3 1666 196 93 7
Rule 4 1666 217 120 14
Rule 5 1666 597 503 9

Total 5830 1626 1181 15

Rule 1,3,4 3498 496 246 15

7 + para_name, old_value, new_value);

8 }

The log tool first uses ConfMapper [57] to identify configuration

parameters and their corresponding variables in source code. When

a variable is assigned to a new value without any log statement, we

add a log statement after the assignment statement.

2) Unsafe type casting. This situation usually uses APIs like atoi

to change the value types. When the parsing APIs change the value

at the same time, there should be log statements:

1 bar (string para_name , ...){

2 string para_value_str = read_str_from_conf(para_name);

3 int para_value_int = atoi(para_value_str);

4 + if string(para_value_int) != para_value_str:

5 + printf("%s: changing the value from %s to %s",

6 + para_name, para_value_str, string(para_value_int));

7 }

We propose a simple oracle to determine if the parameter value

(e.g., para_value_str) is changed: when transferring the return

value (e.g., para_value_int) back to its original type (e.g., string),

the output value (e.g., string(para_value_int)) does not equal

to the original value (e.g., para_value_str). Using this oracle, the

log tool first detects whether the SUT uses unsafe parsing APIs

like atoi, atof, atol, etc. If yes, the tool transfers the return

value back into its original type. When the transferred value is

inconsistent with the original value, a log statement will be placed.

For example, atoi will transfer the string "10O" into the integer 10.

If converting the integer 10 back to string, the tool finds "10" is not

equal to "10O", and thus adds a log statement.

With the help of this tool, 91.2% of silent resolutions can be

transferred into pinpointing reactions. The detailed result is shown

in Table 5. This result suggests the logging tool can fix most silent

resolutions by checking two simple code patterns. Meanwhile, there

are still some cases that are too complex to be handled. For example,

some silent corrections happenwhen one parameter does not satisfy

the constraint with another parameter. Our prototype tool cannot

handle the cases involving multiple parameters.

4.3.2 Improving Configuration Error Generation. Among three gen-

eration methods, the mutation method leads to the most (27.9%)

indeterminate results, and 72.6% of them are caused by false errors,

as shown in Table 4. These false errors significantly impede the ef-

ficiency of CEIT. For example, in MySQL, the mutation method can

only trigger one vulnerability with 570 injections, each of which

requires 25 minutes. It means the mutation method can find only

one vulnerability using nine days. In this regard, we evaluate the

effectiveness and efficiency of each mutation rule respectively, and

explore possible improvements. All the mutation rules we evaluate

are widely-used in the previous work [21, 56].

The evaluation results are shown in Table 6. The second (ran-

dom selection within a pre-defined pool) and fifth (case alteration)

rules introduce 533 and 597 indeterminate reactions, while the rest

only have 83-217 ones. The reason is that these two rules are more

likely to generate valid values: the second rule often chooses val-

ues in the valid range; the fifth rule is not effective in SUT using

case-insensitive parsing methods like strcasecmp. For example,

the second rule may generate an integer 1024 for a numeric param-

eter, but 1024 is in the valid range. For the fifth rule, all the SUT

use strcasecmp to parse boolean or enum parameters. Therefore,

nearly all the case alteration injections lead to false errors. Besides,

these two rules do not find new vulnerabilities compared to the

rest three rules.

Here, we use the first, third and forth rules when applying the

mutation method. We compare the original mutation method and

the mutation method excluding these two rules. The new mutation

method does not miss any vulnerability, while the required injec-

tions decrease from 5830 to 3498. And false errors decrease from

20.3% (1181/5830) to 7.0% (246/3498). Considering the mutation

method needs no system-specific knowledge, the new mutation

method could still find 25% more vulnerabilities than the random

method but in a more efficient way compared to the original one.

In practice, when new mutation rules are introduced, we suggest

these rules should avoid vast amount of false errors.

4.3.3 Improving Test Suites. The test suite of the SUT may signifi-

cantly affect CEIT framework. On one hand, the test suite may lack

test cases to trigger the configuration errors, and downgrade the

effectiveness. On the other hand, the test suite may have redundant

test cases, and downgrade the efficiency. Therefore, the test suite

can be improved from two aspects: removing redundant test cases

and generating configuration-oriented test cases.

Generating configuration-oriented test cases. Inadequate

test cases contribute up to 21.5% indeterminate reactions, as shown

in Table 4. This result suggests many configuration errors are not

triggered by the test cases at all. It could be for the reason that

CEIT has always been conducted as black-box testing [8, 21, 24,

25, 52, 56], which means it could be inefficient since testers could

not decide which part to test. Moreover, current test suite is not

designed for CEIT and could not guarantee all themisconfigurations

could be triggered. Because current test suites concentrate on the

functionalities while CEIT most focus on the error-checking and

-handling which might not be tested during the functional tests.

To the opposite, white box testing could allow users to concen-

trate on testing the parameter-related code. Therefore, generating

test cases that can trigger the configuration errors can help reduce

indeterminate reactions and probably detect more vulnerabilities.

To achieve this, we propose an automated technique of generating

configuration-oriented test cases as the future work. The workflow

is illustrated in Figure 3. The tool first locates the parameter-related

code by using taint analysis, then uses directed fuzzing and sym-

bolic execution methods to generate test inputs that can trigger the

parameter-related code. Ideally, the tool could solve the missing

trigger conditions excluding disabled macro, which account for

59.7% of inadequate tests.

486

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wang Li, Zhouyang Jia, Shanshan Li, Yuanliang Zhang, Teng Wang, Erci Xu, Ji Wang and Xiangke Liao.

Source Code

Taint Analysis

Parameter-related Code

Target Parameter
Directed Fuzzing &
Symbolic Execution

Configuration-
oriented Test Cases

Figure 3: Generating configuration-oriented test cases.

Removing redundant test cases. In general, the purpose of

test suites is to test the SUT functionalities as many as possible.

Therefore, code coverage is an important metrics to evaluate the

quality of a test suite. As a result, developers tend to design more

test cases to achieve higher code coverages. When two test cases

are redundant (i.e., covering the same code), the overhead is lim-

ited since all test cases are executed once automatically. For CEIT,

however, thousands of configuration errors should be tested under

each test case. Accordingly, the overhead of redundant test cases

is magnified thousands of times, thus may significantly affect the

CEIT efficiency. Plenty of time is probably wasted when running

the code irrelevant to the injected configuration errors.

To remedy this, we evaluate the code coverage of each test case in

official test suites, and find that 81% of test cases have no coverage

increase. These tests are usually redundant for CEIT. A simple

solution to mitigate the problem is to sample the test cases. When

sampling 10% test cases, we find the loss of code coverage is 5.49-

29.38% compared with using all test cases. When the sample rate

is 30%, the code coverage loss is 5.10-12.10%. Also, the impact for

the CEIT effectiveness is limited during the sampling process. Our

experiment shows that 38 out of 45 vulnerabilities (excluding Squid

andVSFTPD since there is no official test suites) can be exposed after

30% sampling. It indicates that test-case sampling can significantly

improve the CEIT efficiency with limited loss of effectiveness.

5 DISCUSSION

We use CeitInspector as a vehicle to evaluate the effectiveness and

efficiency of CEIT. In this section, we summarize the challenges we

encountered when using CeitInspector to apply the testing. The

challenges are seldom discussed in existing tools but are critically

important to the testing results. We share our solutions which have

been integrated in CeitInspector.

Noises in logs. A key challenge in log analysis is to deal with

the noises. Specifically, we experience two outstanding patterns

of noises which could significantly affect the testing results if not

handled appropriately. First, some configuration parameters and

values will be printed out in the log messages during the normal

execution, without any injected configuration errors. Common

cases are INFO logs that expose internal system status and actions.

In such cases, any injected errors of the related parameters lead

to adequate reactions unless the errors crash the system, because

there is always a log message containing the related parameter.

CeitInspector filters out those noises by using the log messages

of normal execution as baseline. It only considers log messages

that do not appear in the baseline logs. This feature requires users

to annotate the general log message format in order to filter out

execution-specific information such as timestamps and process IDs.

Table 7: Testing time of specification violation. All the tests

run in Docker containers on a CentOS 7.7 with 2.5 GHz dual-

core CPU and with 16 GB RAM.

Software Total Average Test Suite Runtime

HTTPD 640 mins 2.82 mins 5 mins
NGINX 360 mins 0.47 mins 2 mins
MySQL 2220 mins 5.23 mins 25 mins
PostgreSQL 120 mins 0.17 mins 3 mins
Squid 41 mins 3.68 secs 10 secs
VSFTPD 61 mins 16.40 secs 40 secs

Second, some systems adopt the practice of dumping the entire

configuration file content upon failures. Such messages are not

helpful for users to diagnose the injected configuration errors even

if the root-cause configuration parameters and values are included

in the message. Currently, CeitInspector provides an interface to

annotate such log messages using regular expressionsÐthe log

messages will be ignored in log analyzer.

Compound data types. We find in total 28 parameters from

HTTPD, NGINX, and Squid come up with compound data types,

in which the parameter can be typed differently. For example, u

serid_expires in NGINX can either be a numeric value, or an

enumerative string ∈ {"max", "off"}. For specification violation, we

build support for compound types in CeitInspector which ensures

that a generated error violates all specifications of all the possible

types.

Testing time. One concern of CEIT is the testing cost ś the

total testing time could be 𝑁 ×𝑇 where 𝑁 is the number of injected

errors and 𝑇 is the running time of the test suite (the fifth column

in Table 2). In practice, we find that the actual testing time is much

shorter than 𝑁 × 𝑇 because many injected errors lead to early

terminations that skip the entire test suites, or test failures that skip

subsequent tests.

Table 7 shows the testing time using specification violation based

error generation. The actual test time is 1.77×ś17.65× shorter than

the projected overall time (𝑁 ×𝑇).

6 THREATS TO VALIDITY

Our study may suffer threats to the external and internal validity.

Threats to the external validity. The software projects we

choose might affect the generalization of our empirical study. To

handle this, the projects in our study are all mature and widely-

used, with at least 15 years of development andmaintenance history.

Many bugs that lead to crashing behavior have been already ex-

posed in prior work [21, 52] and fixed by developers. We expect

different testing results in new, immature software programs. Specif-

ically, we believe configuration error injection testing can expose

more crashing bugs in new codebases, in a similar vein as other

modern fuzzing techniques [15, 23, 26, 34, 36, 37, 42, 45]. For now,

this study mainly focuses on reaction analysis, instead of crashing

behavior.

Threats to the internal validity. We do not use automated

approaches to generate specifications, but instead encode specifica-

tions manually. We collect configuration specifications manually

from document and also from source code as discussed in ğ2.1.

The results are based on human-based specification engineering.

Similarly, we manually check the reaction results in ğ4. For bad

487

Challenges and Opportunities: An In-Depth Empirical Study on Configuration Error Injection Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

reactions, we check the SUT logs to see whether they are caused

by injected configuration errors to identify vulnerabilities and false

positives. For indeterminate reactions, we first compare the parame-

ter’s specification and the injected value to see whether it is a false

error. If not, we inspect the source code and test code to find if it is

a silent resolution or inadequate tests.

Therefore, the human factor may pose a threat to the confidence

of our study. To control this threat, two authors separately per-

form the manual study, and compare their answers to make the

results credible. When they diverge, the third author is consulted

for additional discussion until consensus is reached.

7 RELATED WORK

Prior work on configuration error injection testingmostly focuses

on two main components: configuration error generation and sys-

tem reaction analysis.

Configuration error generation. In general, existing configu-

ration error generation methods can be classified into the following

three categories. The simplest method of configuration error gener-

ation is to generate a random string as an erroneous configuration

value, known as fuzzing [30, 31] 3. Random is a black-box method.

It does not require any knowledge of the configurations or the

system under tests.

Mutation is the most widely-used method for configuration error

generation in existing configuration error injection testing tools,

including ConfErr [21], ConfInject [8], ConfTest [25], ConfVD [24],

and ConfDiagDetector [56]. The key idea is to mutate a given

configuration value (often the default value) to generate erroneous

values based on predefinned mutation rules (e.g. omission, case

alteration) in order to simulate various types of human errors, such

as slips, lapses, etc [21].

Recent work, e.g., Spex-Inj [52] and ConfVD [24], shows that

configuration errors can be generated by violating the specifications

of configuration parameters, including basic type (e.g., boolean,

integer, float, etc), semantic type (file path, IP address, etc), data

range, control dependencies, and value relationship. For example,

if a configuration parameter specifies an integer typed value, a

non-integer value can be generated.

Prior studies show that specification violation based error gen-

eration is effective in exposing reliability and diagnosability issues.

A number of recent work [24, 25, 27] has developed automated

techniques to extract or infer configuration specifications from

source code [40, 52], documents [27, 38, 47, 48], or field configura-

tion data [43, 44, 55]. Many software companies have the practice of

encoding specifications of configuration parameters [14, 18, 29, 46]

(mainly for configuration validation)Ðthose specifications can di-

rectly be used for configuration error generation.

Reaction Analysis As system reactions to configuration errors

are embodied in the console output and/or system logs (syslog),

automated text-based analysis has been used to identify inadequate

diagnostic messages. The standard criteria to evaluate the diagnos-

ability of the message content is that the message is useful for users

to diagnose the (injected) configuration error as long as the message

3The term łfuzzingž was originally refer to łgenerating a stream of random characters
to be consumed by a target program [30].ž Since then, the concept of fuzzing has been
broadened as is not necessarily randomized [28].

content contains the root-cause configuration parameter name or

the erroneous value. This criteria is used in most of the existing

work [21, 24, 25, 27, 52]. Xu et al. [52] points out that configuration

errors could also result in system crashes, hangs and indeterminate

termination during the test runs. Such reasons can be captured at

the system level (e.g., checking the running process and analyzing

syslog).

Zhang and Ernst [56] further propose to use natural language

processing (NLP) techniques to evaluate the informativeness of the

message content by comparing the similarity between log messages

and document entry of the configuration parameter.

8 CONCLUSION

This paper presents an in-depth study on the effectiveness and effi-

ciency of configuration error injection testing to evaluate software

reactions upon configuration errors. We design and implement

CeitInspector, an extensive and highly-modularized configuration

error injection testing tool which can be easily applied to differ-

ent SUTs and integrated with various configuration error injection

techniques. We experiment three major existing configuration error

generation methods including random, mutation and specification

violation on six mature server applications. We first conduct a com-

parative study of different error generation methods including their

effectiveness, efficiency and cost trade-offs. Then, we reveal the

limitations of current CEIT tools through indeterminate test re-

sult analysis. Finally, we propose approaches to improve the CEIT

framework. This work can benefit future configuration error testing

work.

ACKNOWLEDGEMENT

We sincerely thank the anonymous reviewers for insightful sugges-

tions, and Tianyin Xu for his guidance to this work. Also, we thank

Yu Jiang, Yanyan Jiang, Jianyan Chen and Lucheng Bao for their

feedback and suggestions on this paper and tools. This research was

substantially supported by National Key R&D Program of China

(Project No. 2017YFB1001802); National Natural Science Foundation

of China (Project No. 61872373 and No. 61872375).

REFERENCES
[1] 2020. HTTPD configuration manual page. http://httpd.apache.org/docs/2.4/mod/

directives.html.
[2] 2020. MySQL configuration manual page. https://dev.mysql.com/doc/refman/5.

6/en/server-option-variable-reference.html.
[3] 2020. Nginx configuration manual page. http://nginx.org/en/docs/dirindex.html.
[4] 2020. PostgreSQL configuration manual page. https://www.postgresql.org/docs/

11/bookindex.html.
[5] 2020. Squid configuration manual page. http://www.squid-cache.org/Doc/

config/.
[6] 2020. VSFTPD configuration manual page. https://security.appspot.com/vsftpd.

html.
[7] George Amvrosiadis and Medha Bhadkamkar. 2016. Getting Back Up: Under-

standing How Enterprise Data Backups Fail. In Proceedings of 2016 USENIX Annual
Technical Conference (ATC’16). Denver, CO.

[8] Fahad A. Arshad, Rebecca J. Krause, and Saurabh Bagchi. 2013. Characterizing
Configuration Problems in Java EE Application Servers: An Empirical Study with
GlassFish and JBoss. In Proceedings of the 24th IEEE International Symposium on
Software Reliability Engineering (ISSRE’13). Pasadena, CA, USA. https://doi.org/
10.1109/ISSRE.2013.6698919

[9] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automating
Root-Cause Diagnosis of Performance Anomalies in Production Software. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI’12). Hollywood, CA, USA. https://doi.org/10.5555/2387880.
2387910

488

http://httpd.apache.org/docs/2.4/mod/directives.html
http://httpd.apache.org/docs/2.4/mod/directives.html
https://dev.mysql.com/doc/refman/5.6/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/5.6/en/server-option-variable-reference.html
http://nginx.org/en/docs/dirindex.html
https://www.postgresql.org/docs/11/bookindex.html
https://www.postgresql.org/docs/11/bookindex.html
http://www.squid-cache.org/Doc/config/
http://www.squid-cache.org/Doc/config/
https://security.appspot.com/vsftpd.html
https://security.appspot.com/vsftpd.html
https://doi.org/10.1109/ISSRE.2013.6698919
https://doi.org/10.1109/ISSRE.2013.6698919
https://doi.org/10.5555/2387880.2387910
https://doi.org/10.5555/2387880.2387910

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Wang Li, Zhouyang Jia, Shanshan Li, Yuanliang Zhang, Teng Wang, Erci Xu, Ji Wang and Xiangke Liao.

[10] Mona Attariyan and Jason Flinn. 2008. Using Causality to Diagnose Configura-
tion Bugs. In Proceedings of 2008 USENIX Annual Technical Conference (USENIX
ATC’08). Boston, MA, USA. https://doi.org/10.5555/1404014.1404037

[11] Mona Attariyan and Jason Flinn. 2010. Automating Configuration Troubleshoot-
ing with Dynamic Information Flow Analysis. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (OSDI’10). Vancouver,
BC, Canada. https://doi.org/10.5555/1924943.1924960

[12] Augeas. 2018. Augeas - a configuration API. http://augeas.net/
[13] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The

Datacenter as a Computer: An Introduction to the Design of Warehouse-scale Ma-
chines (Third Edition). Morgan and Claypool Publishers. https://doi.org/10.2200/
S00874ED3V01Y201809CAC046

[14] Salman Baset, Sahil Suneja, Nilton Bila, Ozan Tuncer, and Canturk Isci. 2017.
Usable Declarative Configuration Specification and Validation for Applications,
Systems, and Cloud. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference (Middleware’17), Industrial Track. https://doi.org/10.1145/3154448.
3154453

[15] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS’17) (Dallas, Texas,
USA). https://doi.org/10.1145/3133956.3134020

[16] Jim Gray. 1985. Why Do Computers Stop and What Can Be Done About It?
Tandem Technical Report 85.7 (Jun. 1985). https://doi.org/10.1.1.59.6561

[17] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D.
Satria, Jeffry Adityatama, and Kurnia J. Eliazar. 2016. Why Does the Cloud
Stop Computing? Lessons from Hundreds of Service Outages. In Proceedings
of the 7th ACM Symposium on Cloud Computing (SoCC’16). Santa Clara, CA.
https://doi.org/10.1145/2987550.2987583

[18] Peng Huang, William J. Bolosky, Abhishek Sigh, and Yuanyuan Zhou. 2015. Con-
fValley: A Systematic Configuration Validation Framework for Cloud Services.
In Proceedings of the 10th European Conference on Computer Systems (EuroSys’15).
Bordeaux, France. https://doi.org/10.1145/2741948.2741963

[19] Zhouyang Jia, Shanshan Li, Xiaodong Liu, Xiangke Liao, and Yunhuai Liu. 2018.
SMARTLOG: Place error log statement by deep understanding of log intention. In
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 61ś71. https://doi.org/10.1109/SANER.2018.8330197

[20] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. 2008.
Are Disks the Dominant Contributor for Storage Failures? A Comprehensive
Study of Storage Subsystem Failure Characteristics. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST’08). San Jose, CA, USA.
https://doi.org/10.1145/1416944.1416946

[21] Lorenzo Keller, Prasang Upadhyaya, and George Candea. 2008. ConfErr: A Tool
for Assessing Resilience to Human Configuration Errors. In Proceedings of the 38th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’08). Anchorage, AK, USA. https://doi.org/10.1109/DSN.2008.4630084

[22] Stuart Kendrick. 2012. What Takes Us Down? USENIX ;login: 37, 5 (Oct. 2012),
37ś45. https://www.usenix.org/publications/login/october-2012-volume-37-
number-5/what-takes-us-down

[23] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation Strat-
egy for Increasing Greybox Fuzz Testing Coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE’18)
(Montpellier, France). https://doi.org/10.1145/3238147.3238176

[24] Shanshan Li, Wang Li, Xiangke Liao, Shaoliang Peng, Shulin Zhou, Zhouyang
Jia, and Teng Wang. 2018. ConfVD: System Reactions Analysis and Evaluation
Through Misconfiguration Injection. IEEE Transactions on Reliability (Early
Access) (Sep. 2018). https://doi.org/10.1109/TR.2018.2865962

[25] Wang Li, Shanshan Li, Xiangke Liao, Xiangyang Xu, Shulin Zhou, and Zhouyang
Jia. 2017. ConfTest: Generating Comprehensive Misconfiguration for System
Reaction Ability Evaluation. In The International Conference. 88ś97. https:
//doi.org/10.1145/3084226.3084244

[26] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-State Based Binary Fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’17)
(Paderborn, Germany). https://doi.org/10.1145/3106237.3106295

[27] Xiangke Liao, Shulin Zhou, Shanshan Li, Zhouyang Jia, Xiaodong Liu, and
Haochen He. 2018. Do You Really Know How to Configure Your Software?
Configuration Constraints in Source Code May Help. IEEE Transactions on
Reliability 67, 3 (Sep. 2018), 832ś846. https://doi.org/10.1109/TR.2018.2834419

[28] Valentin J.M. Manés, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, , Edward J. Schwartz, and Maverick Woo. 2019. The Art, Science, and
Engineering of Fuzzing: A Survey. arXiv:1812.00140 (Apr. 2019). https://doi.org/
10.1109/TSE.2019.2946563

[29] Ben Maurer. 2015. Fail at Scale: Reliability in the Face of Rapid Change. Commun.
ACM 58, 11 (Nov. 2015), 44ś49. https://doi.org/10.1145/2838344.2839461

[30] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study
of the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990), 32ś44.
https://doi.org/10.1145/96267.96279

[31] Barton P. Miller, David Koski, Cjin Pheow Lee, Vivekananda Maganty, Ravi
Murthy, Ajitkumar Natarajan, and Jeff Steidl. 1995. Fuzz Revisited: A Re-
examination of the Reliability of UNIX Utilities and Services. Technical Report
1268. University of Wisconsin-Madison, Computer Sciences Department.

[32] MySQL Parameter. 2019. MySQL parameter from Innodb and myisam. https:
//dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html

[33] Kiran Nagaraja, Fábio Oliveira, Ricardo Bianchini, Richard P. Martin, and Thu D.
Nguyen. 2004. Understanding and Dealing with Operator Mistakes in Internet
Services. In Proceedings of the 6th USENIX Conference on Operating Systems Design
and Implementation (OSDI’04). San Francisco, CA, USA. https://doi.org/10.5555/
1251254.1251259

[34] Saahil Ognawala, Thomas Hutzelmann, Eirini Psallida, and Alexander Pretschner.
2018. Improving Function Coverage with Munch: A Hybrid Fuzzing and Directed
Symbolic Execution Approach. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing (SAC’18) (Pau, France). https://doi.org/10.1145/3167132.
3167289

[35] David Oppenheimer, Archana Ganapathi, and David A. Patterson. 2003. Why Do
Internet Services Fail, and What Can Be Done About It?. In Proceedings of the 4th
USENIX Symposium on Internet Technologies and Systems (USITS’03). Seattle, WA,
USA. https://doi.org/10.5555/1251460.1251461

[36] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’19)
(Beijing, China). https://doi.org/10.1145/3293882.3330576

[37] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: Domain-Specific Fuzzing with Waypoints.
In Proceedings of the ACM on Programming Languages (OOPSLA’19). https:
//doi.org/10.1145/3360600

[38] Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-Rotaru, Mingshi Wang,
Liyuan Zhang, and Navendu Jain. 2015. ConfSeer: Leveraging Customer Support
Knowledge Bases for Automated Misconfiguration Detection. In Proceedings of
the 35th International Conference on Very Large Data Bases (VLDB’15). https:
//doi.org/10.14778/2824032.2824079

[39] Ariel Rabkin and Randy Katz. 2011. Precomputing Possible Configuration
Error Diagnosis. In Proceedings of the 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE’11). Lawrence, KS, USA. https:
//doi.org/10.1109/ASE.2011.6100053

[40] Ariel Rabkin and Randy Katz. 2011. Static Extraction of Program Configuration
Options. In Proceedings of the 33th International Conference on Software Engineer-
ing (ICSE’11). Honolulu, HI, USA. https://doi.org/10.1145/1985793.1985812

[41] Ariel Rabkin and Randy Katz. 2013. How Hadoop Clusters Break. IEEE Software
Magazine 30, 4 (Jul. 2013), 88ś94. https://doi.org/10.1109/MS.2012.73

[42] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
Proceedings of the 2017 Network and Distributed System Security Symposium
(NDSS’17) (San Diego, CA, USA). https://doi.org/10.14722/ndss.2017.23404

[43] Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron Shim, and Ruzica Piskac.
2017. Synthesizing Configuration File Specifications with Association Rule
Learning. In Proceedings of 2017 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’17). https://doi.
org/10.1145/3133888

[44] Mark Santolucito, Ennan Zhai, and Ruzica Piskac. 2016. Probabilistic Automated
Language Learning for Configuration Files. In 28th International Conference on
Computer Aided Verification (CAV’16). Toronto, Canada. https://doi.org/10.1007/
978-3-319-41540-65

[45] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
Proceedings of the 2016 Network and Distributed System Security Symposium
(NDSS’16) (San Diego, CA, USA). https://doi.org/10.14722/ndss.2016.23368

[46] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holistic
Configuration Management at Facebook. In Proceedings of the 25th Symposium
on Operating System Principles (SOSP’15). Monterey, CA, USA. https://doi.org/10.
1145/2815400.2815401

[47] Ozan Tuncer, Nilton Bila, Sastry Duri, Canturk Isci, and Ayse K. Coskun. 2018.
ConfEx: Towards Automating Software Configuration Analytics in the Cloud. In
Proceedings of the 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). https://doi.org/10.1109/DSN-W.2018.00019

[48] Ozan Tuncer, Nilton Bila, Canturk Isci, and Ayse K. Coskun. 2018. ConfEx:
An Analytics Framework for Text-Based Software Configurations in the Cloud.
Technical Report RC25675 (WAT1803-107). IBM Research.

[49] Whoosh. 2018. Whoosh 2.7.4 documentation. https://whoosh.readthedocs.io/
en/latest

[50] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Configuration Errors to Reduce
Failure Damage. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16). Savannah, GA. https://doi.org/10.

489

https://doi.org/10.5555/1404014.1404037
https://doi.org/10.5555/1924943.1924960
http://augeas.net/
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.1145/3154448.3154453
https://doi.org/10.1145/3154448.3154453
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1.1.59.6561
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/2741948.2741963
https://doi.org/10.1109/SANER.2018.8330197
https://doi.org/10.1145/1416944.1416946
https://doi.org/10.1109/DSN.2008.4630084
https://www.usenix.org/publications/login/october-2012-volume-37-number-5/what-takes-us-down
https://www.usenix.org/publications/login/october-2012-volume-37-number-5/what-takes-us-down
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1109/TR.2018.2865962
https://doi.org/10.1145/3084226.3084244
https://doi.org/10.1145/3084226.3084244
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1109/TR.2018.2834419
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/2838344.2839461
https://doi.org/10.1145/96267.96279
https://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html
https://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html
https://doi.org/10.5555/1251254.1251259
https://doi.org/10.5555/1251254.1251259
https://doi.org/10.1145/3167132.3167289
https://doi.org/10.1145/3167132.3167289
https://doi.org/10.5555/1251460.1251461
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3360600
https://doi.org/10.1145/3360600
https://doi.org/10.14778/2824032.2824079
https://doi.org/10.14778/2824032.2824079
https://doi.org/10.1109/ASE.2011.6100053
https://doi.org/10.1109/ASE.2011.6100053
https://doi.org/10.1145/1985793.1985812
https://doi.org/10.1109/MS.2012.73
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1145/3133888
https://doi.org/10.1145/3133888
https://doi.org/10.1007/978-3-319-41540-65
https://doi.org/10.1007/978-3-319-41540-65
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1109/DSN-W.2018.00019
https://whoosh.readthedocs.io/en/latest
https://whoosh.readthedocs.io/en/latest
https://doi.org/10.5555/3026877.3026925
https://doi.org/10.5555/3026877.3026925

Challenges and Opportunities: An In-Depth Empirical Study on Configuration Error Injection Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

5555/3026877.3026925
[51] Tianyin Xu, Han Min Naing, Le Lu, and Yuanyuan Zhou. 2017. How Do System

Administrators Resolve Access-Denied Issues in the RealWorld?. In Proceedings of
the 35th Annual CHI Conference on Human Factors in Computing Systems (CHI’17).
Denver, CO. https://doi.org/10.1145/3025453.3025999

[52] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Miscon-
figurations. In Proceedings of the 24th Symposium on Operating System Principles
(SOSP’13). Farmington, PA, USA. https://doi.org/10.1145/2517349.2522727

[53] Zuoning Yin, XiaoMa, Jing Zheng, Yuanyuan Zhou, LakshmiN. Bairavasundaram,
and Shankar Pasupathy. 2011. An Empirical Study on Configuration Errors in
Commercial and Open Source Systems. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP’11). Cascais, Portugal. https://doi.org/10.
1145/2043556.2043572

[54] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2012.
Improving software diagnosability via log enhancement. ACM Transactions on
Computer Systems (TOCS) 30 (2012), 4. https://doi.org/10.1145/1950365.1950369

[55] Jiaqi Zhang, Lakshmi Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth Bala,
Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: Exploiting System Environment
and Correlation Information for Misconfiguration Detection. In Proceedings of the
19th International Conference on Architecture Support for Programming Languages
and Operating Systems (ASPLOS’14). Salt Lake City, UT, USA. https://doi.org/10.
1145/2644865.2541983

[56] Sai Zhang and Michael D. Ernst. 2015. Proactive Detection of Inadequate Diag-
nostic Messages for Software Configuration Errors. In Proceedings of the 2015
International Symposium on Software Testing and Analysis (ISSTA’15). Baltimore,
MD, USA. https://doi.org/10.1145/2771783.2771817

[57] Shulin Zhou, Xiaodong Liu, Shanshan Li, Wei Dong, Xiangke Liao, and Yun
Xiong. 2016. Confmapper: Automated variable finding for configuration items in
source code. In 2016 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C). IEEE, 228ś235. https://doi.org/10.1109/QRS-
C.2016.35

[58] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R Lyu, and Dongmei
Zhang. 2015. Learning to Log: Helping Developers Make Informed Logging
Decisions. In Proc. of ACM/IEEE ICSE. https://doi.org/10.5555/2818754.2818807

490

https://doi.org/10.5555/3026877.3026925
https://doi.org/10.1145/3025453.3025999
https://doi.org/10.1145/2517349.2522727
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/1950365.1950369
https://doi.org/10.1145/2644865.2541983
https://doi.org/10.1145/2644865.2541983
https://doi.org/10.1145/2771783.2771817
https://doi.org/10.1109/QRS-C.2016.35
https://doi.org/10.1109/QRS-C.2016.35
https://doi.org/10.5555/2818754.2818807

	Abstract
	1 Introduction
	2 Methodology
	2.1 Generating Configuration Errors
	2.2 Selecting Target Systems
	2.3 Preparing Test Cases

	3 Design of CeitInspector
	4 Empirical Study
	4.1 RQ1: How good are the existing CEIT tools in exposing vulnerabilities?
	4.2 RQ2: Despite all previous analysis on the exposed vulnerabilities, are there still cases left unstudied? If yes, do they matter?
	4.3 RQ3: Are there potential approaches to further improve the CEIT framework?

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

