
ConfigFile++: Automatic Comment Enhancement
for Misconfiguration Prevention

Yuanliang Zhang⇤, Shanshan Li⇤, Xiangyang Xu⇤, Xiangke Liao⇤, Shazhou Yang⇤, Yun Xiong†
⇤College of Computer Science, National University of Defense Technology, China

†Shanghai Key Lab of Data Science, School of Computer Science, Fudan University, China
{zhangyuanliang13,shanshanli,xuxiangyang11,xkliao,yangshazhou} @nudt.edu.cn, yunx@fudan.edu.cn

Abstract—Nowadays, misconfiguration has become one of the

key factors leading to system problems. Most current research

on the topic explores misconfiguration diagnosis, but is less

concerned with educating users about how to configure correctly

in order to prevent misconfiguration before it happens. In this

paper, we manually study 22 open source software projects

and summarize several observations on the comments of their

configuration files, most of which lack sufficient information

and are poorly formatted. Based on these observations and the

general process of misconfiguration diagnosis, we design and

implement a tool called ConfigFile++ that automatically enhances

the comment in configuration files. By using name-based analysis

and machine learning, ConfigFile++ extracts guiding information

about the configuration option from the user manual and source

code, and inserts it into the configuration files. The format of

insert comment is also designed to make enhanced comments

concise and clear. We use real-world examples of misconfigura-

tions to evaluate our tool. The results show that ConfigFile++

can prevent 33 out of 50 misconfigurations.

Index Terms—misconfiguration prevention; comment enhance-

ment; constraint extraction

I. INTRODUCTION

In recent years, customizable and flexible requirements lead
to a high degree of software configurability. To meet these
needs, software developers provide users with a large amount
of configuration options. These options help users change the
software behavior according to their own requirements; on the
other hand, however, this can easily lead to misconfigurations,
which has been a major cause of software failure. [1]

Studies on misconfiguration today usually focus on two
approaches: misconfiguration diagnosis and misconfiguration
prevention. A substantial amount of prior research into mis-
configuration diagnosis has made contributions in the areas of
troubleshooting and error diagnosis [2][3], which helps system
administrators or developers by identifying the root cause
of failure. However, misconfiguration diagnosis always takes
place after the failure has already been manifested, meaning
that the software system has already suffered great damage due
to misconfigurations by the time the diagnosis takes place.

Misconfiguration prevention, by contrast, is far more ef-
fective at protecting the software system from failure damage
and downtime, thus reducing the support costs. Several studies
have been done in this field. Spex [4] studied configuration
constraints and used program analysis to identify constraint
violations. Xu et al. [5] analyzed the source code and checked
for errors during initialization time. However, they pass these

problems to the developers and ask them to handle it. In
our opinion, it is unlikely that software bugs of this kind
were introduced by developers; rather, misconfigurations are
usually caused by users’ inappropriate settings of configuration
options. If we can directly and efficiently guiding users in
setting these options, many future misconfigurations can be
avoided, and developers will be freed from handling these
complex configuration problems. In fact, developers have
long since thought of this. Current mature software projects
always provide authoritative guidance for users in the form
of a user manual. However, user manuals are often long and
complex and have no attraction to users. When experiencing
confusion while setting configuration options, users rarely
have the patience to find answers in the user manual but instead
choose to rely on their existing experience and knowledge.
This can easily result in misconfigurations. To help users
with configuration, we endeavor to ensure that they can easily
and directly get guiding messages. Configuration file is an
important part of software configuration. After a thorough
study of the configuration files of 22 widely used software
systems, we find that information provided in the comments
in these files is insufficient, and the format is also chaotic.
Hence, our aim is to enhance the comments in configuration
files in order to guide users through configuration.

Our contributions are as follows:
• By manually analyzing the configuration files of 22

popular open-source software systems, we summarize
some of the characteristics of the comments currently in
those files. Aiming at preventing defects, we here discuss
the content and format of the high-quality comments.

• We design and present ConfigFile++, a tool for efficiently
extracting and generating information about configuration
options from existing resources (e.g. user manuals, origi-
nal comments and source code). ConfigFile++ combines
the relevant information into well-formatted comments
and inserts them into the original configuration file.

• We use real-world error cases to evaluate the effectiveness
of ConfigFile++. ConfigFile++ can prevent 33 out of 50
misconfigurations.

II. STUDY OF COMMENTS IN CONFIGURATION FILES

We first studied the configuration files of 22 widely used
software projects such as Httpd, MySQL, Redis, and ProFTPd,
etc. We counted the average line number of comments

978-1-5386-5920-5/18/$31.00 c© 2018 IEEE MaLTeSQuE 2018, Campobasso, Italy37
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:40 UTC from IEEE Xplore. Restrictions apply.

TABLE I
CONFIGURATION FILE COMMENT QUALITY

Software LNoC Well-formatted Effective Guidance Comment quality
Cassandra 5.3 X X well-commented

Maven 5.7 X X well-commented
Redis 10.1 X X well-commented
Squid 15.3 X X well-commented

Tomcat 10.3 X X well-commented
PHP 3.9 X × commented
Httpd 3.7 X × commented
Jmeter 1.9 X × commented
Sphinx 3.0 X × commented
Hbase 1.9 X × commented
Vsftpd 3.4 × X commented
Samba 3.2 × X commented
Derby 1.5 × × commented

PostgreSQL 1.9 × × commented
ProFTPd 1.5 × × commented
MySQL 1.9 × × commented
Log4j 1.6 × × commented

HAProxy 0.0 - - non-commented
Yum 0.0 - - non-commented
SSH 0.0 - - non-commented

Nginx 0.0 - - non-commented
OpenLDAP 0.0 - - non-commented

/*PostgreSQL.conf*/
listen_addresses = 'localhost' # what IP address(es) to listen on;

comma-separated list of addresses;
defaults to 'localhost'; use '*' for all
(change requires restart)

port = 5432 # (change requires restart)
max_connections = 100 # (change requires restart)
superuser_reserved_connections = 3 # (change requires restart)
unix_socket_directories = '/var/run/postgresql' # comma-separated list of directories

(change requires restart)
unix_socket_group = '' # (change requires restart)
unix_socket_permissions = 0777 # begin with 0 to use octal notation

(change requires restart)

Fig. 1. Bad format of comment in configuration file

(LNoC) for a configuration option. We also evaluated the
content and format of the comments in these configuration
files. We classified these configuration files into three levels:
non-commented, commented and well-commented. For a con-
figuration file to be considered well-commented, the comments
should also be well-formatted and contain effective guidance.
Table I illustrates the details of these configuration files. We
conclude two observations, as follows:

1) Many Configuration Files Do Not Have a Fixed and
Canonical Comment Format: Fig. 1 provides an example
of the poor formatting of comment in configuration files.
Unlike source code, comments are written in natural language,
meaning that they are more flexible and informal. However, a
fixed and canonical format for comments is rather important
in today’s large-scale software systems. If the comments are
not well-formatted, it will be a hard work for users to find the
information they need in complex configuration files.

2) The Information Provided in Comments Is Ineffective at
Guiding Users Compares to User Manual: We can see from
Table I that softwares have divergent LNoC, and some even
do not have comments. We also look into the content of these
comments. After comparing these comments with guidance
provided in user manual, we found that information provided
by comments is insufficient. Fig. 2 shows us the substantial
difference between comments in configuration files and user
manual. In Fig. 2(a), we can see that there is only one sen-
tence, presenting a brief introduction of “KeepAliveTimeout”.
However, the user manual in Fig. 2(b) gives users much more

/*Apache2.conf(Httpd)*/
#
KeepAliveTimeout: Number of seconds to wait for the next
request from the same client on the same connection.
#
KeepAliveTimeout = 5

(a) Comment in configuration file

(b) Information in user manual

Important guidance and tips

Fig. 2. Information provided in configuration file and user manual

information about this configuration option. If a user does not
see the tips in user manual and sets this option to a very high
value, it may cause terrible performance problems and induce
damage.

III. ARCHITECTURE OF CONFIGFILE++

Based on the observations in section II, we design a
comment enhancement tool, ConfigFile++, that guides users
through modifying the configuration files. Fig. 3 illustrates
the architecture of our tool. The main usage of this tool is
to extract sufficient guiding information about the configu-
ration options and insert them into configuration file so that
users can avoid inappropriate settings. Firstly, the value of
a configuration option has a strong connection with its type.
For example, you can only use integers that are between 1
to 65535 when setting a “port”. Also, people sometimes set
options with wrong types, such as setting a directory path
with a file path. We infer option type using Type inference to
help users avoid these misconfigurations. Besides, the option
value also has some other constraints. For example, a memory-
related configuration option has its own specific value range
that users may not know. Such information is usually written
in the user manual by the developers, and will be extracted
by Guidance extractor. We want users to have a general
understanding of an option so that they can quickly locate
which option they need to change in future. To meet this need,
we use a Key Usage extractor to briefly introduce the option
usage in the form of keywords. To automate our tool, we use
Augeas [6], a configuration editing tool, to help us with file
preprocessing in the File parser. In the last stage, we insert
combined information to the original configuration file.

IV. DESIGN AND IMPLEMENTATION

A. Type Inference

We manually study more than 2000 configuration options
across several open-source software packages. Fig. 4 shows
our classification tree for configuration options. The experi-
mental results show that the coverage of this classification is

38
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:40 UTC from IEEE Xplore. Restrictions apply.

Configuration
file

User manual

Type
inference

Key Usage
extractorFile parser

Guidance
extractor

Comment
generator

Source code

Enhanced
configuration

file
original comment keyword

Fig. 3. The architecture of ConfigFile++.

of the configuration option.
Some challenges need to be addressed. First, we need a

specific and comprehensive classification for configuration
options, which is the basis of the type inference. Second, we
need to figure out the naming conventions for the configuration
options, which is the basis of semantic extraction. Third, we
need to verify whether the configuration-option name really
contains enough semantic information for type inference, or,
in other words, whether the name-based method works.

To address these challenges, we manually analyzed several
popular open-source software projects, such as PostgreSQL,
Httpd, Nginx, Squid, etc. After a thorough study of the
classification and naming conventions for their configuration-
option names, we investigated the feasibility of the name-
based method. Except for the enumeration type, the method
works well for inferring most configuration option types. Then
we designed and implemented ConfTypeInferer by combining
name-based analysis with program analysis, in which the
program analysis is to make up for the deficiency of the
name-based analysis in inferring the enumeration type of
configuration option and to verify the type inferred.

Our contributions are summarized as follows:
• Through manual analysis of several popular open-source

software projects, we summarized several instances of
finding configuration options, verifying the feasibility of
the name-based method (Section II).

• We designed and implemented the architecture for Con-
fTypeInferer, the name-based method used to infer the
type of configuration option (Section III and Section IV).

• We conducted comprehensive experiments to evaluate the
effectiveness of ConfTypeInferer. Our results show that
the accuracy of type inference can reach over 90%, and
at the same time, it can prevent many misconfigurations
(Section V).

II. THE FEASIBILITY OF THE NAME-BASED METHOD

To evaluate the feasibility of the name-based method, we
try to answer the following research questions:

RQ1: How many and what types of configuration option ex-
ist in open-source software projects? Answering this question
will provide a classification for type inference.

RQ2: What are the naming conventions for configuration
options in open-source software projects? Answering this
question will give us an in-depth understanding of configura-
tion option names, and provide us with some ideas for mining
semantic information from configuration option names.

RQ3: Do these configuration-option names convey enough
information for type inference? Answering this question is the
key to verify the feasibility of the name-based method.

To answer the above questions, we empirically studied more
than 1,000 configuration options in several popular open-
source software projects. The main findings of our study are
illustrated as follows.

For RQ1, although some previous work [11] includes s-
tudies on type taxonomy, our aim is to generate configuration
constraints by type inference. Therefore, we need a sufficiently

TABLE I
COVERAGE OF OUR CLASSIFICATION IN OPEN-SOURCE SOFTWARE.

Software Number Coverage(%)
Redis-3.2.3 70 98.6

PostgreSQL-9.6rc1 269 98.1
Lighthttpd 273 96.2
Postfix-2.5 109 94.7

Squid-3.5.21 340 90.0
MySQL-5.7.15 732 87.7

Httpd-2.4.23 634 86.1
Nginx-1.10.2 637 85.1

Fig. 2. Classification tree of configuration options

fine-grained classification for all configuration options. We
manually analyzed software manuals, configuration files, and
even source code to classify each option. Fig. 2 illustrates
our classification in the form of a tree. This classification tree
can be supplemented with more software to be considered.
We evaluated our classification effectiveness on about 3,000
options of eight open-source software systems by checking
whether each option can be classified as one of types listed
Fig. 2. As shown in Table I, the coverage of the classification
is as high as 90% on average, with a minimum of 85.1%.
Therefore, the result indicates the validity and efficiency of
our classification.

For RQ2, we find that the configuration option names
chosen by programmers are usually made up of readable words
or common abbreviations connected by some separators. For
example, in PostgreSQL, programmers use underscores to con-
nect several words for the name of a configuration option, e.g.,
“listen addresses,” while in Httpd programmers use camel-
case naming, e.g., “MaxRequestsPerChild,” This naming con-
vention makes it easier for us to perform text processing and
extract semantic information. Besides, those words contained
in configuration-option names usually convey explicit semantic
information, including explanation, description, or constraints
about the configuration option, which reflect the option’s
type to some extent. For instance, the option names of path
type usually contain keywords such as “directory,” “location,”

Fig. 4. Classification of configuration options

as high as 90% on average, with a minimum of 85.1%. During
our study, we find that the names of configuration options
chosen by software developers always have some sort of
naming convention which is relevant to their type. We devised
a name-based method to automatically infer configuration
option type by extracting the semantic information from option
names [7]. We use a score model to extract the semantic
information in the configuration option name and thus infer the
most likely type of an option. However, name-based analysis
behaves poorly in inferring enumeration type, since there are
too many words that can potentially express enumeration type
and form the name.. Program analysis of the source code
can be used to solve this problem, while the assignment of
these options can be located by means of abstract syntax tree
analysis.

B. Constraint Extraction

In our tool, we have two sources to help ensure that the
extracted constraints are comprehensive and complete:

TABLE II
SYNTACTIC CONSTRAINTS OF CONFIGURATION OPTIONS

Type

Syntactic Constraints

Pattern Element Format of Element

File Path (/%S)+ S [\w.-]+
Directory Path (/%S)+/? S [\w.-]+

Partial File Path %S(/%S)* S [\w.-]+
Partial Directory Path %S(/%S)*/? S [\w.-]+

Domain Name [%S1]?://%S2
S1 (telnet|https|http|ftp)
S2 [a-zA-Z0-9.]+

IP Address %D1 .%D2 .%D3 .%D4 D1�4 [0-255]

Email %S1@%S2
S1 (\w)+(\.\w+)*
S2 (\w)+((\.\w+)+)

Mode %S S (value1|value2|value3)
Boolean %S S (on|off|yes|no|true|false)

Language %S S [a-zA-Z]{2}
MIME-types %S S [\w/-.]+

Memory %D %S S (KM|G|T|KB|MB|GB|TB|B)
D [min-max]

Time %D %S S (s|min|h|d|ms)
D [min-max]

Speed Rate %D %S S (bps|Kbps|Mbps)
D [min-max]

Count %D D [min-max]
Fraction %F F [min-max]

Port %D D [1-65535]
Permission %O O [0-777]
Username %S S [a-zA-Z][a-zA-Z0-9]*
Password %S S N/A
Filename %S S [\w -]+.[\w -]+

1) Syntactic Constraints Inferred by Option Type: By infer-
ring the type of a configuration option, we can further obtain
its syntactic constraints. We study the syntactic constraints of
specific configuration option type [8]. Table II illustrates the
details that we use to express syntactic constraints in normal
forms. We use wildcard to represent the elements in normal
forms. The general rule is concluded after extensive research
and experimentation. For example, an IP address must consist
of four integers between 0 and 255, divided by ‘.’ . If a user
sets one of the integers to be larger than 255, then the IP
Address is invalid.

2) Guidance Extracted from User Manual: We also obtain
semantic constraints from user documentation. After manually
researching several user manuals, we summarize the following
two situations, as shown in Fig. 5. We do not explicitly divide
these two forms of statements when extracting because they
both play important roles in guiding users configuring.

Fig. 6 shows the process of the Guidance extractor which
is divided into three main stages: feature selection, model
training and guidance extraction. First we need to consider

39
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:40 UTC from IEEE Xplore. Restrictions apply.

Configuration option: thread_stack /*MySQL*/
Statement:
If you increase the value of max_sp_recursion_depth, it may be necessary to
increase thread stack size by increasing the value of thread_stack at server startup.
Constraint:
thread_stack has relevance with max_sp_recursion_depth

Configuration option: KeepAliveTimeOut /*Httpd*/
Statement:
In no event should you raise this above about 60 seconds, as most of the benefits
are lost.
Constraint:
KeepAliveTimeOut < 60 seconds

(a) Direct form guidance

(b) Indirect form guidance

Fig. 5. Guidance in user manual

Tagged
Corpus

Word
filter

SVM
trainer

Predict
model

Feature
selection

Training
data

User
manual

Preprocessing

Features

candidate statements

Guidance statement

Fig. 6. Process of Guidance Extractor.

a statement as a vector of terms, which is called Vector space
representation. Since there can be so many different words
in user manual, the term-elimination techniques are required.
Chi-square test [9] is than used to select the feature(keywords)
of guidance. We manually labeled 1,000 statements from
several software user manuals as our experimental data. Before
using Chi-square test, we try to filter out noises, and POS
tagging [10] help us to do semantic role labeling(SRL) to
every word in a statement. Fig 7 shows an example of
POS tagging techniques. We than discards some words with
unconcerned tagging such as CD (Cardinal number), DT
(Determiner) that may prevent meaningful features from being
mined. Specifically, some useless words become meaningful
when combined with another word, for example, be and
must. We call them imperative phrases and we consider these
situations individually. Word variants is also considered, words
like recommend, recommends, recommended are all reduced
to their bases: recommend. After preprocessing, we finally
choose 20 words(phrases) to be the feature. Table III gives
the count of every word tag. We use LIBSVM [11] to train
the data set, then test the validity of the trained model by using
4-fold cross validation. The precision and recall are 0.944 and
0.896 respectively. We define a threshold of occurrence N (the
default is set to 3). If an option name appears more than N
times in a paragraph, we believe that this paragraph has a
strong relevance to this configuration option, so we classify
every statement in this paragraph using our model. If not, we
deal only with the statements that contain the option name,
rather than the whole paragraph.

Our approach has two main benefits. First, the user manual
always mentions the most error-prone configuration situations
to users. Second, statements in the user manual are always
written in natural language, making them easy to read and

You should always make sure this directory contains the appropriate symbolic links.

PRP MD RB Phrase DT NN VBZ DT JJ JJ NNS
(Personal pronoun) (Modal) (Adverb) (Verb + Adjective) (Determiner) (Noun) (Verb 3rd) (Adjective) (Noun plural)

Subject Verb phrase Object phrase

Statement

Fig. 7. Example of Postag

TABLE III
TAGS COUNT IN FEATURES.

Tag Number Example
PRP 1 ”you”
RB 1 ”only”
VB 6 ”permit”
MD 2 ”must”
JJ 2 ”important”
IN 1 ”unless”

Phrase 7 ”should be”
Total 20 -

understand. Our feature selection does not target any individual
software, and if further training is required, this model can be
expanded.

C. Key Usage Extraction
Most of the existing comments in configuration files de-

scribe the usage of options. Fig. 8 is an original comment
snippet in redis.conf. We can use simple keywords to show
the key usage of every option, and this will be of great value
for users, who can then quickly locate the option they intend
to change, rather than expending unnecessary manual effort
reading every comment. We use TextRank [12], a graph-based
ranking model for text processing to extract keywords from the
comments.

D. Comment Design
We find that comments in many configuration files do

not have a fixed or canonical format. Most of the current
comments are written in natural language, we add regular
expressions, wildcards and keyword phrases to our comment,
which helps the comment to be more rigorous and concise
without losing its readability. Fig. 9 illustrates an example of
our design. Type refers to the type of configuration option. Key
Usage helps users further understand the option. The syntactic
constraints are written as regular expressions and wildcards to

Set the replication backlog size. The backlog is a buffer that accumulates
slave data when slaves are disconnected for some time, so that when a slave
wants to reconnect again, often a full resync is not needed, but a partial
resync is enough, just passing the portion of data the slave missed while
disconnected.
The biggest the replication backlog, the longer the time the slave can be
disconnected and later be able to perform a partial resynchronization.
The backlog is only allocated once there is at least a slave connected.
repl-backlog-size = 1mb

Keyword: replication backlog size, slave data, partial resynchronization

Fig. 8. Example of Key usage

40
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:40 UTC from IEEE Xplore. Restrictions apply.

##
Memory
query cache, memory allocated

#Type:
#Key Usage:
#Pattern: %D%S
#Element format: D = [min-max] , S = (K|M|G|T|B|KB|MB|GB|TB)
#Default: 16M
#Note: If you set the value of query_cache_size too small, a warning will
occur, as described in Section 9.10.3.3, “Query Cache Configuration”.
To disable the query cache at server startup, set the query_cache_size
system variable to 0.
When you set query_cache_size to a nonzero value, keep in mind that
the query cache needs a minimum size of about 40KB to allocate its
structures.
If query_cache_size is 0, you should also set query_cache_type variable
to 0.
##
query_cache_size = 16M

Fig. 9. New designed comment

TABLE IV
MISCONFIGURATION CASES OF 6 SOFTWARE

Software Misconfiguration Preventable
MySQL 14 10

PostgreSQL 7 4
Httpd 7 5
Php 10 7

HAProxy 8 4
OpenLDAP 4 3

Total 50 33

ensure that there is no ambiguity. The default value is also
provided as a reference value if users wrongly modify the
option. Other constraints extracted from the user manual are
kept in natural language.

V. EVALUATION

To evaluate the effectiveness of our tool, we use real-world
cases collected from StackOverflow [13] and ServerFault [14].
The experiments are carried out using six widely used software
projects: MySQL, PostgreSQL, Httpd, PHP, HAProxy, and
OpenLDAP. First we find issues of misconfigurations related
to configuration files and record the answers (i.e. causes and
solutions posted by other users) that have been confirmed
by the questioner. We than use our tool to enhance the
configuration file and we regard a preventable error as a
situation that our enhanced comment can provide sufficient
information to help user avoid the mistake.

A. Overall Result
We looked through more than 300 examples of misconfig-

urations on the two websites and selected 50 of them that
related to configuration files. Table IV illustrates that our
enhanced comments are sufficient to prevent 33 of these 50
misconfigurations.

B. Effective Prevention
Fig. 10 shows two real-world examples of errors that can

be prevented by type information and syntactic constraint
information. In Fig. 10(a), “extension dir” is set to a file
path instead of directory path, which results in database
disconnection. The comment we add advises users the right
type of option to use, enabling users to avoid this simple
mistake. In Fig. 10(b), a user got error message because he

Misconfiguration B: /*OpenLDAP*/
directory = “var/lib/ldap”
Symptom:
Invalid path: Permission denied
Cause:
Missing the first “/” in the directory name
Prevention Information:
…
#Format: (/%S)+/?
…

Misconfiguration A: /*PHP*/
extension_dir = a file path
Symptom:
Database disconnection
Cause:
The path should be a directory path
Prevention Information:
…
#Type: String->Directory path
…

(a) Wrong Type Violation Prevention

(b) Syntactic Violation Prevention

Fig. 10. Type and syntactic violation prevention

Misconfiguration C: /*MySQL*/
max_allowed_packet = 4M
Symptom:
Error: Throw an exception when sending a file
Cause:
The size of the packet exceeds the value of “max_allowed_packet”
Prevention Information:
…
#Note: When a MySQL client or the mysqld server receives a packet bigger than
max_allowed_packet bytes, it issues an ER_NET_PACKET_TOO_LARGE
error and closes the connection.
Both the client and the server have their own max_allowed_packet variable,
so if you want to handle big packets, you must increase this variable both in
the client and in the server.
…

Fig. 11. Constraint violation prevention

missed the first slash in the directory name. Our enhanced
comment tells users that this configuration option should be
in the form “(/%S)+”. This regular expression emphasizes the
presence of the first slash.

Fig. 11 gives an example of a misconfiguration that can
be prevented by guidance extracted from the user manual. In
this case, the MySQL client throws an exception when a user
sends a file. This happens because that the size of the file
exceeds the value of ‘max allowed packet”. There are two
statements extracted by ConfigFile++ that can help users avoid
this error: (1) “When a MySQL client or the mysqld server
receives a packet bigger than max allowed packet bytes, it
issues an ER NET PACKET TOO LARGE error and closes
the connection.” (2) “Both the client and the server have their
own max allowed packet variable, so if you want to handle
big packets, you must increase this variable both in the client
and in the server.” [15].

C. Defects and Difficulties
There are still some situations that are difficult to prevent

using ConfigFile++, which can be our future work. V gives
the result.

41
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:40 UTC from IEEE Xplore. Restrictions apply.

TABLE V
MISCONFIGURATIONS FAILED TO BE PREVENTED

Failure cause Number
Cross-stack configuration 5

Software Evolution 3
User operation 1

Operating System related 2
Others 6
Total 17

1) Cross-Stack Configurations: We do not consider the
cross-stack misconfigurations because all the information we
inserted comes from a single software’s resource. For example,
a user sets “max execution time” in PHP to be longer than
“net read timeout and “net write timeout in MySQL, with
the result that MySQL disconnects. This requires analysis of
the specific software combinations, which can be a direction
for our future work.

2) Software Evolution: A user reports that an error was
detected while parsing a switching rule in configuration file:
/etc/haproxy/haproxy.cfg. The problem turns out to be that
Ubuntu’s repos contain a rather old (1.4) version of HAProxy,
and the example uses some directives that were added in
version 1.5.

3) User Operation: In some cases, configuration can fail if
users do not follow the correct operation steps. For instance,
some users change the configuration files, but the changes do
not take effect until after the system is restarted.

4) System Related: Some errors are related to the operating
system and are thus hard to prevent. For example, there is an
error occurred in Httpd because SELinux only allows the web
server to make outbound connections to a limited set of ports.

VI. RELATED WORK

In our study, we combine configuration option type infer-
ence and guidance extraction from user manuals to help users
avoid misconfigurations. When inferring the type of configu-
ration options, Rabkin and Katz [16] used static extraction to
find well-defined APIs which read and pass the options, using
them to infer the option type. In our work, we use name-
based analysis to infer the type, which is more convenient and
requires less human efforts. Our study also involves mining
some information from user manuals. Some previous studies
have made substantial efforts to use software documentation.
API documentation was studied in [17]. However, it focused
on the taxonomy of parameter constraints; rather than apply-
ing automated techniques. Other works focused on comment
quality analysis include [18][19][20]. These works differ from
ours because they target comment quality in source code while
we try to enhance the comments in the configuration file to
help users with configuring.

VII. CONCLUSIONS

Misconfigurations have become a notable problem in to-
day’s software systems. In this paper, we aim at miscon-
figuration prevention by enhancing the comments in config-
uration files. We manually study the configuration files of

22 software systems and find the defects in them. Based
on these defects and our previous research, we design and
implement ConfigFile++ to automatically extract information
about configuration options and insert it into configuration
files. We use real-world examples of misconfigurations to
evaluate the effectiveness of our tool. The results show that
our tool is effective at helping users avoid misconfigurations.

ACKNOWLEDGMENT

This paper is supported by National Key R&D Program of
China 2017YFB1001802.

REFERENCES

[1] A. Rabkin and R. Katz, “How hadoop clusters break,” IEEE Software,
vol. 30, no. 4, pp. 88–94, 2013.

[2] M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis,” in Usenix Conference on
Operating Systems Design and Implementation, 2010, pp. 1–11.

[3] M. Attariyan, M. Chow, and J. Flinn, “X-ray: automating root-cause
diagnosis of performance anomalies in production software,” in Usenix
Conference on Operating Systems Design and Implementation, 2012,
pp. 307–320.

[4] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy, “Do not blame users for misconfigurations,” in Twenty-
Fourth ACM Symposium on Operating Systems Principles, 2013, pp.
244–259.

[5] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy,
“Early detection of configuration errors to reduce failure damage,”
in Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’16. Berkeley, CA,
USA: USENIX Association, 2016, pp. 619–634. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3026877.3026925

[6] Augeas, http://augeas.net/.
[7] X. Xu, S. Li, Y. Guo, W. Dong, W. Li, and X. Liao, “Automatic type in-

ference for proactive misconfiguration prevention,” in The International
Conference on Software Engineering and Knowledge Engineering, 2017,
pp. 295–300.

[8] W. Li, S. Li, X. Liao, X. Xu, S. Zhou, and Z. Jia, “Conftest: Generating
comprehensive misconfiguration for system reaction ability evaluation,”
in The International Conference, 2017, pp. 88–97.

[9] M. D. Franzen, Chi-square. Springer New York, 2011.
[10] L. Rquez, Llu, Rodr, and H. Guez, “A machine learning approach to

pos tagging.” Machine Learning, vol. 39, no. 1, pp. 59–91, 2000.
[11] C. C. Chang and C. J. Lin, “Libsvm: A library for support vector

machines,” Acm Transactions on Intelligent Systems Technology, vol. 2,
no. 3, pp. 1–27, 2011.

[12] R. Mihalcea and P. Tarau, “Textrank: Bringing order into texts,” in
Conference on Empirical Methods in Natural Language Processing ,
EMNLP 2004, A Meeting of Sigdat, A Special Interest Group of the Acl,
Held in Conjunction with ACL 2004, 25-26 July 2004, Barcelona, Spain,
2004, pp. 404–411.

[13] StackOverflow, https://stackoverflow.com/.
[14] ServerFault, https://serverfault.com/.
[15] MySQL 5.7 Reference Manual, 2016.
[16] A. Rabkin and R. Katz, “Static extraction of program configuration

options,” in International Conference on Software Engineering, 2011,
pp. 131–140.

[17] L. Shi, H. Zhong, T. Xie, and M. Li, “An empirical study on evolution
of api documentation,” in International Conference on Fundamental
Approaches To Software Engineering, 2011, pp. 416–431.

[18] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/*icomment:bugs or bad
comments?*/,” 2007, pp. 145–158.

[19] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tcomment: Testing
javadoc comments to detect comment-code inconsistencies,” in IEEE
Fifth International Conference on Software Testing, Verification and
Validation, 2012, pp. 260–269.

[20] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source code
comments,” vol. 33, no. 2, pp. 83–92, 2013.

42
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:22:40 UTC from IEEE Xplore. Restrictions apply.

