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Distributed Database Management Systems (DDBMSs) are crucial for managing large-scale distributed data.
Unlike single-node databases, they are deployed across clusters, distributing data among multiple nodes. The
synchronization process in DDBMSs maintains data consistency against data and cluster updates. Due to its
complexity, synchronization bugs are inevitable and may cause data inconsistencies, transaction errors, or
cluster crashes, severely compromising the availability and reliability of a DDBMS. However, there has been
relatively little focus on testing the DDBMS synchronization process.

In this paper, we proposeDepState, a framework to detect synchronization failure bugs.DepState enhances
synchronization testing by simulating the complexities of data sharding and dynamic cluster conditions. It
establishes dependencies between tables across nodes and systematically introduces controlled variations in
cluster states. We utilize DepState on four DDBMSs: MySQL NDB Cluster, MySQL InnoDB Cluster, MariaDB
Galera Cluster, and TiDB Cluster, discovering 25 new bugs, with 13 confirmed. We compare DepState against
state-of-the-art tools. DepState finds 14 more synchronization failure bugs and covers 6.13%-66.51%, 5.82%-
57.28%, 14.12%-83.30%, 36.81%-83.88%, and 43.24%-54.28% more lines in synchronization-related functions than
Jepsen,Mallory, SQLsmith, SQLancer, andMozi in 24 hours, respectively.
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1 Introduction

Distributed Database Management Systems (DDBMSs) are extensively employed in large-scale
data processing and high-concurrency scenarios, such as data warehousing, real-time analytics,
e-commerce platforms [35]. As organizations increasingly rely on DDBMSs to handle massive
datasets and high-concurrency workloads, ensuring the synchronization of data updates has become
critical [7]. Maintaining data consistency during updates of shared data and changes in node clusters
is crucial for ensuring system performance and reliability. The synchronization process coordinates
data updates and transaction processing across nodes, ensuring data consistency, not only the
consistency of data replicas, but also the consistency of data and metadata between nodes when
executing transactions, thereby enhancing system stability, fault tolerance, and scalability.
Synchronization in DDBMSs is complex, requiring consistency and reliability across nodes

during transactions. The complexity stems from data interdependencies, as shared data across
nodes requires strict synchronization, where delays or failures on one node can compromise
global consistency [38]. Therefore, the system must have strong coordination and fault-tolerance
capabilities. Moreover, the complexity of clusters is reflected in their frequent state changes. Node
additions, removals, or faults introduce uncertainty into the synchronization process [21], requiring
the system to adjust synchronization strategies to ensure correct transaction execution.

As a result, avoiding implementation errors in synchronization processes proves to be challenging.
Given that the synchronization process is critical to preserving the consistency properties of a
DDBMS [36], errors in the synchronization process can lead to failures. Such failures can trigger
severe consequences, such as service outages or cluster crashes, which significantly impact system
availability. For example, in 2018, GitHub experienced a 24-hour service disruption due to a bug
in the synchronization implementation, which was triggered by a 43-second network disconnect
that affected the connection between webhooks and its MySQL database [39]. Similarly, in 2020, a
bug in the synchronization mechanism of Google Cloud Spanner disrupted essential services like
Gmail and YouTube, leading to significant outages for users worldwide and financial losses for
businesses relying on these platforms [16]. Such bugs in the synchronization mechanism that cause
the synchronization process to fail, leaving the system in an inconsistent or unavailable state, are
what we refer to as Synchronization Failure Bugs. These bugs can disrupt distributed systems
and compromise data integrity, leading to significant operational issues.
Numerous studies have been proposed to detect bugs in DDBMSs. For example, Jepsen [17]

uses the causal consistency detector Elle [18] and fault generators to simulate network partitions,
aiding in the identification of errors in DDBMSs. Similarly, Mallory [26] enhances Jepsen by
optimizing the fault injection process with fuzzy processing of the Lamport graph, facilitating
a more efficient exploration of the fault space. However, most of them focus on fault tolerance
and recovery mechanisms, which often overlook synchronization failure bugs in DDBMSs. Unlike
general distributed systems, DDBMSs must ensure complex database transaction attributes (like
ACID) while ensuring data consistency across multiple nodes. Therefore, DDBMS bugs are often
triggered under databases with complex data dependencies or changes in cluster nodes, which
makes it hard for other tools to detect and resolve these issues effectively.
To identify synchronization failure bugs in DDBMS, we face two challenges: (1) Establish

complex dependencies across sharded data tables. In DDBMSs, data is interconnected and
dynamic. Dependencies vary between partitions and evolve. To identify bugs, it is essential to design
a data schema that captures these diverse dependencies while preserving semantic relationships
across nodes. (2) Explore cluster state change sequences aligned with synchronization
phases. Cluster state change sequences are the various states of nodes in a DDBMS over time.
Capturing the timing and context of cluster state changes during specific synchronization phases
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is difficult, as these changes must align with dynamic conditions within the cluster. Moreover,
the expansive state space complicates generating sequences that could trigger issues, as many
synchronization failures only appear under specific timing and execution conditions.
In order to address these challenges, DepState is introduced as a fuzzing framework specif-

ically engineered to identify synchronization failure issues in DDBMSs. DepState first utilizes
dependency-aware sharding data generation to create diverse scenarios that mimic real-world
conditions. It analyzes table relationships to generate foreign key links across shards, ensuring that
changes in one table dynamically impact related tables. Furthermore, DepState integrates data
integrity constraints to ensure the precise modeling of real-world scenarios. Moreover, we propose
synchronization-sensitive cluster state sequence exploration to precisely modify cluster
states during different synchronization phases. This methodology investigates novel test sequences
that emerge at distinct synchronization intervals via mutation, leveraging coverage feedback to
efficiently identify potential synchronization issues.
We implement DepState and evaluate it on four widely-used DDBMSs: MySQL NDB Cluster,

MySQL InnoDB Cluster, MariaDB Galera Cluster, and TiDB Cluster. DepState reports a total of
25 synchronization failure bugs, with 13 anomalies have been confirmed. In addition, we compare
DepState with the state-of-the-art distributed system testing tool Jepsen and Mallory, and
advanced database testing tools SQLsmith, SQLancer, and Mozi. The 24-hour result shows that
DepState found 14 more synchronization failure bugs, and covered 6.13%-66.51%, 5.82%-57.28%,
14.12%-83.30%, 36.81%-83.88%, and 43.24%-54.28% more lines in synchronization-related functions
than Jepsen,Mallory, SQLsmith, SQLancer, andMozi, respectively.

In summary, we make the following contributions:

• We identified that synchronization process in DDBMSs can be faulty and lead to serious
issues such as service interruptions, but state-of-the-art testing techniques pay little attention
to the synchronization failure bugs.
• We designed and implemented a fuzzing framework DepState, which combines dependency-
aware sharding data generation and synchronization-sensitive cluster state sequence explo-
ration to detect synchronization failure bugs.
• We demonstrated that DepState improves synchronization code coverage compared to exist-
ing state-of-the-art tools. Additionally, we tested four widely-used DDBMSs and uncovered
25 new synchronization failure bugs.

2 Background and Motivation

2.1 DDBMS Overview

A Distributed Database Management System (DDBMS) fundamentally extends a single-node data-
base to address the scalability challenges inherent in large-scale data management. In traditional
single-node DBMSs, all data is stored andmanaged centrally, which simplifies transaction processing
and synchronization mechanisms. However, as data volumes exponentially grow, this centralized
architecture proves inadequate for efficiently managing and processing massive datasets.
To enhance scalability, DDBMSs implement data sharding, partitioning databases into smaller

shards stored on separate nodes, enabling parallel processing. This reduces node load and improves
throughput and response times. Systems like Google Spanner[6] and MongoDB[3] demonstrate the
adoption of sharding in large-scale environments. A cluster can remain operational by leveraging
load balancing and redundancy even if one or more nodes fail.

Once data is distributed across shards and clusters, the synchronization process becomes pivotal
for coordinating updates and managing concurrency. DDBMS must orchestrate transaction process-
ing and synchronization operations among multiple nodes, making its design more complex than
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Fig. 1. A Typical Synchronization Process in DDBMSs That Use the 2PC Protocol.

single-node systems. In particular, cross-shard data dependencies and dynamic cluster states must
be managed simultaneously to ensure consistency and correctness. Consequently, synchroniza-
tion protocols in DDBMS often evolve from a traditional two-phase commit[11] or employ more
advanced consensus algorithms (e.g., Paxos[20] or Raft[27]) to handle distributed coordination.

2.2 Synchronization Process in DDBMS

The synchronization process ensures data consistency and reliability across nodes in a DDBMS,
which maintains ACID properties [12] while addressing high availability and concurrency. This
mechanism adapts traditional database characteristics.
Figure 1 shows the synchronization process in DDBMS using the 2PC protocol [11]. Upon

receiving a transaction, the SQL server forwards it to the Transaction Manager, which assigns it to
the relevant node. In phase one, the node prepares the transaction and reports the outcome. In phase
two, the manager aggregates results and decides on committing or rolling back the transaction.
If the transaction affects metadata, consistency across nodes and slices is ensured. Additionally,
modules are integrated to manage cluster state changes, such as node additions or removals.
While maintaining the features of traditional databases, the synchronization mechanism of

DDBMSmust also tackle the challenges posed by data sharding and cluster state changes [30]. Unlike
traditional DBMS, DDBMS must manage relationships between data stored across multiple nodes,
requiring coordination of both intra-table dependencies and cross-node interactions. Maintaining
dependency consistency across all nodes ensures that even localized updates must reflect across
the entire system. This distributed architecture amplifies the complexity of synchronization [34].

Table 1. Some Cluster Operations and Their Impacts on the Synchronization Process

Cluster Operation Impact on Synchronization

Add Data Node Triggers load balancing and data redistribution.
Remove Data Node Affects dependencies and synchronization.
Data Backup Requires synchronization across all nodes.
Cluster Restart Synchronizes all nodes during startup.
Data Node Restart Involves independent synchronization.
Forced Data Synchronization Forces synchronization by user intervention.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA088. Publication date: July 2025.



DepState: Detecting Synchronization Failure Bugs in Distributed Database Management Systems ISSTA088:5

Fig. 2. Bug #98526 in MySQL NDB Cluster: Forced Shutdown When a Data Node Joins the Cluster.

Cluster state changes, such as node additions, complicate DDBMS synchronization, particularly
regarding consistency and availability [19]. For instance, node restarts during transaction commits
can leave transactions in uncertain states, destabilizing subsequent operations. Cluster state modifi-
cations occur through cluster operations, which include adding, removing, or reconfiguring nodes,
and adjusting load distribution, resource allocation, and data synchronization. Table 1 outlines these
operations and their synchronization impacts. Such changes can trigger complex synchronization
behaviors. Moreover, frequent state transitions complicate distributed lock management, potentially
causing deadlocks or resource contention if locks are not properly released.

2.3 An Example of Synchronization Failure Bug

We use a synchronization failure bug in MySQL NDB Cluster (Bug #98526) [15] as a representative
example to highlight the symptoms of such bugs, the substantial risks their to system integrity,
root causes, and the complexities of accurately identifying them. Specifically, this bug resulted in a
catastrophic cluster crash during the attempt to add a data node into the cluster, thereby illustrating
how synchronization issues can induce significant system instability and operational disruptions.

2.3.1 Bug Description and Root Cause. The bug, triggered during primary key comparison post-
node connection in the synchronization process of MySQL NDB Cluster, violated cross-node
primary key constraints, leading to synchronization failures, node join issues, and a crash of Node
B’s service. It was resolved within three days and documented in MySQL Cluster’s release notes.
Figure 2 illustrates the trigger process of this bug. As it shows, the table users has a primary

key constraint on the Name column, which enforces case-insensitive matching. This constraint
prevents entries such as “Alice” and “alice” from coexisting in the same column. In this scenario,
Node A, already part of the cluster, contains a record with Name=‘Alice’. Node B, which is not
yet part of the cluster, holds a record with Name=‘alice’. During the process of adding node B to
the cluster, “Alice” and “alice” should be considered equal, and one version of the record should
be selected as authoritative to maintain the integrity of the primary key constraint. However, the
binary representations of “Alice” and “alice” are mistakenly treated as distinct, causing both records
to coexist on Node B and violating the primary key constraint.
The bug’s root cause stems from an implementation error: the primitive binary comparison

logic fails to handle character-based primary keys with case-insensitive collation rules, result-
ing in a synchronization failure. The developer addressed this issue by modifying the function
handle_nr_copy in the fileDblqhMain.cpp. This patch introduced a conversion mechanism for
character-type primary keys, which includes an additional character set conversion step to ensure
that logically equivalent primary keys are correctly matched, even if their binary representations
differ. To trigger this issue, two basic conditions are needed: first, conditional constraints between
data on different nodes, and second, changes in the cluster activate the synchronization process.

2.3.2 Limitation of Existing Methods to Find This Bug. Current DDBMS testing methods fail to
detect this bug due to inability to manage data dependencies and dynamic cluster behaviors. For
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Fig. 3. Overview of DepState. It generates a database with interdependent tables distributed across nodes

and employs checkpointing to capture synchronization phases, pinpointing specific state changes. Using

coverage feedback, DepState then explores new test sequences through mutation to detect potential issues.

instance, tools like Jepsen andMallory trigger faults via fault injection but overlook data complex-
ities. They are insufficient for fine-grained dependencies, like foreign and primary keys affecting
synchronization. Thus, Figure 2 shows primary key constraints beyond the tools’ capabilities.
Moreover, existing methods fail to address the complexity of the synchronization phase when

the cluster state changes frequently. Normal cluster changes, such as node connections and restarts,
cluster restarts, can disrupt the synchronization process, particularly during the commit phase,
leading to transaction failures or consistency interruptions. Advanced tools like Jepsen andMallory
primarily focus on fault injection and do not explore these interactions in depth. As a result, these
approaches are limited in detecting the impact of normal cluster state changes on synchronization.

3 Design of DepState

Figure 3 presents the structure of DepState, which includes two core components: sharding-aware
data generation and synchronization-sensitive state exploration. (1) The first module generates
diverse test data and analyzes its storage across partitions, factoring in the current sharding state.
By linking data within a shard to specific items in other shards (e.g., primary and foreign keys), it
increases synchronization complexity to mimic real-world issues. (2) The second module captures
synchronization phases through a checkpoint mechanism to identify critical moments for state
alterations. Next, it implements state operations that control changes at each node, ensuring
that modifications align with the ongoing synchronization context. Finally, it explores novel test
sequences occurring during specific synchronization timings, utilizing mutation and coverage
feedback to uncover potential synchronization issues effectively.

3.1 Sharding-Aware Dependent Data Generation

To tackle the challenges of establishing complex dependencies between tables across shards in
DDBMS, we design sharding-aware dependent data generation. It constructs a distributed schema
that incorporates sharding and dependencies, generating compliant data for the synchronization
process. Figure 4 shows the overall process of sharding-aware dependent data generation.

1 First,DepState systematically constructs a distributed schema that encompasses both sharding
parameters (e.g., the number of shards) and the partitioning strategy (e.g., hash partitioning). The
two CREATE TABLE statements in the figure define tables T1 and T2, with 1 shard and 2 shards
respectively, while also specifying their data types, primary keys, and structural relationships.
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Fig. 4. An Example of Sharding-Aware Dependent Data Generation.DepState begins by specifying the column

types and partitioning scheme for the table, then proceeds to add constraints and inter-table dependencies,

and finally generates data that adheres to the defined constraints and dependencies.

2 Second, DepState generates intra-table constraints and inter-table dependencies across parti-
tions, thereby augmenting the complexity of the distributed database schema. The SQL statements
within the blue box in the figure represent the addition of foreign key constraints, while the yellow
box SQL statements introduce dependency operations, establishing a foreign key relationship
between column c1 of T1 and column c2 of T2.

3 Finally, DepState generates dependency-compliant data to populate the database, creating
scenarios that reflect the nuanced, shard-partitioned distribution of tables across nodes, relecting
the complexities inherent in DDBMS architectures. The generated INSERT statements in the figure,
highlighted in green, represent constraint data created due to inter-table dependencies.

3.1.1 Sharding Schema Establishment. Most DDBMSs autonomously manage data sharding and
distribution, restricting direct user control over sharding boundaries [1]. However, users can
influence data layout by designing distributed sharding schemes that involve partition keys and
configurations. DDBMSs provide configurable options for table partitioning (e.g., the PARTITION
command in MySQL NDB Cluster), allowing customization of key elements such as sharding keys,
types (range, list, hash, or composite), shard counts, and maintenance strategies.

Based on that, we categorize database tables into two types: Centralized Sharding Tables and
Decentralized Sharding Tables. Centralized sharding means that data tables have fewer shards,
which are more concentrated on one or a few data nodes. In contrast, decentralized sharding refers
to data tables having a larger number of shards, which are more evenly distributed across a greater
number of data nodes. A subset of tables is randomly designated as Centralized Sharding Tables,
which have a limited number of shards. These tables are marked in the schema to record their
partition count. The remaining tables are classified as Decentralized Sharding Tables, which are
configured with a greater number of logical partitions and similarly documented. For example, as
shown in Figure 4, T1 and T2 are two tables that are sharded using a hash sharding strategy.Among
them, "create table" indicates that this is a statement to build a table, "int" and "varchar(100)" specify
the attributes of each column in the table, and "partition by hash" is used to enforce the number of
slices. T1 is classified as a Centralized Sharding Table with one shard, while T2 is categorized as a
Decentralized Sharding Table with two shards (i.e., T2-1 and T2-2).

When establishing dependencies between tables, we link Centralized and Decentralized Sharding
Tables. Such links add complexity to synchronization, as they demand careful coordination across
shards to maintain data consistency and integrity. The absolute difference in shard counts serves
as a key indicator for generating these dependencies.
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In distributed databases, the data load balancing mechanism operates transparently, thereby
restricting the ability to specify specific storage nodes. During the establishment of dependencies
between tables, scenarios where one table is confined to a limited number of nodes while the other
is spread across a greater number of nodes tend to foster inter-node dependencies. This results in
more intricate synchronization scenarios, thereby elevating the risk of errors. Consequently, our
objective is to maximize the disparity in the number of partitions between the two tables.

3.1.2 Cross-Shard Dependency Formation. In DDBMSs, foreign key dependencies are typically
established on primary keys or unique constraints. For any given table, we designate the first column
as the primary key for sharding, and its type and other attributes will not be modified thereafter.
For the other columns, the constraint can be any one of {𝑁𝑂𝑇𝑁𝑈𝐿𝐿,𝑈𝑁𝐼𝑄𝑈𝐸,𝐶𝐻𝐸𝐶𝐾}. The first
column is chosen as the primary key because all columns in a database table are equivalent, and
foreign key dependencies require the original column to have primary or unique key constraints. To
streamline the standardization of our inter-table dependency generation component, we selected the
first column as the primary key, simplifying SQL statement generation. Foreign key dependencies
create relationships across tables and shards, but in distributed environments, two main challenges
arise: ensuring integrity across nodes and generating dependencies that span multiple shards.
To maintain the integrity of foreign key constraints, the following conditions must be met: (1)

Data type alignment: The data types of the foreign key column and the referenced column must
match to prevent type mismatches. (2) The referenced column must be either a primary key or a
unique column to uphold referential integrity. Algorithm 1 shows the steps of establishing foreign
key dependencies: 1 Pair the eligible tables, sorting them by the absolute difference in partition
counts in descending order, and by table index in descending order if the partition differences are
equal (Lines 2 to 7). This step lays the groundwork for more robust construction of dependencies
between nodes and the creation of more complex data scenarios. 2 Select the table pair with the

Algorithm 1: Foreign Key Dependency Establishment
Input :𝑇 : List of tables with schema information, 𝑃 : Partition count array for each table,

𝐶: Column data types and uniqueness constraints
Output :𝑇 with foreign key constraints

1 Initialize 𝑝𝑎𝑖𝑟𝑠 ← ∅, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← ∅;
2 for 𝑖, 𝑗 ∈ {0, . . . , 𝑛 − 1}, 𝑖 < 𝑗 do
3 if ∃𝑐𝑖 ∈ 𝑇𝑖 , 𝑐 𝑗 ∈ 𝑇𝑗 s.t. Match(𝑐𝑖 , 𝑐 𝑗 ) then
4 𝑝𝑎𝑖𝑟𝑠 ← 𝑝𝑎𝑖𝑟𝑠 ∪ {(𝑖, 𝑗, |𝑃 [𝑖] − 𝑃 [ 𝑗] |)};// Store table pairs with partition difference

5 end
6 end
7 Sort 𝑝𝑎𝑖𝑟𝑠 by |𝑃 [𝑖] − 𝑃 [ 𝑗] | in descending order;
8 foreach (𝐴, 𝐵) in 𝑝𝑎𝑖𝑟𝑠 do
9 if 𝐴, 𝐵 ∉ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 then
10 (𝑐𝐴, 𝑐𝐵) ← find_match(𝑇𝐴,𝑇𝐵);// Find columns matching Foreign Key conditions

11 𝑓 𝑘_𝑠𝑞𝑙 ← generate_FK_sql(𝑐𝐴,𝑇𝐵, 𝑐𝐵);// Generate Foreign Key SQL with random actions

12 Insert 𝑓 𝑘_𝑠𝑞𝑙 into 𝑇𝐴;
13 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪ {𝐴, 𝐵};
14 end
15 end
16 return 𝑇 ;
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largest absolute difference in partition count to establish the foreign key relationship (Line 8). 3
Identify the primary key and foreign key columns, ensuring that the foreign key column meets
data type consistency and uniqueness constraints (Line 10). 4 Establish the foreign key constraint
to ensure that the foreign key column effectively references the primary key column. Tables with
established foreign keys will not be processed further (Lines 12-13). 5 Repeat the steps until all
qualifying tables have established their corresponding foreign key dependencies (Line 8-15).
For instance, In 𝑇2, column 𝑐2 is a foreign key referencing 𝑇1.𝑐𝑜𝑙𝑢𝑚𝑛1. We first check if

𝑇2.𝑐𝑜𝑙𝑢𝑚𝑛2 and 𝑇1.𝑐𝑜𝑙𝑢𝑚𝑛1 have matching data types, which they do (both are INT). Then, we
confirm that𝑇 1.𝑐𝑜𝑙𝑢𝑚𝑛1 satisfies the uniqueness constraint as a primary key. With both conditions
satisfied, the foreign key constraint is applied to𝑇 2.𝑐𝑜𝑙𝑢𝑚𝑛2, as shown in the yellow box of Figure 4.

3.1.3 Dependency-Compliant Data Population. The final step entails generating data that rigor-
ously adheres to the schema, with particular attention to the intricate constraints and complex
interdependencies across shards. Algorithm 2 meticulously delineates the data generation proce-
dure. This algorithm systematically generates data based on dependency levels (i.e., the number of
foreign key relationships associated with each table), progressing from the lowest to the highest.
Specifically, for each column exhibiting a foreign key dependency, the algorithm recursively

identifies the root reference of the dependency (Line 6). It subsequently determines the permissible
data range and probabilistically selects values within this range to ensure the integrity and consis-
tency of the data (Line 8). This approach ensures that all insertion operations strictly adhere to
complex column constraints and cross-partition dependencies, thereby constructing a distributed
database with sophisticated and intricate constraints.

3.2 Synchronization Sensitive Cluster Operation Sequence Exploration

To address cluster operation exploration in synchronization phases, we propose synchronization-
sensitive cluster operation sequence exploration to trigger synchronization failure bugs by precisely
capturing these phases and managing DDBMS cluster changes.

Algorithm 2: Data Generation with Constraints
Input :𝑆 : Table schema with constraints,

𝐷 : Inter-table dependency map,
𝑃 : Partition and sharding info

Output :𝐷𝐵: Populated distributed database
1 Initialize data pool 𝑉 ← ∅;
2 Sort tables 𝑇𝑖 by dependency depth;
3 foreach 𝑇𝑖 in ascending depth do
4 Initialize 𝑅𝑇𝑖 ← ∅ (row list for 𝑇𝑖 );
5 foreach column 𝑐 𝑗 ∈ 𝑇𝑖 with foreign key do
6 𝑟 𝑗 ← find_root_dependency(𝑐 𝑗 , 𝐷);// Find the root dependency

7 Range(𝑟 𝑗 ) ← data_range(𝑟 𝑗 , 𝑃);
8 𝑉 [𝑐 𝑗 ] ← random_select(Range(𝑟 𝑗 ));
9 end

10 Generate rows for 𝑇𝑖 using 𝑉 [𝑐 𝑗 ] and append to 𝑅𝑇𝑖 ;
11 Insert 𝑅𝑇𝑖 into 𝑇𝑖 ;
12 end
13 return 𝐷𝐵;
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Fig. 5. The Process of Synchronization-Sensitive Cluster Operation Sequence Exploration. First, DepState

performs synchronization-related instrumentation to gather runtime data. Based on this information, Dep-

State then identifies synchronization-sensitive points and, finally, generates a Cluster Operation Sequence.

We use Cluster Operation Sequences to describe a series of actions performed on a cluster. To
explore various scenarios in the synchronization process as thoroughly as possible, we perform
multiple cluster operations instead of just one, creating Cluster Operation Sequences. To effectively
influence the synchronization process through cluster state changes, two fundamental issues
need to be addressed: firstly, when to perform each cluster operation in the sequence, and secondly,
determining each cluster operation in the sequence. To address the first issue, cluster state changes
can be made heuristically during periods of high interactivity among cluster nodes, such as during
resource operations. We call these periods Cluster Change Windows. Different SQL sequences
may lead to varying Cluster ChangeWindows due to transaction complexity and workload patterns.
Cluster changes during this period may complicate synchronization and increase bug occurrence.
Coverage can guide the exploration of the Cluster Operation Sequence, enabling systematic state
space analysis and ensuring comprehensive system performance evaluation.
Figure 5 shows the process of synchronization-sensitive cluster state sequence exploration.

1 Firstly, DepState instruments synchronization-related code to gather synchronization phase
messages. 2 Secondly, DepState generates and executes a workload while monitoring synchro-
nization behaviors, collecting time-series data for various synchronization phases. For example,
when an ALTER statement is executed, DepState tracks the synchronization process between the
management node and other nodes, segmenting the process based on the management node’s wait
behavior to generate a time series. 3 Thirdly, DepState explores the Cluster Operation Sequence
using coverage feedback. Continuing with the previous example, DepState inputs the previous
time series and randomly generates cluster state modification behaviors in the blank windows,
outputting a time series containing state modification operations. Then DepState executes the
same ALTER sequence, dynamically monitoring its execution. Based on the output time series,
DepState executes specific modification behaviors at designated synchronization stages, detects
failures, and measures coverage. When coverage plateaus,DepState restores the cluster to its initial
state and repeats the process for the next iteration. We present a detailed example in repository.

3.2.1 Synchronization Related Code Instrumentation. To comprehensively capture the various
phases of the synchronization process and identify critical synchronization points, DepState first
instruments the DDBMS source code to collect execution logs.

Specifically, DepState instruments the synchronization-related functions to capture runtime mes-
sages associated with the synchronization process. These functions are designed to handle various
aspects of the synchronization process, such as initiation, inter-node communication, and data
synchronization. For each synchronization-related function, DepState inserts “logging code”, which
is intended to log execution paths and capture real-time messages throughout the synchronization
process. We developed an automated script that uses keywords to identify matching functions
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Fig. 6. Example of the Cluster State Change Behavior Sequence Generator.

and instrument their entry, exit, and conditional branches with logging code. The keyword-based
approach was chosen as synchronization-related code typically exhibits similar naming patterns,
resulting in fewer false negatives. For example, the three synchronization-related functions in NDB,
execSYNC_PAGE_CACHE_CONF, execSYNC_EXTENT_PAGES_CONF, and execSYNC_PAGE_CACHE_REQ,
all share common keywords. About reducing false positives, we found that synchronization-related
code is usually located within the same directory, for example, these three functions are all found in
the storage/ndb/src/kernel/blocks/ path in NDB. Our tool thus supports a specified search range to re-
duce false positives. In our experiments, we identified the paths to the synchronisation-related code
and the keywords for the NDB cluster through half an hour of code analysis. All synchronization-
related functions are mapped to a set comprising UNCOVERED, COVERING, and COVERED. Before the
initiation of the DDBMS synchronization process, all synchronization-related functions are catego-
rized as UNCOVERED, indicating that they remain unexecuted. During the synchronization process,
the “logging code” continuously updates the status of each function in real time.
For example, the left part of Figure 6 shows a segment of instrumentation code. In

the function NdbTraction::executeAsynchPrepare, DepState inserts a start-point (i.e.,
MINE_FUNCTION_START) and an end-point (i.e., MINE_FUNCTION_END) to systematically track
whether the function is covered. The tool identifies and associates each function’s exit points,
enabling precise instrumentation. Specifically, if the start-point remains uncovered, the “logging
code” indicates that the function has not been executed (i.e., UNCOVERED). If the start-point is covered
while the end-point remains uncovered, the “logging code” indicates that the function is actively in
execution (i.e., COVERING). If both points are covered, the “logging code” will indicate the function
has been successfully executed (i.e., COVERED). In addition, DepState instruments the function
by adding the MINE_LOG_TO_FILE code to record the covered branches in this function. If the
MINE_LOG_TO_FILE code is triggered, it indicates that the corresponding branches are covered.

3.2.2 Cluster Change Windows Identification. DepState first generates and executes a set of SQL
statements to trigger the synchronization process and identifies Cluster Change Windows. The set
of statements includes not only SQL’s DQL (Data Query Language) but also DDL (Data Definition
Language) and DML (Data Manipulation Language). The introduction of DDL may lead to changes
in metadata, which could potentially trigger more complex synchronization operations. However,
in order to prevent any impact on the existing schema, the execution of a DDL statement is
immediately followed by a statement that resets the metadata to its previous state.
DepState identifies Cluster Operation Windows by determining the precise activity status of

the synchronization function. For instance, within a typical two-phase protocol employed in the
synchronization process, the management node initially analyzes the transaction and systematically
distributes its relevant information to the respective data nodes during the preparation phase.
Subsequently, each data node engages in a series of intricate interactions, including local checks,
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resource locking, and pre-execution procedures. The occurrence of cluster changes during this phase
significantly escalates the complexity and intricacy of synchronization. Since the management node
awaits feedback from each data node, its synchronization function remains temporarily inactive.

In the execution phase, the management node dispatches execution instructions upon confirming
the readiness of each data node. Subsequently, each data node executes the actual commit operation
and returns the result to the management node upon confirmation. Making cluster state changes
during this period also triggers a complex synchronization process, and the management node
again waits for operations from the data nodes, leaving its synchronization function inactive. This
represents the second Cluster Operation Window. If a data node fails to execute the commit, it
will send a rollback request to the management node. The management node will confirm this and
issue a rollback command to each data node. At this stage, the management node will once again
enter a waiting state, signifying the third potential Cluster Operation Window.
The synchronization function of the management node is usually inactive during the Cluster

Operation Window. This assumption is based on our observations of synchronization mechanisms
within Distributed Database Management Systems (DDBMS). For instance, in a two-phase syn-
chronization mechanism, the synchronization process necessitates communication and interaction
between the management node and other data nodes to determine whether and how to proceed with
the next synchronization step. During this period, the management node awaits the completion of
internal operations by the other nodes and the return of their results. Due to this busy-waiting state,
the synchronization function of the management node typically remains inactive until either the
results are received or a predefined waiting time threshold is reached. This observation underpins
the hypothesis presented in our paper. Furthermore, upon analyzing synchronization mechanisms
in other DDBMSs, such as three-phase synchronization[8] and group replication[40].

Consequently, regardless of the employed synchronization scheme, as long as the management
node is required to wait for feedback from other nodes during synchronization, our proposed
method can effectively partition the entire process into clearly identifiable phases. Thus, extended
periods during which this function’s state remains completely unchanged can be reliably detected.
Specifically, this window is heuristically identified by examining the “logging code” ; if the syn-
chronization function remains unchanged for a period, a Cluster Operation Window is signaled.
The right part of Figure 6 illustrates how DepState identifies the Cluster Change Window. If
NdbTransaction::executeAsynchPrepare function in the manager code executes, DepState
updates its status to COVERING. If it remains in this state and its branch coverage does not change
for a significant period, it indicates a potential Cluster Operation Window.

3.2.3 Coverage Guided Cluster Operation Sequence Mutation. For each iteration of the set of
SQL expressions executed, we get a series of clustered operation windows. The synchronization
operations we perform in each window constitute the sequence of synchronization operations.
In order to induce a greater variety of behaviors during the synchronization process, Dep-

State generates a sequence of cluster operations based on the feedback obtained from transition-
operations coverage. Transition-operations coverage records the sequences of cluster operations
employed to modify the DDBMS cluster state, thereby facilitating the exploration of additional
behaviors within the synchronization process. Algorithm 3 shows the process of state transition
operations generation. Firstly,DepStatemaintains a sequence pool comprising sequences of cluster
operations that have been employed to alter the cluster state. Upon the commencement of testing,
DepState continuously mutates sequences of state transition operations to change the cluster
state in a loop. In each iteration, the algorithm randomly selects a sequence from the sequence
pool and identifies a specific phase within that sequence to serve as the injection point (Line 3).
Next, a feasible cluster state change operation, applicable to the current cluster state is chosen from
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Algorithm 3: Synchronously Guided Cluster State Changes Sequence Mutations
Input :𝑃 : Predefined-set initialized sequences,

𝑂 : Available operations collection
Output :𝐿 : Detected failures log

1 Initialize failure log 𝐿 ← ∅;
2 while Coverage metric 𝐶𝑜𝑣 is increasing or time limit not reached do
3 𝑆 ← rand_time_sequence(𝑃); // Randomly sampled time sequence

4 𝑡 ← rand_time_point(𝑆); // Randomly sampled time points

5 𝑜𝑎𝑣𝑎𝑖𝑙 ← applicable_operation_choose(𝑂); // Choose applicable operation

6 if time_point_checker(𝑡) then
// Check whether the behavior was inserted at that time

7 Insert operation 𝑜𝑎𝑣𝑎𝑖𝑙 at time 𝑡 in sequence 𝑆 ;
8 else
9 Replace the operation at 𝑡 with 𝑜𝑎𝑣𝑎𝑖𝑙 in 𝑆 ;

10 end
11 if Execute(𝑆) → Failure then
12 𝐿 ← 𝐿 ∪ {𝐹𝑎𝑖𝑙𝑢𝑟𝑒, 𝑆};
13 end
14 if update_coverage(𝑆) then
15 𝑃 ← 𝑃 ∪ {𝑆}; // Add updated sequence to pool if coverage improves

16 end
17 end
18 return 𝐿;

the operation set 𝑂 (Line 4). The mutation is applied by either inserting the selected operation at
position 𝑡 or replacing the existing operation at that position in the sequence (Lines 5–9). After the
mutation, the modified test sequence is executed, and the system records whether a failure occurs
(Line 10) and whether code coverage has increased (Line 13). If coverage is elevated, the mutated
sequence is reintroduced to the sequence pool, permitting its consideration in subsequent testing
iterations (Line 14). Eventually, the failure log and the updated sequence pool are returned.

4 Implementation

We implemented DepState using 8,843 lines of C++ code and 688 lines of Python code. Building
upon SQLsmith, we developed test functionalities for the synchronization process of DDBMSs
through data generation and sequence generation.
DepState consists of two main components: the sharded data generator and the cluster state

sequence generator. The sharded data generator implements Algorithms 1 and 2 to build distributed
database schemas and create dependencies between tables across shards. The sequence generator
produces cluster operation sequences by implementing Algorithm 3, which utilizes synchronization
phase information obtained from staking to simulate realistic cluster behaviors.

Adapting DepState to a new DDBMS involves modifying the client to send SQL commands that
match those of the target DDBMS, thereby simulating concurrency scenarios. Additionally, the client
must be customized to execute corresponding commands that alter the state of the cluster. Since
DDBMSs do not follow a unified standard for these commands, users must tailor the customization
for each specific DDBMS. Based on our analysis, we found that migrating the tool to a MySQL-based
distributed database (e.g., from MySQL NDB Cluster to MariaDB Galera Cluster) requires relatively
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minor modifications, as these systems support MySQL-like SQL syntax. Specifically, commands
that modify the cluster state need to be replaced, and relevant APIs must be adjusted, resulting in an
estimated 20 lines of code changes. In contrast, migrating to non-MySQL distributed databases (e.g.,
from MySQL NDB Cluster to TiDB Cluster) necessitates additional adaptation for both the SQL
sequence generation module and the cluster state change command module, leading to an estimated
500 lines of code changes. Finally, when migrating the tool to other distributed systems, further
consideration of the synchronization logic is required—particularly regarding whether the target
system employs a coordination mechanism similar to distributed databases, where management
nodes and data nodes interact in a comparable manner. This characteristic determines whether
our tool can partition the synchronization process for the target system in a similar way, thus
identifying the temporal sequence of cluster state changes.

5 Evaluation

We examine DepState’s capability to detect synchronization-failure bugs and produce complex
data and high-quality state sequences. Our evaluation addresses these research questions:

• RQ1: Can DepState find new synchronization failure bugs in DDBMSs?
• RQ2: Can DepState perform better than other state-of-the-art testing techniques?
• RQ3: What are the contributions of each component in DepState?

5.1 Evaluation Setup

5.1.1 Tested DDBMSs. To evaluate the generality and efficiency of DepState, we select four
popular open-source DDBMSs for evaluation, namely MySQL NDB Cluster [29], MySQL InnoDB
Cluster [28], MariaDB Galera Cluster [5], and TiDB Cluster [31]. They are all widely used open-
source DDBMSs according to DB-Engine Ranking [37]. They support similar DBMS features (e.g.,
the relational data model) but use different distributed architecture implementations. The versions
under evaluation are MySQL NDB Cluster v8.0.40, MySQL InnoDB Cluster v8.0.35, MariaDB Galera
Cluster v10.6.20, and TiDB Cluster 8.0.11-TiDB-v9.0.0-alpha-100-g91706ec8df-dirty.

5.1.2 Compared Techniques. To evaluate the effectiveness of DepState in testing DDBMSs, we
compare it with five state-of-the-art tools: Jepsen [17],Mallory [26], SQLsmith [2], SQLancer [33],
and Mozi [23]. Jepsen [17] is a distributed system testing tool, which has been adapted to test
DDBMSs in the industry.Mallory [26] is an enhancement built upon the foundation of Jepsen.
SQLsmith, SQLancer, andMozi are three state-of-the-art DBMS testing techniques, which have
detected hundreds of bugs in practice. We adapted Jepsen’s default configuration to make it work
on these DDBMSs, and Mallory was similarly configured. For SQLsmith, SQLancer, and Mozi,
since they were designed for testing traditional DBMS, we used them on a single SQL server of the
DDBMS as a baseline. We selected traditional database testing tools, including SQLsmith, SQLancer,
and Mozi, as benchmarks. By using them as baselines, we aim to demonstrate that traditional
database testing tools are not directly applicable to distributed databases.

5.1.3 Basic Setup. All experiments were conducted on a 64-bit Ubuntu 22.04 machine with an
AMD EPYC 7742 processor (128 cores @ 2.25 GHz) and 488 GiB of main memory. Each testing
tool used its default configuration to ensure consistency throughout all evaluations. The DDBMS
clusters employed a single setup with 2 replicas and 2 slices, without multi-cluster failover. We ran
each DDBMS with one testing tool for 24 hours, which is a commonly used time setup.
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Table 2. Synchronization Failure Bugs Detected by DepStateWithin Two Weeks

# DDBMSs Bug Type Root Cause Bug Status
1 MySQL NDB Cluster Crash Engine mishandles metadata synchronization and locking. Confirmed
2 MySQL NDB Cluster Crash Concurrent cluster restart during node reboot causes state inconsistency. Confirmed
3 MySQL NDB Cluster Crash Improper lock handling during node removal in synchronization. Confirmed
4 MySQL NDB Cluster Crash Internal error occurs during signal transmission in nodes. Investigating
5 MySQL NDB Cluster Crash Improper metadata lock handling during synchronization with complex dependencies. Confirmed
6 MySQL NDB Cluster Crash FindTable function failure during BACKUP. Investigating
7 MySQL NDB Cluster Crash SimulatedBlock component’s signal processing fails. Confirmed
8 MySQL NDB Cluster Crash Data Check fails, the specified table or table pointer could not be found. Investigating
9 MySQL NDB Cluster Crash SUMA bucket switch failure during asynchronous event processing. Confirmed
10 MySQL NDB Cluster Crash Forced shutdown-induced signal processing error caused cascading node restarts. Investigating
11 MySQL NDB Cluster Crash Some operations are not supported when synchronizing complex SQL queries. Investigating
12 MySQL NDB Cluster Hang Timeout mechanism failure in NDB Cluster during complex query execution. Confirmed
13 MySQL NDB Cluster Hang Failure in query plan generation and optimization when handling complex nested queries. Confirmed
14 MySQL NDB Cluster Hang Transaction optimization enters an infinite loop. Confirmed
15 MySQL NDB Cluster Hang ID allocation failure disrupts synchronization during node rejoin. Confirmed
16 MySQL NDB Cluster Hang Synchronization fails during complex query processing. Confirmed
17 MySQL NDB Cluster Inconsistency Failure to send synchronization signal in function. Investigating
18 MySQL NDB Cluster Inconsistency Error occurred updating automatic index statistics. Investigating
19 MySQL InnoDB Cluster Crash Incompatible data types cause synchronization to fail. Investigating
20 MySQL InnoDB Cluster Crash A data type conversion error after a network connection failure causes the node to exit. Investigating
21 MariaDB Galera Cluster Crash Missing records and duplicate key conflicts in delete and update operations. Investigating
22 MariaDB Galera Cluster Inconsistency Data type mismatches due to invalid default values are ignored by WSREP. Investigating
23 TiDB Cluster Crash Frequent PD-TiKV Connection Retries. Investigating
24 TiDB Cluster Crash Negative expire-at Value Causes RPC Failures. Investigating
25 TiDB Cluster Crash TSO Client Cancellation During Startup Investigating

5.2 Synchronization Failure Bug Detection

We applied DepState to MySQL NDB Cluster[29], MySQL InnoDB Cluster[28], MariaDB Galera
Cluster[5], and TiDB Cluster [31] to rigorously test synchronization failure bugs over a two-week
period. These evaluated DDBMSs are widely adopted and have undergone extensive testing over
decades. Nevertheless, DepState still demonstrated strong performance. Eleven synchronization
failure bugs were confirmed as previously unidentified issues in these DDBMSs, and twelve are
still under investigation due to the inherent challenges of reproducing bugs in distributed systems.

5.2.1 Overall Results. DepState has found a total of 25 previously unknown synchronization
failure bugs on four well-tested DDBMSs within two weeks, with 13 confirmed by the developers.
We also utilized additional tools to test these DDBMSs; however, none were able to detect any
synchronization failure bugs. Table 2 shows DepState finds 18, 2, 2, and 3 bugs in MySQL NDB
Cluster, MySQL InnoDBCluster, MariaDBGalera Cluster, and TiDBCluster, respectively. It indicates
that DepState identifies bugs that lead to system crashes or hangs. The detected issues exhibit
significant variety, encompassing a range of problems related to locking and synchronization, node
management during reboots, query execution, aand optimization failures, as well as internal errors
in signal handling. The results show that synchronization-oriented testing helps DepState to
trigger synchronization failure bugs, which may lead to serious consequences. All identified bugs
were reported to the corresponding DDBMS vendors, with 13 of these bugs being confirmed.

5.2.2 Impact of Found Synchronization Failure Bugs. We analyze the impact of synchronization
failure bugs detected by DepState. Based on insights from DDBMS developers, 17 synchronization
failure bugs identified by DepState are linked to distributed cluster states. Thirteen of these bugs
cause complete SQL server crashes, resulting in service interruptions and compromising system
availability. Four bugs cause data node crashes, leading to data loss, inconsistency, and potential
node or cluster-wide outages. These synchronization failures critically undermine DDBMS stability.

5.2.3 Case Study. Crashes triggered by node removal during synchronization. DepState detected a
synchronization failure bug which causes all data nodes in a MySQL NDB Cluster to crash. Figure 7
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Fig. 7. MySQL NDB Cluster Crashes Triggered by Node Removal During Synchronization Process.

illustrates the occurrence of this bug within a cluster configuration consisting of one manager
node (node1) and four ndbd data nodes (node2 through node5). The bug is triggered when node5
is removed by the cluster manager during the synchronization process on node2. Notably, node5
contains data dependencies related to node2. Once node5 is removed, these dependencies are
severed, leading to a failure in the synchronization process on node2. This loss of dependencies
causes the cluster to become unstable and ultimately results in a complete cluster crash.
In the report, DepState thoroughly documented the operations leading to the bug, including

two main components: firstly, the specific workloads executed by each sql node, the precise start
and end times of each SQL statement, and the corresponding outcomes of the workload executions;
secondly, the management node’s cluster operations and associated behavioral changes, along
with their respective timings and results. This information effectively captured the particular
scenario of the bug, outlining the sequence of operations and their timing for precise reproduction.
Additionally, DepState preserved the database state at the time of the bug occurrence to facilitate
accurate reproduction. Upon submission to MySQL’s official bug report site, developers successfully
reproduced and confirmed the bug. We present a detailed example in our repository.

Root cause of the bug. The issue stems from a locking error during synchronization. Specifically,
node2 prematurely unlocks a critical synchronization lock on node5 due to a data dependency
while processing node5’s exit. This action does not wait for other nodes to finish their own synchro-
nization, causing lock-state inconsistencies across the cluster. Consequently, these inconsistencies
trigger the synchronization failure and lead to a cluster crash.
Why was the synchronization failure bug only found by DepState? Detecting this bug requires

complex cross-node dependencies (from node5 to node2) triggered by cluster architecture changes
during synchronization. DepState addresses this via ShardinOg-Aware Data Generation and
Synchronization-Sensitive Operation Sequences, injecting fine-grained behaviors to reveal intricate
synchronization issues. DepState successfully detected this vulnerability within hours, highlight-
ing its efficacy in capturing complex synchronization behaviors. This demonstrates DepState’s
capability in discovering previously unknown synchronization failure bugs, answering RQ1.

5.3 Comparison with Other Techniques

To evaluate the effectiveness of our DepState, we conducted comparison experiments between
DepState with Jepsen,Mallory, SQLsmith, SQLancer, andMozi. Jepsen andMallory are state-
of-the-art tools for testing distributed systems. SQLsmith, SQLancer andMozi are three popular
DBMS testing methods. These five tools support testing the tested DDBMSs, and we compare
DepState to them using their default configurations. We ran the testing tools on each DDBMS for
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Table 3. Number of Unique Bugs Detected by Jepsen,Mallory, SQLsmith, SQLancer,Mozi, and DepState

DDBMS Jepsen Mallory SQLsmith SQLancer Mozi DepState

MySQL NDB Cluster 0 1 0 1 7 7
MySQL InnoDB Cluster 1 0 0 1 6 2
MariaDB Galera Cluster 1 1 0 1 0 2

TiDB Cluster 0 0 0 0 0 3

Total (Sync Failure Bugs) 2 (0) 2 (0) 0 (0) 3 (0) 13 (0) 14 (14)

24 hours, recording the number of detected bugs and covered synchronization-related functions as
metrics. These functions are implemented specifically for the synchronization process in DDBMSs.

5.3.1 Bug Statistics. DepState outperforms other state-of-the-art testing techniques in finding
DDBMS bugs. Table 3 displays the number of bugs detected by each tool in 24 hours. Specifically,
DepState detected a total of 7, 2, 2, and 3 synchronization failure bugs on MySQL NDB Cluster,
MySQL InnoDB Cluster, MariaDB Galera Cluster, and TiDB Cluster, respectively. In comparison,
Jepsen,Mallory, SQLancer, and Mozi reported 2, 2, 3, and 13 bugs, respectively, while SQLsmith
found no bugs. We analyzed the root causes of the bugs detected by each tool. The 14 bugs found
by DepState are all related to the synchronization process. In contrast, the bugs identified by other
tools are transaction or logic bugs, with none involving synchronization functions in DDBMS.

5.3.2 Synchronization-Related Function Coverage. One of the main reasons that DepState dis-
covered synchronization failure bugs is that DepState can cover more synchronization function
logic and trigger more behaviors of DDBMSs compared to Jepsen, Mallory, SQLsmith, SQLancer,
andMozi. Table 4 shows the number of synchronization-related function lines covered by each
technique in 24 hours. It demonstrates that DepState covers more synchronization-related function
lines compared to Jepsen, Mallory, SQLsmith, SQLancer, and Mozi. Specifically, DepState covers
6.13%-66.51%, 5.82%-57.28%, 14.12%-83.30%, 36.81%-83.88%, and 43.24%-54.28%more synchronization-
related function lines compared to Jepsen, Mallory, SQLsmith, SQLancer, and Mozi, respectively.
The increased coverage of synchronization-related function lines is attributed to DepState’s

sharding-aware dependent data generation and cluster state sequence exploration. Sharding-aware
data generation aids DepState in producing dependent test data, while cluster state sequence explo-
ration triggers more synchronization behaviors. In contrast, Jepsen covers fewer synchronization
function lines because its simplified approach lacks fine-grained analysis, modeling, and creation
of complex data scenarios. Its fault injection is limited to the system level, without addressing
deeper synchronization behaviors. Moreover, SQLsmith, SQLancer, andMozi only generate SQL
queries, hindering their ability to navigate the vast search space of distributed environments and
detect cluster-state-induced bugs. In contrast, by using a designed data and mutation strategy,
DepState discovered 14 synchronization failure bugs in 24 hours, showing DepState can exercise
more synchronization functionality and find additional bugs, thus answering RQ2.

Table 4. Lines of Synchronization-Related Functions Covered by Tested Tools in 24 Hours

DDBMS Jepsen Mallory SQLsmith SQLancer Mozi DepState

MySQL NDB Cluster 11,850 11,092 11,505 10,588 10,622 16,388
MySQL InnoDB Cluster 2,096 2,219 1,904 2,551 2,731 3,490
MariaDB Galera Cluster 1,241 1,257 1,147 1,185 1,191 1,706

TiDB Cluster 4,127 4,139 3,838 2,382 3,002 4,380
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Table 5. Number of Synchronization Failure Bugs and Synchronization-Related Function Lines Covered by

DepState
𝐷𝑎𝑡𝑎−

, DepState
𝑆𝑒𝑞−

, and DepState in 24 Hours

Number of Synchronization Failure Bugs Line Coverage of Sync-Related Functions
DDBMS DepState

𝐷𝑎𝑡𝑎−
DepState

𝑆𝑒𝑞− DepState DepState
𝐷𝑎𝑡𝑎−

DepState
𝑆𝑒𝑞− DepState

MySQL NDB Cluster 4 2 7 15,252 12,920 16,388
MySQL InnoDB Cluster 1 0 2 1,765 2,992 3,490
MariaDB Galera Cluster 0 1 2 1,647 1,532 1,706

5.4 Effectiveness of Each Component

To understand the contributions of the two components in DepState managing complex data and
generating state-altering behavior sequences, we implemented two ablation models: DepState𝐷𝑎𝑡𝑎−

and DepState𝑆𝑒𝑞− . DepState𝐷𝑎𝑡𝑎− disables the shard-aware dependent data generation and replaces
it with randomized data generation, which generates data randomly. DepState𝑆𝑒𝑞− disables the
synchronization-sensitive cluster state sequence exploration, which randomly changes the state
behavior at arbitrary time points. Table 5 shows the number of detected synchronization failure bugs
and covered synchronization-related function lines by DepState

𝐷𝑎𝑡𝑎− and DepState
𝑆𝑒𝑞− on testing

three DDBMSs for 24 hours. From the table, we can see that compared with DepState
𝐷𝑎𝑡𝑎− and

DepState
𝑆𝑒𝑞− , DepState detects 6 and 8 more synchronization failure bugs, and covers 3.58%-97.73%

and 11.36%-26.84% more synchronization-related function lines, respectively.
The result is reasonable because we design shard-aware dependent data generation and synchro-

nization sensitive cluster state sequence exploration to trigger more behavior of synchronization
process in DDBMSs. Specifically, in the absence of dependent data generation, DepState𝐷𝑎𝑡𝑎−

encounters limitations in the complexity of synchronization processes that can be triggered, leav-
ing certain extreme cases difficult to explore. However, failures tend to arise in more intricate
and extreme synchronization processes. Similarly, without cluster state sequence exploration, the
DepState

𝑆𝑒𝑞− produces a significant number of redundant data processing operations, thereby
activating only a limited range of DDBMS behaviors. Therefore, both components are crucial
for effectively exploring states within the synchronization process and successfully detecting
synchronization failure bugs, thereby adequately answering RQ3.

6 Discussion

6.1 Generality and Flexibility of DepState

DepState can be adapted to other DDBMS systems within five steps. The steps are as: 1) Modify
the interface for SQL generation so the generated SQL can be injected into the DDBMS. 2) Adapt
the handling of cluster state transitions, due to the absence of a recognized specification for such
behaviors across DDBMSs. 3) Integrate the source code of the database to be tested. 4) Test the
cluster using DepState. 5) Evaluate the test results based on the tool’s output and cluster logs.

Among these steps, the first and second require manual intervention. Different DDBMSs possess
diverse API interfaces, with each database implementing commands for cluster state transitions in
distinct ways. Furthermore, there is no universally recognized specification set similar to standard
SQL across different vendors, rendering the automation of these two steps challenging. The third
and fourth steps, however, are automated processes; with a relatively complete codebase, DepState
can streamline the testing process. In the fifth step, the user must analyze the failure log file
and sequence process to identify the nature of the error. Due to the complexities of distributed
environments, errors often arise in intricate ways. While our tool can detect and record errors,
determining their root causes relies on the user’s analysis and experience.
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6.2 Testing Non-relational DDBMSs

In our implementation, DepState is tailored for relational DDBMSs, and is not yet applicable to
other types of DDBMSs. It stems from the unique characteristics of relational DDBMS, particularly
sharding mechanisms and the intricate relationships and dependencies inherent in their data storage
and transactional operations. These complexities significantly heighten error probability during the
synchronization process. Consequently, our focus is on addressing two primary challenges faced by
synchronization mechanisms in relational DDBMS: the construction of complex data dependencies
and the frequent changes in cluster state. Non-relational DDBMSs are widely used, and we plan to
extend DepState to test them. These systems, featuring distributed storage and dynamic scaling,
exhibit error patterns and synchronization issues significantly distinct from relational DDBMSs.
Differences in sharding strategies and consistency models may affect availability and consistency.
Moreover, flexible data models complicate dependencies, hindering error detection.

To address these challenges, we plan to introduce a modular design in DepState that allows for
adaptation to various types of DDBMSs. We will develop synchronization detection mechanisms
specifically tailored for non-relational DDBMSs, taking into account their unique operational
patterns and data relationships. Through these enhancements, we aim to improve the adaptability
and effectiveness of DepState across different database environments, thereby providing more
comprehensive support for the testing needs of multiple databases.

6.3 Testing Other Distributed Systems

Distributed systems are diverse, designed for specific applications with unique characteristics and
synchronization mechanisms. DepState is tailored for DDBMS, emphasizing mechanisms that
ensure data consistency across nodes. Provided the synchronization process involves a coordinating
node and inter-node communication,DepState perform fine-grained phase segmentation to identify
injection points for cluster state changes. The modifications required adapting the SQL input
generation component (about 750 lines) and cluster behavior fuzzing component (around 400 lines).
In addition to the common synchronization process, other DBMS may also face scenarios in-

volving system changes, such as deploying new services in a microservices architecture or taking
servers offline for maintenance. These challenges are similar to those faced by synchronization
processes in DDBMSs discussed in our paper. Our future work also intends to utilize DepState to
test these analogous scenarios in other distributed systems.

7 Related Work

7.1 Distributed System Testing

Distributed system testing ensures stable, reliable operation across multiple nodes and components.
Due to complexity, testing methods include chaos testing, fault injection, and system fuzzing.
Chaos testing introduces unpredictable failures into a live environment to verify the system’s
resilience and self-healing capabilities. For example, Chaos Monkey [4] randomly shuts down
virtual machines or containers in production to assess resilience. Gremlin [14] introduces failures
like service terminations and network partitioning to simulate real-world faults. Fault injection is
a methodology involving the deliberate introduction of specific fault types (e.g., network delays,
service crashes, or data corruption) to evaluate a system’s response and recovery mechanisms
under fault conditions. For instance, Jepsen [17, 18] verifies the fault tolerance and consistency of
distributed systems by simulating conditions like network partitions and node failures.Mallory[26]
tests system defenses and data security by simulating man-in-the-middle attacks. Additionally,
Phoenix[25] and Monarch [24] incorporate fuzzing to detect bugs in distributed systems.
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However, these frameworks have shortcomings in handling complex data types and fine-grained
synchronization in DDBMSs. In contrast, DepState detects synchronization failure bugs by es-
tablishing dependencies between distributed tables across nodes and shards, facilitating deeper
insight into data interrelationships. By generating data from these dependencies, DepState more
accurately simulates real scenarios. Additionally, it detects faults by exploring cluster operation
sequences that alter cluster states during key synchronization phases. This approach uncovers
potential bugs and clarifies how states and interactions cause synchronization failures.

7.2 DBMS Testing

DBMSs, being inherently complex software systems, are consequently susceptible to various issues.
Traditional DBMS testing, aimed at ensuring the security and correctness of the system, primarily
focused on the generation of complex SQL queries and the evaluation of their effects on system
performance and correctness. Sqirrel [41] introduces mutation-based fuzzing to detect memory
safety bugs, which combines SQL query generation with coverage feedback. LEGO [22] improves
fuzzing by generating SQL sequences through combinatorial logic. It focuses on pairing SQL types
to enhance branch coverage. Griffin [9] adopts a grammar-free approach. It uses metadata graphs to
guide mutations, creating more valid SQL statements and finding errors missed by grammar-based
fuzzers. Furthermore, SQLancer [33] employs metamorphic testing methodologies [32] to detect
logical bugs within DBMSs, proposing three distinct test oracles for the automatic detection of
various correctness issues. Mozi [23] proposes a configuration-based equivalent transformations
framework to detect bugs. Thanos [10] is testing against the database’s storage engine. As well as
some more work on the configuration in the database [13].
However, existing DBMS testing tools are inadequate for DDBMSs due to their inability to

effectively manage the complexities of distributed architectures, such as handling multiple nodes,
shards, and intricate data dependencies. In contrast, DepState is specifically designed to detect
problems in the synchronization process of DDBMSs. It first generates dependent data across
different shards and then systematically alters cluster states. This approach helps identify potential
issues related to complex interdependencies and state changes during the synchronization process.

8 Conclusion

This paper introduces DepState, a testing framework specifically designed for the synchronization
processes in DDBMSs. The framework first generates databases with intricate constraints and
dependencies by analyzing the data sharding state. Then, it captures cluster operation windows
and explores cluster state change sequences to find synchronization failure bugs. We evaluated
DepState on 4 widely-used DDBMSs, where it outperformed existing state-of-the-art DDBMS
testing tools like Jepsen. Notably, DepState uncovered 25 new synchronization failure bugs, with
13 of them confirmed by vendors. The remaining issues are currently under investigation by
developers. Our future work will enhance DepState’s ability to handle more complex data types
and extend DepState to test other non-relational DDBMSs.

Data Availability

For data transparency and reproducibility, the prototype of DepState is available at https://github.
com/FangCundi/DepState.
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