
MisconfDoctor: Diagnosing Misconfiguration via Log-based Configuration Testing

Teng Wang∗, Xiaodong Liu∗, Shanshan Li∗, Xiangke Liao∗, Wang Li∗, Qing Liao†
∗College of Computer Science, National University of Defense Technology, Changsha, China

†Department of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
Email: {wangteng13, liuxiaodong, shanshanli, xkliao, liwang2015} @nudt.edu.cn, liaoqing@hit.edu.cn

Abstract—As software configurations continue to grow in
complexity, misconfiguration has become one of major causes
of software failure. Software configuration errors can have
catastrophic consequences, seriously affecting the normal use of
software and quality of service. And misconfiguration diagnosis
faces many challenges, such as path-explosion problems and
incomplete statistical data. Our study of the log that is gener-
ated in response to misconfigurations by six widely used pieces
of software highlights some interesting characteristics. These
observations have influenced the design of MisconfDoctor, a
misconfiguration diagnosis tool via log-based configuration
testing. Through comprehensive misconfiguration testing, Mis-
confDoctor first extracts log features for every misconfiguration
and builds a feature database. When a system misconfiguration
occurs, MisconfDoctor suggests potential misconfigurations by
calculating the similarity of the new exception log to the
feature database. We use manual and real-world error cases
from Httpd, MySQL and PostgreSQL in order to evaluate the
effectiveness of the tool. Experimental results demonstrate that
the tool’s accuracy reaches 85% when applied to manual-error
cases, and 78% for real-world cases.

Keywords-Misconfguration; Exception log; Configuration
testing

I. INTRODUCTION

With the widespread use of the internet and computer

technology, large-scale software systems have become an in-

dispensable part of modern society. However, due to the ex-

panding scale of the software and the increasing demands for

customizability, software developers need to provide a large

number of configuration options. While more configuration

options allow users to configure and manage their software

more conveniently and flexibly, they are more likely to cause

configuration errors. As software configurations continue to

grow in complexity, misconfiguration has become one of

the major causes of software failure [1-3]. Yin et al. [4]

report that 27% of customer support cases at a major storage

company are related to configuration issues. Oppenheimer

et al. [5] find that more than 50% of system operation and

maintenance failures are due to misconfiguration and can

result in the inability to use system services.

Software configuration errors can have catastrophic con-

sequences, seriously affecting the normal use of the software

and the quality of service. For example, Facebook went

down for 2.5 hours in 2010 and was inaccessible for up

to five million people because of configuration errors [6].

The serious consequences of configuration errors make it

imperative and vital that research into the diagnosis and

repair of misconfigurations be undertaken.

Recent research into software configuration diagnosis

consists mainly of program analysis and statistics-based

approach. The program analysis methods [7-10] analyze

the corresponding statements given by the configuration

variables and the execution path and thereby infer which

configuration option may have caused the software system

error. However, such methods are deficient in terms of

their efficiency and scalability, due to the path explosion

problem. The statistics-based approach can be divided into

the rule-based approach [11-14] and the signature-based

approach [29-32]. The rule-based approach learns rules from

the correctly functioning system; if a configuration setting

does not satisfy these learned rules, it will be labeled

as a misconfiguration. This approach has a higher false-

positive rate because it is difficult to guarantee the com-

pleteness of the rules and avoid learning inaccurate rules.

Signature-based approaches compare the signature of the

failure execution with normal signatures in order to reason

out configuration errors [33]. When some emerging features

replicate or largely resemble the signature of a known

failure, we can probably assume that the current software

contains the failure. These methods are limited by the size

and comprehensiveness of the reference signatures, which

can greatly affect their accuracy.

The challenges of signature-based methods are mainly

twofold. Firstly, how best to choose the appropriate infor-

mation as a signature is a non-trivial issue, as it needs to

accurately describe the status of the software runtime and

capture the behavior of the misconfiguration. Wang et al.

[32] capture the Windows Registry entries as the signa-

ture of the failure execution, which limits their application

to software running on operating systems like Linux and

UNIX. Yuan et al. [29] collects system call traces and uses

the system behavior information as the signature. However,

the argument against using system behavior information to

characterize problems is that such a signature is usually less

accurate and less direct compared to a program-generated

signature [29].

Secondly, the scale and complexity of a software sys-

tem significantly enlarges the size of a signature database,

greatly increasing the difficulties experienced when building

a comprehensive signature database. Jiang’s study [15][16]

1

2018 IEEE International Conference on Software Quality, Reliability and Security

978-1-5386-7757-5/18/$31.00 ©2018 IEEE
DOI 10.1109/QRS.2018.00014

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

manually collected actual customer cases in two-years’

worth of commercial storage system reports. Even though

this resulted in extensive signature data collection through

a very high workload, it still cannot possibly reflect all the

potential misconfiguration cases that could occur within the

target software.

To address the above challenges, we present Misconf-

Doctor, a misconfiguration diagnosis tool that uses log-

based configuration testing. We chose the software log to

describe the system’s signatures, since a log can be a good

representation of the software’s behavior and status, and can

thereby greatly aid the failure diagnosis process [36][37]. We

carry out in-depth research on the log that is generated in

response to misconfigurations by six open-source pieces of

software, and find that the exception log sequence, which

appears when the software fails, usually contains some

special features. For example, in comparison to the normal

log sequence, the exception log sequence may increase one

or more logs in certain formats by describing potential

failure information; additionally, it may miss part of the log

in the normal log sequence. We collect such exception log

features as signatures to help the misconfiguration diagnosis.

MisconfDoctor explores our previous work ConfTest [21]

in order to generate comprehensive misconfigurations and

utilize a method of configuration testing in order to obtain

the log sequence feature and build the signature database.

The contributions of this paper are as follows:

• We collect software logs and extract the exception log

features in order to build a signature database for mis-

configuration troubleshooting. A configuration testing

method is used to guarantee the comprehensiveness of

our proposal.

• We design and implement MisconfDoctor, a tool for

diagnosing misconfigurations through log-based config-

uration testing. We calculate the similarity between the

target log sequence and the exception log feature and

suggest the misconfiguration culprit.

• We use manual and real-world error cases from Httpd,

MySQL and PostgreSQL in order to evaluate the tool’s

effectiveness. Experimental results demonstrate that the

accuracy reaches 85% for the manual error cases and

78% for real-world cases.

The remainder of this paper is organized as follows. We

present our study of exception logs in Section 2, before

introducing the architecture of MisconfDoctor in Section

3 and its design in Section 4. The evaluation is found in

Section 5, we present related work in Section 6 and we

conclude our work in Section 7.

II. STUDY OF FEATURES IN EXCEPTION LOGS

In this section, we will first introduce observations con-

cerning the characteristics of software logs, before dis-

cussing the features of exception logs.

A. Observations on the Characteristics of Logs

A software log is an important guide for failure diagnosis.

It can record dynamic information when the program is

running and helps the developer to analyze and reproduce

the errors. The standard, sufficient and useful logs are very

significant in software failure diagnosis, as they can effec-

tively improve the efficiency of both troubleshooting and

recovery. However, the logs generated by many examples

of popular software (including both open-source software

and commercial software) partly come with insufficient

guidance, which makes it difficult for users to directly use

the log statement to diagnose the cause of the failure.

We investigate the source code and logs of six pieces of

software (Httpd, MySQL, PostgreSQL, Redis, Nginx and

OpenSSH) in order to find the reason why the current trend

in software is to make it difficult to directly help users

diagnose failure. This trend manifests as follows:

• The log description is too professional or vague, or

• The log contains misleading information.

The log messages provided represent the execution pro-

cess and system status of the software in a serialized form.

When software fails due to different misconfigurations, the

log sequence presents specific pattern characteristics, which

can effectively aid in diagnosis. We find that, under certain

inputs, the software execution path and log output can be

fixed.

1) Vague log description: Due to the lack of unified log

standards and the fact that log statements can be influenced

by the habits of software developers, the software log

contains many vague descriptions or specialized information

(such as program exception codes, which only software

developers can understand). Although the contents of these

logs cannot help us diagnose errors directly, the pattern of

the log is helpful.

Fig. 1(a) provides an example of PostgreSQL’s log. We

change the configuration option hba file to “/var” and the

PostgreSQL server fails to start. The log gives detailed in-

formation, such as “could not open configuration file ‘/var’:

Permission denied” and “could not load pg hba.conf”. How-

ever, it does not indicate the option hba file, meaning that

the average user would not be able to find the cause of the

error. That being said, this log sequence appears in a pattern

that reflects the execution path and status of the software.

We analyze the source code of PostgreSQL, as shown in

Fig. 2. The Postmaster process is the first process in Post-

greSQL, and it performs the initialization work of loading

the configuration file for client authentication via load hba().

The function load hba() uses the method AllocateFile() to

open HBAFileName, which is the value of option hba file.

When the file fails to open, load hba() will output the given

log and then PostmasterMain() will also output the given

log. Such a log sequence implicitly reveals that when there

is an error in the option hba file the software fails to start

2

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

Starting The Apache HTTP Server...
httpd[129549]: Syntax error on line 7 of /etc/httpd/conf/httpd.conf: Could
not open config directory /abc/conf.modules.d: No such file or directory
systemd[1]: httpd.service: main process exited, code=exited,
status=1/FAILURE
kill[129551]: kill: cannot find process ""
systemd[1]: httpd.service: control process exited, code=exited status=1
systemd[1]: Failed to start The Apache HTTP Server.
systemd[1]: Unit httpd.service entered failed state.

systemd[1]: Starting PostgreSQL database server...
pg_ctl[593]: LOG: could not open configuration file "/var": Permission
denied
pg_ctl[593]: FATAL: could not load pg_hba.conf
pg_ctl[593]: pg_ctl: could not start server
systemd[1]: Failed to start PostgreSQL database server.
systemd[1]: Unit postgresql.service entered failed state.
systemd[1]: postgresql.service failed.

(a) Log of PostgreSQL (b) Log of Httpd

Figure 1. Examples of exception logs

/* postgresql-9.3.1/backend/postmaster/postmaster.c */
void PostmasterMain(int argc, char *argv[])
…

conffile = ap_server_root_relative(cmd->pool, name);
if (!load_hba()){

 ereport(FATAL,
 (errmsg("could not load pg_hba.conf")));}

}

/* postgresql-9.3.1/backend/libpq/hba.c */
load_hba(void){
…

file = AllocateFile(HbaFileName, "r");
if (file == NULL){
 ereport(LOG, (errcode_for_file_access(),
 errmsg("could not open configuration file

 \"%s\": %m", HbaFileName)));}
}

Figure 2. Source code snippet of PostgreSQL

and outputs the log sequence as shown above.

2) Log with misleading information: We find that the

error message described by the software log is not always

where the software really goes wrong. That is, the potential

misconfiguration of the software is latent and bursts out

when other options are used. Additionally, if the software

cannot solve the misconfiguration effectively, then the log

information can be misleading. In this case, while the

software log cannot help us diagnose problems directly, the

pattern is still helpful.

Fig. 1(b) provides an example of an Httpd log. We

set the option ServerRoot to “/abc” and start the Httpd

server. The log points to “Syntax error on line 7 of

/etc/httpd/conf/httpd.conf: Could not open config directory

/abc/conf.modules.d”. After checking the file httpd.conf, we

know that the log indicates that there is a problem with the

option “Include”. However, it is not the root cause.

We analyze the source code of Httpd, as shown in Fig. 3.

The software uses the function include config() to load the

option Include, which uses the value ServerRoot as part of

the path. Thus, ServerRoot’s error caused the failure when

loading Include. The software cannot analyze the root cause

/* httpd-2.4.24/server/core.c */
include_config (cmd_parms *cmd, void *dummy, const char* name){
…

conffile = ap_server_root_relative(cmd->pool, name);
…

ap_process_fnmatch_configs(cmd->server, conffile, &conftree,
 cmd->pool, cmd->temp_pool, optional);
…
}

/* httpd-2.4.24/server/config.c */
ap_process_resource_config_nofnmatch(…){
…

rv = apr_dir_open(&dirp, path, ptemp);
if (rv != APR_SUCCESS) {
return apr_psprintf(p, "Could not open config

directory %s: %pm", path, &rv); }
}

Figure 3. Source code snippet of Httpd

of the error itself, so the given log cannot directly help the

user to diagnose the problem. However, this log sequence

does shows the system behavior when ServerRoot errors

occur, which is helpful for diagnostics.

B. Observations on the Feature in Exception Logs

In the previous part, we learned that log sequences show

a specific pattern in the case of software failure, and that

the feature of the exception log can help us to diagnose

errors. That is to say, when the software fails, if the new

exception logs contain the known exception feature or are

largely similar to it, we can assume that the software may

contain the corresponding known failures.

We study the logs of six pieces of software with miscon-

figurations during testing and questions about configuration

errors from StackOverflow [19] and ServerFault [20] (two

online Q&A websites focusing on computer knowledge).

Compared with the log sequence that results from the correct

execution, we find that the exception logs will show the

following features:

• The addition of one or more logs in certain formats

• Missing parts of logs in the normal log sequence

3

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

(b) Exception logs in MySQL (a) Normal logs in MySQL (c) Features of the exception log

mysqld_safe Starting mysqld daemon with
databases from /var/lib/mysql
InnoDB: Using Linux native AIO
InnoDB: Completed initialization of buffer pool
InnoDB: highest supported file format is
Barracuda.
[Note] Plugin 'FEEDBACK' is disabled.
[Note] Server socket created on IP: '0.0.0.0'.
[Note] mysqld: ready for connections.
[Note] Event Scheduler:Purging the queue
events
InnoDB: Shutdown completed
[Note] mysqld: Shutdown complete
mysqld_safe mysqld from pid file
/var/run/mariadb/mariadb.pid ended

mysqld_safe Starting mysqld daemon with
databases from /var/lib/mysql
[Warning] option
'innodb-additional-mem-pool-size': signed value
0 adjusted to 524288
[ERROR] /usr/libexec/mysqld: Error while
setting value '20.5M' to 'innodb-additional-mem-
pool-size'
[ERROR] Parsing options for plugin 'InnoDB'
failed.
[Note] Plugin 'FEEDBACK' is disabled.
[ERROR] mysqld: unknown variable
'innodb_data_home_dir=/var/lib/mysql'
[ERROR] Aborting
[Note] mysqld: Shutdown complete
mysqld_safe mysqld from pid file
/var/run/mariadb/mariadb.pid ended

(#)mysqld_safe Starting mysqld daemon with
databases from /var/lib/mysql
(-)InnoDB: Using Linux native AIO
(-)InnoDB: Completed initialization of buffer pool
(-)InnoDB: highest supported file format is Barracuda.

(#)mysqld_safe Starting mysqld daemon with
databases from /var/lib/mysql
(+)[Warning] option 'innodb-additional-mem-pool-size':
signed value 0 adjusted to 524288
(+)[ERROR] /usr/libexec/mysqld: Error while setting
value '20.5M' to 'innodb-additional-mem-pool-size'
(+)[ERROR] Parsing options for plugin 'InnoDB' failed.

(#)[Note] Plugin 'FEEDBACK' is disabled.
(+)[ERROR] mysqld: unknown variable
'innodb_data_home_dir=/var/lib/mysql'
(+)[ERROR] Aborting

(#)[Note] Plugin 'FEEDBACK' is disabled.
(-)[Note] Server socket created on IP: '0.0.0.0'.
(-)[Note] mysqld: ready for connections.
(-)[Note] Event Scheduler:Purging the queue events

Figure 4. Examples of log sequences and features of the exception logs

Configuration
file

Source code

Misconfiguration
generator

Misconfiguration
tester

Log preprocessor Feature extractor Log feature
database

Figure 5. Architecture of the learning component of MisconfDoctor

1) The addition of one or more logs in certain formats:
The log sequence indicates the execution path of the soft-

ware. When the software handles a module abnormality, the

log system will print an additional notice, warning, error

or other information to indicate that these are not operating

correctly. That is, it shows that the program has deviated

from the normal execution path specified by the system and

so it will add more logs in a specific format. The difference

in these logs is obvious. Fig. 4(a) shows the log when

MySQL starts normally, and Fig. 4(b) shows the log when

the service fails due to a configuration error. The additional

three logs (Warning, ERROR, ERROR) in the exception

logs indicate the fault information provided by the software,

which we call one feature of the known misconfiguration.

Following the pattern of the code changes, we present the

log difference as log changes, as shown in Fig. 4(c). The

symbol “#” represents a common log and the symbol “+”

represents the additional log when misconfiguration occurs.

2) Miss part of logs in the normal log sequence: When an

exception occurs somewhere in the program execution, the

execution path deviates from the normal path. As a result,

multiple logs go missing from the normal log sequence.

Missing logs are also an important feature of exceptions.

Similarly, we can present log differences as log changes,

obtaining four features as shown in Fig. 4(c). The symbol

“-” represents the missing log when misconfiguration occurs.

Each “+” feature and “-” feature are found under one “#”

log.

III. THE ARCHITECTURE OF MISCONFDOCTOR

This section describes the architecture of MisconfDoctor,

which diagnoses misconfigurations through the analysis of

exception log features resulting from misconfiguration test-

ing. MisconfDoctor contains two components: the learning

component and the diagnosing component.

The goal of the learning component is to obtain the ex-

ception log features for the target software. These extracted

4

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

Log feature
database

Log feature

New

exception
Log

preprocessor
Feature

checker Potential
Misconfigu

rations

Figure 6. Architecture of the diagnosing component of MisconfDoctor

features are further applied by the diagnosing component

in order to diagnose the configuration errors. The learning

component first generates comprehensive misconfigurations

for the target software and conducts tests in order to obtain

the logs. Following this, it can extract log features for

every misconfiguration. As illustrated in Fig. 5, the learning

component has four main parts, as follows.

Misconfiguration generator: The diagnosis is based on

our ability to get the log sequence information from the

target software in response to various failures that are due

to various configuration errors. In order to achieve this

goal, we first need to generate a comprehensive set of

misconfigurations, including both single-option and multi-

option misconfigurations.

Misconfiguration tester: The tester injects every miscon-

figuration the generator creates into the original configura-

tion file, carrying out the same test process. Following this,

the tester records the misconfiguration (M) and its error logs

(L), thus forming a tuple < M,L >. The aim is to get

various tuples of < M,L >; as such, our tests need to have

a high coverage of the target software.

Log preprocessor: The logs we obtain from the tests

always contain a lot of redundant information, such as

that regarding execution time and environmental variables.

Before extracting the exception log features, we need to

preprocess the logs into a standard format.

Feature extractor: Based on the observations discussed

in Section 2, exception logs have some features compared

with normal logs. The work of the extractor is to extract

special features from every exception log sequence and save

the tuples < M,LF > of the misconfiguration (M) and its

exception log feature (LF) into a log feature database.

The diagnosing component detects potential misconfigu-

rations using the new exception logs and the log feature

database. Exception logs will accompany any failure in the

software. As depicted in Fig. 6, the component’s input is

the new exception logs and it outputs potential misconfig-

urations. When the software fails, then we can obtain the

new exception logs. After log preprocessing takes place,

the feature checker will check whether the log sequence

contains any special features, which are saved in the log

Configuration
type

String

Numeric

URI

Enumerative

Name

Others

Path

URL

Domain name

IP address

Email

Mode

Boolean

Language

MIME types

User name

Password

Filename

File path

Partial file path

Directory path

Partial directory
path

Number with
units

Number

Memory

Time

Speed rate

Port

Fraction

Count

Permission

Figure 7. Type classification rule for configuration options [21]

feature database. If the log sequence contains special fea-

tures, the target software environment may contain relevant

misconfigurations. The checker will then list the potential

misconfigurations, following which the user can check for

them conveniently.

IV. DESIGN AND IMPLEMENTATION

A. Misconfiguration Generator

In order to obtain comprehensive exception log sequences,

we first need to generate comprehensive misconfigurations.

We classify misconfigurations into two categories: single-

option and multi-option misconfigurations.

Single-option misconfigurations just have mistakes in one

option; these will be either format-related or constraint-

related misconfigurations. Most software configurations usu-

ally come in key-value pairs. We simulate the mistakes

people may make when using the configuration option, sum-

marizing the format-related errors as Misspell, Omission,

Replication, Case error and Wrong operator. Our previous

work (ConfTest [21]) has completed the design of this

method. In our previous study [21] we researched more than

2,000 configuration options in eight widely used pieces of

software and classified these options into fine-grained types.

For every option, we extracted the corresponding syntactic

and semantic constraints before generating constraint-related

errors. The fine-grained type classification is shown in Fig.

7. ConfTest is sufficiently comprehensive for single-option

misconfigurations.

5

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

/* postgresql-9.3.1/backend/postmaster/postmaster.c */
PostmasterMain(int argc, char *argv[]) {
…

if (max_wal_senders >= MaxConnections){
write_stderr("%s: max_wal_senders must be less than

max_connections\n", progname);
 ExitPostmaster(1);
 }
}

(a) Example of value constraint

/* postgresql-9.3.1/backend/access/transam/xlog.c */
RecordTransactionCommit() {
…

if (…&& enableFsync)
 pg_usleep(CommitDelay);
}

(b) Example of control constraint

Figure 8. Examples of Multi-option constraint

When analyzing multi-option misconfigurations, we gen-

erate misconfigurations using the constraints between two

options. We study the source code of six pieces of soft-

ware, as mentioned in Section 2, and find that multi-

option constraints are shown to be value and control con-

straints that occur between two related options. “Value

constraint” means that two options have a categorical value

relationship (for example, “max wal senders” must be less

than “max connections” in PostgreSQL, as shown in Fig.

8(a).) “Control constraint” means that option B can work

only when option A is in valid condition (for example,

“pg usleep(CommitDelay)” does not work if “enableFsync”

is not turned on, as shown in Fig. 8(b).) Our previous work

[22] can automatically extract the value constraints and con-

trol constraints in conditional branches of the source code.

Our method is based on program analysis conducted on

top of the LLVM compiler infrastructure [23]. On the basis

of the constraints, we obey the value relationship and the

control conditions. For example, we set “max wal senders”

to be larger than “max connections” in Fig. 8(a).

B. Misconfiguration Tester

The mission of a misconfiguration tester is to test system

reactions under every misconfiguration the generator creates

and record the system behavior and logs. In order to achieve

high test coverage for the target software, we use the

software’s own test infrastructure [24-26], including test

cases and test oracles, in order to check whether the system

fails under every misconfiguration condition. We consider

the function tests and regression tests for the software to

be comprehensive, with high coverage. We have therefore

written a script tool that records both the additional content

of the software log file after every test is executed and the

corresponding configuration error.

Before the tests, we need to adjust all the configurations

to the proper settings and check whether the system can

pass all these test cases in order to make sure the software

system is in the correct state. For every test case in the

normal configuration, the tester also records the log sequence

information, which is then referred to when extracting the

features from the error log sequence.

We test only one misconfiguration each time. The tester

injects the fault into the configuration file and then launches

the target system. If the system fails to start up, that means

the fault has influenced the initialization work. The tester

will record the logs, following which there is no need to

test this misconfiguration anymore.

We will then conduct every function test and check the

system’s behavior according to the test oracles. When the

software cannot pass a test, the tester will take the error log

sequence (L) and misconfiguration (M) to form the tuple

< M,L > for the special test case. If the software passes the

test, we note that the fault does not affect the special function

or that it has been fixed by the software, and move on the

next test case. After all the tests for every misconfiguration

have been conducted, we have a collection of various tuples

of < M,L > for unpassed test cases.

C. Log Preprocessor

1) Log-text preprocessin: Normally, every sentence in the

logs has redundant information; for example, the execution

time, thread number and so on. This redundant information

is mostly relevant to the execution environment and has

a negative effect on feature extraction and diagnosis. As

such, we need to perform standardized processing in order

to obtain a uniform sentence.

In the first step, we use regular expressions to remove the

execution time, such as “Jan 15 18:24:22”. Secondly, as the

log sentence contains many program parameters that show

the state of the system, it is necessary to turn the program

parameters into a unified form. We use regular expressions

to replace integer numbers with the word “integer”, float

numbers with “float”, file paths with “file”, and directory

paths with “directory”. Any email addresses are replaced by

“email” and IP numbers with “ip-number”. We only convert

the path that is contained in quotation marks because the

path outside of these marks usually contains the program

component path.

Thirdly, we remove the punctuation marks to make sure

that every sentence only contains words. Fourthly, we change

all the words into lowercase. Fifthly, we convert the forms

of plurals and past tense into word prototypes using the

Porter stemming algorithm [27]. After the canonicalization,

the log sentence from MySQL, “170116 14:14:45 [ERROR]

/usr/libexec/ mysqld: Error while setting value ‘20.5M’ to

‘innodb-additional-mem-pool-size’” is turned into “error usr

ibexec mysqld error while setting value float to innodb-

additional-mem-pool-size”.

6

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

Before Alignment After Alignment
(1)“ ” (1)“ ”
(2)“ ” (2)“ ”

Figure 9. Example of sequence alignment

2) Noise filtering: After log-text preprocessing, we can

remove the environment factor and special parameters in a

single log sentence and thereby establish the standard log.

However, the single log sentence may be environmentally

sensitive noise. In order to determine whether this is the case,

we ran the software twice more (on the same computer with

the same test under the same configuration) and we found

that we sometimes could not obtain two log sequences that

were exactly the same. The differences in the log sequences

may be due to the noise. Therefore, if we do not filter the

noise, it will influence the features in the log sequence.

We do the same test 10 times, resulting in 10 log

sequences for the same misconfiguration test. Most of the

content is the same; only a small part is different. For every

log sentence after canonicalization, we count how many

times it occurs over the 10 sequences. If a sentence occurs

in more than a threshold percentage of all the sequences, we

regard it as a normal log sentence. Otherwise, it is considered

to be noise. We set the threshold to 0.7 in our experiment.

The method of selecting the threshold will be discussed in

Section 5.3.

D. Feature Extractor

Based on the log-text preprocessing and noise filter, we

are able to obtain standardized log sequences. We can then

take both the log sequence produced in response to a correct

execution and the exceptions in order to extract the features,

as mentioned in Section 2. We take the log of the correct

execution as the benchmark and compare the log sequence

of the exceptions in serialization in order to ascertain the

added and the missing logs.

We consider every sentence as a word, and the log se-

quence as a string. Two words are considered to be the same

if their longest common substring accounts for 90% of the

average length of the two words. The mission is to align the

two sequences and collect the differences. We use a sequence

alignment tool [28] to compare the differences. A sequence

alignment algorithm tries to find the maximal similarity of

two sequences and align the corresponding location for every

word. Fig. 9 shows an example of the alignment of two

strings; the underscores represent the missing word that is

found when the string is compared to the other sequence.

Based on the sequence alignment algorithm, we can

extract features for every exception log sequence. Algorithm

1 shows the process of extracting features. We take the

last-matched sentence in both sequences and the missing

Table I
ALGORITHM 1: FEATURE EXTRACTION

Input: the standardized StandardSequence(SSeq) and the stan-
dardized ExceptionSequence(ESeq)

Output: the feature set(FS)
1 sequence alignment for SSeq and ESeq
2 For sentence in ESeq:
3 If find a matched sentence in SSeq:
4 Add [(#) the previous matched sentence] to FS
5 Add [(-) missing subsequence] from SSeq to FS
6 Else:
7 Add [(#) the previous matched sentence] to FS
8 Add [(+) adding subsequence] from ESeq to FS
9 End
10 Return FS

Table II
ALGORITHM 2: FEATURE CHECKING

Input: the standardized log sequence(LS) and the log feature
database(FDB)

Output: the potential misconfiguration list
1 For every feature set in FDB:
2 FullScore := the number of (+) and (-) sentences
3 Score := the number of (-) sentences
4 For every feature in the feature set:
5 Find the matched (#)sentence in LS
6 If the feature is (+)feature:
7 Score += the max number of matched (+)sentences

in order
8 If the feature is (-)feature:
9 Score -= the max number of matched (-)sentences in

order
10 Similarity = Score / FullScore
11 Return the sorted Similarity List

subsequence from the standard sequence, using “(#)” and “(-

)” as one feature and putting it into the feature set. Moreover,

the additional subsequence from the exception sequence

using “(+)” are also taken as one feature. We then establish

several features of the exception log sequence. Finally, we

save the tuples < M,LF > of misconfiguration (M) and its

exception log feature (LF) into the log feature database.

E. Feature Checker

When the software fails, the diagnosing component uses

the exception logs to troubleshoot configuration errors. We

first preprocess the exception log sentences as mentioned

above. Then, the feature checker will take every feature set

from the log-feature database and calculate the similarity

between the preprocessed log sequence and the feature

set. That is, the checker calculates what percentage of the

feature set is contained in the exception log sequence. If

the log sequence contains some features, the target software

environment may include misconfigurations.

Algorithm 2 shows the process undertaken by the feature

checker. Its input is the preprocessed exception log sequence

and the log-feature database. The checker calculates the sim-

ilarity of one feature-set by adding the number of matched

(+)sentences and subtracting the number of matched (-)

7

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

Table III
SOFTWARE AND CONFIGURATION INFORMATION

Software Version Option
Single- Multi-

Misconfigurations Misconfigurations
Httpd 2.4.6 564 7102 31

MySQL 5.5 671 8355 36
PostgreSQL 9.3.1 273 3451 22

Table IV
DIAGNOSIS RESULTS FROM MISCONFDOCTOR AND BOW

Software Misconfigu- Software MisconfDoctor BoWrations Fails
Httpd 100 93 78 56

MySQL 100 87 72 55
PostgreSQL 100 92 81 63

Sum 300 272 231 174
Ratio – 100% 85% 64%

sentences, which is a negative adjustment for similarity.

Where there are two adjacent sentences in one feature, we

set the distance to 5 while matching the new exception

log, because some of the sentences in the new exception

log may contain noise. Then the checker sorts the List

[Misconfiguration, Similarity] by similarity. Finally, the user

will be provided with the potential misconfigurations list.

V. EVALUATION

In this section, we will evaluate how effectively our

method diagnoses configuration errors. Our experimental

environment is a computer with an Intel Core(TM) i5-4590

CPU with 3.30GHz and 8G memory, and the operating

system is Ubuntu 16.04.

We selected three mature and widely used pieces of

open-source software (Httpd, MySQL and PostgreSQL) for

our experiment, choosing a stable version of each type of

software. Table 3 details the software studied and the config-

uration information. We extracted both single-configuration

constraints and multi-configuration constraints and generated

the misconfigurations (as shown in Table 3).

As mentioned in Section 4.2, we ran the target software’s

own test infrastructure and recorded the resulting exception

logs and the corresponding configuration errors. Then, we

extracted the exception log features from the reported log

sequences.

A. Comparison Algorithm

In order to evaluate our method of extracting the features,

we implemented a comparison algorithm in order to study

the characteristics of the extracted features. Instead of check-

ing the new exception log sequence using the log feature, as

proposed in Section 2, the comparison algorithm used the

bag-of-words (BoW) model to diagnose the configuration

errors.

0

20

40

60

80

100

Httpd MySQL PostgreSQL Average

A
cc

ur
ac

y(
%

)

MisconfDoctor BoW

Figure 10. Accuracy Comparison between MisconfDoctor and BoW

In information retrieval, the bag-of-words model assumes

that (ignoring word order, grammar and syntax) a text is

only a combination of words. The occurrence of each word

in the text is independent and does not depend on whether

other words appear. By using this method, we transformed

the new exception log sequence into a word set after log

preprocessing and we called the word set from the new

exception log sequence as NES. Similarly, we transformed

the log sequences with known misconfigurations into many

word sets, which were called KES. We then represented each

set as a word vector, where every element is 0 or 1, standing

for whether the word exists or not. Then, we calculated the

cosine similarity distance between the NES vector and the

KES vectors.

For three of the types of software, we chose 100 miscon-

figurations from each in order to evaluate the accuracy of our

method. The chosen misconfigurations include both single-

and multi-option configuration errors. We also applied a

stratified random sampling method to the options (according

to their types) in order to make sure all the types of options

had been covered. We then wrote a new test script for

each piece of software by changing some operations in

the ordinary test infrastructure. We checked the system’s

behavior using the new test suite, instead of directly using

the software’s own test infrastructure.

The results can be found in Table 4. The chosen 300

misconfigurations resulted in 272 cases of software failure,

including failure to launch and failure to pass function

tests. Some misconfigurations did not make the software

fail, because the configuration error had been fixed by the

program’s robustness. For example, in PostgreSQL, we set

the option “enable sort” to “True”, with the default value

“on”. The program corrected the value while reading the

options.

We compared the accuracy of MisconfDoctor and BoW

with the first option they recommended. Accuracy can be

8

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

Table V
DIAGNOSIS RESULTS OF REAL-WORLD MISCONFIGURATIONS

Software Misconfigurations Diagnosis Ratioresult
Httpd 13 10 76%

MySQL 15 12 80%
PostgreSQL 12 9 75%

Sum 40 31 78%

interpreted as the portion of correctly diagnosed logs out

of all the diagnosed logs. We can see, in Table 4, that

MisconfDoctor diagnoses 85% of the failure cases, while

BoW can only diagnose 64%. Fig. 10 shows the accuracy

comparison applied to the three pieces of software, and

again MisconfDoctor works better. The reason for this is

that BoW ignores the sequence characteristics of logs, and

so the word vector is affected by the normal log. As a

result, the important log sentences and words decrease in

effectiveness. MisconfDoctor fails to troubleshoot 15% of

the failure cases because when the software handles the same

type of configuration errors belonging to different options,

the resulting logs may be the same or similar.

B. Real-world Misconfigurations

We searched StackOverflow and ServerFault to obtain

real-world configuration problems that trouble users in the

three target pieces of software. We choose 40 user cases

of misconfigurations that had been caused by errors in the

configuration files. All of the misconfigurations are Ubuntu-

related and are provided along with the exception log by the

users. The misconfigurations cover many aspects, including

value ranges, data types and multi-option constraints. Data

types include Boolean-type errors, path-type errors and

enum-type errors. Table 5 lists both the configuration errors

from each piece of software and the results returned by

MisconfDoctor. We can see that MisconfDoctor diagnoses

78% of the errors effectively.

Due to the length limitations of this study, we cannot list

each misconfiguration in detail. Instead, we have selected

two typical cases to examine.

In the case from SstackOverflow, whose title is “Can’t

start MySQL server for the first time”, the user installed the

MySQL Server 5.5 Community Edition and ran the MySQL

Server for the first time. The software would not start and

the user was given the following log: “[ERROR] InnoDB: .

ibdata1 can’t be opened in read-write mode. [ERROR]

InnoDB: The system tablespace must be writable” (Please

note: this is only part of the long log.)

In response, MisconfDoctor diagnoses the exception log

and concludes that “innodb log group home dir with ac-

cess right error” is the first rank of the root cause with

the similarity ranked at 0.83. The error is caused by

the fact that permission to access the directory path inn-

odb log group home dir has not been granted. The option

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ur
ac

y(
%

)

Httpd MySQL PostgreSQL Average

Figure 11. Accuracy with varied threshold

directs the directory path to the InnoDB log files; the server

must have access rights in any directory where it needs to

create log files. The user tried changing their data location

by modifying the option, thereby solving the problem. The

misconfiguration was one type of semantic misconfigura-

tion and MisconfDoctor is effective at diagnosing the root

cause. Other cases of successful diagnosis include “port with

occupied error”, “max allowed packet with value range

error”, “max wal senders and max connections with value

constraint error” and so on.

MisconfDoctor requires that the software to be diagnosed

and the software used to extract the features are the same

version. That is because an evolutionary version may treat

options differently or may even remove some options.

In a case where the user updated MySQL from version

5.5 to 5.7.9, MisconfDoctor made mistakes diagnosing the

misconfiguration. After the upgrade, the user received the

following error information: “[ERROR] unknown variable

‘thread concurrency=4’ [ERROR] Aborting.” The root cause

is that, in MySQL 5.7, the variable thread concurrency is

removed and any reference to it will cause MySQL to not

start.

In addition to the impact of software evolution, Mis-

confDoctor also failed to diagnose a problem caused by

cross-stack configuration errors and some other complex

operations we missed during testing. Overall, however, Mis-

confDoctor can effectively diagnose real-world configuration

errors for a stable version of a piece of software within our

test coverage.

C. Influence of Parameters

When filtering noise, we need the threshold to decide

whether a sentence remains or not. If a log sentence occurs

more often than the number of times specified by the

threshold value, we regard it as a normal log sentence. The

influence of the threshold is investigated in this section. We

9

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

evaluated the relationship between MisconfDoctor’s accu-

racy for the three target pieces of software with respect to

different threshold values. We varied the threshold from 0

to 1 with a step of 0.1 each time. We evaluated the accuracy

for each threshold with the same experiment as that used in

Section 5.1. Fig. 11 shows that, when the threshold is less

than 0.7, the average accuracy shows a gradual upward trend

and that it gradually stabilizes at around 0.7. The reason for

this is because, when the threshold equals 0, we ignore the

noise log. This is sometimes the “warning” log that has been

affected by the execution environment. When the threshold

equals 1, we filter some important logs, which could affect

the validity of the filtering feature. Upon consideration, we

set the threshold to 0.7 in our experiment.

D. Discussion and Limitation

1) Mature logging system: Our approach is to diagnose

configuration errors by using the software’s exception log

sequence features as signatures, which requires that the

software should have ample logs that record the state of the

system. In our experiments, the software we used (MySQL,

Httpd, etc.) are all relatively mature software systems with

detailed log systems. We also studied some software still

under development with poor diagnostic results, because

the logging systems were poor and the log information was

sparse and vague in the event of a system failure. As such,

we are calling on software developers to refine their logging

systems so that they produce more detailed logs.

2) Comprehensive misconfigurations: Our tool can diag-

nose a variety of possible configuration errors in real life,

which requires it to have the ability to generate compre-

hensive misconfigurations. Although the misconfigurations

that we have generated are already very complex, we cannot

guarantee that we will not miss some (particularly certain

multi-option) misconfigurations.

3) High-coverage software test suits: We use each piece

of software’s official test infrastructure in order to test the

software that has been injected with known misconfigura-

tions. The aim is to expose the software’s reaction to the

error and to obtain exception log sequences. We assume that

the software test coverage is high enough to fully simulate

the user’s real-life operation of the software. However, it is

difficult to cover all the operations that users may conduct

in their daily lives. In addition, where a piece of software

does not have an official test module, the user needs to write

the test suites by themselves. As a result, we are calling on

software developers to provide mature and comprehensive

test suites.

4) Cross-stack configurations and software evolution:
Our tools require that the software used to learn the knowl-

edge base should be the same version as the software that

is to be diagnosed. This is because the placement and

description of logs may change for evolved versions of the

software, which may affect the accuracy of our results.

In addition, we did not consider the effect of cross-stack

configuration errors, as discussed in Section 5.2. This will

be one of our future research objectives.

VI. RELATED WORK

A. Misconfiguration Detection and Diagnosis

The extensive research into misconfiguration detec-

tion and diagnosis mainly contains program analysis and

checkpoint- and statistics-based approaches.

Program analysis methods [7-10] analyze both the corre-

sponding statements given by configuration variables and

the execution paths in order to infer the configuration

options that caused the software system error. ConfAnalyzer

[7] builds the mapping between configuration items and

potential outliers in code and locates the fault’s configuration

option by retrieving the corresponding mapping. ConfAid

[8] records and explores the impact of configuration value

changes in the program traces in order to diagnose config-

uration faults. SherLog [9] uses runtime log messages to

analyze and infer the execution path in order to diagnose

failures. ConfDebugger [10] uses thin-slicing techniques to

obtain configuration-read and error-stack-related statements

in order to diagnose configuration errors. Such methods have

defects in terms of their efficiency and scalability due to the

path-explosion problem and because it is hard to go across

the software boundaries.

Checkpoint-based approaches record the history of the

system’s states in a time series and check how the system

transitions from the working state to the failure state when a

system failure occurs. Chronus [34] uses a virtual machine

and a time-travel disk to obtain historical snapshots of the

system in order to find the changes to the configuration

settings that caused the system to fail. Snitch [35] leverages

the flight data recorder to construct the timeline views of

the system states in order to troubleshoot the root cause.

Statistics-based studies can be divided into those that

cover rule-based diagnosis [11-14] and those that cover

signature-based diagnosis [29-32]. The rule-based methods

learn rules from the correctly functioning system and its

environment. If a configuration setting does not satisfy

these learned rules, it will be labeled as a misconfiguration.

Bauer et al. [12] apply association rule mining techniques

to detect misconfigurations within access control policies.

EnCore [13] enriches the plain configuration values using the

environment information and unveils their implicit rules and

correlations. CODE [14] uses a trie to represent the sequence

of events and exploits the registry’s access rules in Windows,

detecting configuration errors by finding violations of the

rules. Such rule-based approaches are prone to false positives

because it is difficult to guarantee the completeness of the

rules and avoid learning inaccurate rules.

Signature-based diagnosis approaches attempt to reason

out the configuration errors by comparing the signature of

the failed execution with the reference signatures. Yuan

10

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

et al. [29] describe the system signature according to the

system call execution sequence for the historical failures.

Strider [32] takes the contents of the registry as the state

of the systems and uses the state-differencing method to

narrow down the range of misconfigurations. AutoBash [30]

uses the success and failure patterns of known predicates to

diagnose configuration errors. SigConf [31] describes system

signatures and features of the known configuration errors

based on coarse-grained object-access sequences (such as

files, class libraries, etc). However, these approaches to mis-

configurations aren’t comprehensive, so they are limited by

the size and comprehensiveness of the reference signatures,

which greatly effects their accuracy. MisconfDoctor, based

on comprehensive misconfigurations, describes the system

features according to the exception log features. As such, it

is much more effective.

B. Configuration Testing
The generation of comprehensive miconfigurations is a

prerequisite needed for feature extraction and diagnostics

in our work. Configuration testing contributes to our work.

ConfErr [17] is a pioneer in configuration testing, even

though the alternation rules (e.g., omissions, substitutions

and case alternations of characters) it uses to generate

misconfigurations are simple. SPEX [18] extracts constraints

through a program analysis of the source code and gener-

ates constraint-based misconfigurations in order to evaluate

the software’s response ability. However, its coarse-grained

constraints do not meet our high-coverage requirements. In

our work, based on our classification in ConTest [21] and

our program analysis, we can extract fine-grained option

constraints in order to generate misconfigurations, which

provides higher coverage and is comprehensive.

VII. CONCLUSION

Misconfiguration has become one of the major causes

of software failure. In this paper, we propose a method

with which to diagnose misconfigurations via log-based

configuration testing. We implement a tool named Misconf-

Doctor that can generate comprehensive misconfigurations

and obtain an exception-log feature database. Through com-

prehensive misconfiguration testing, MisconfDoctor first ex-

tracts the log features for every misconfiguration and builds

a feature database. When system misconfiguration occurs,

MisconfDoctor automatically suggests potential misconfig-

urations by calculating the similarity of the new exception

log to the feature database. We use manual and real-world

error cases from Httpd, MySQL and PostgreSQL in order

to evaluate the effectiveness of out method. Experimental

results demonstrate that MisconfDoctor’s accuracy reaches

85% in manual-error cases and 78% in real-world cases.

ACKNOWLEDGMENT

The work described in this paper was supported by

National Natural Science Foundation of China (Project

No.61690203 and U1711261); National Key R&D Pro-

gram of China (Project No.2017YFB1001802 and No.

2017YFB0202201).

REFERENCES

[1] Barroso, L, J. Clidaras, and U. Hoelzle. “The Datacenter as a
Computer:An Introduction to the Design of Warehouse-Scale
Machines.” Morgan & Claypool, 2009:154.

[2] Rabkin, Ariel, and R. H. Katz. “How Hadoop Clusters
Break.”IEEE Software30.4(2013):88-94.

[3] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why
do internet services fail, and what can be done about it?” in
Conference on Usenix Symposium on Internet Technologies
and Systems, 2003, pp. 1-1.

[4] Yin, Z., Ma, X., Zheng, J., Pasupathy, S., Pasupathy, S., & Pa-
supathy, S. (2011). An empirical study on configuration errors
in commercial and open source systems.ACM Symposium on
Operating Systems Principles(pp.159-172). ACM.

[5] Oppenheimer, David, A. Ganapathi, and D. A. Patterson.
“Why Do Internet Services Fail, and What Can Be Done
About It?”Usenix Symposium on Internet Technologies and
Systems2003:165-171, in press.

[6] R. Johnson. More Details on Today’s Outage.
http://www.facebook.com/note.php?note id=431441338919,
2010.

[7] Rabkin A, Katz R. Precomputing possible configuration error
diagnoses [C]. In Automated Software Engineering (ASE),
2011 26th IEEE/ACM International Conference on. 2011:
193-202.

[8] Attariyan, Mona, and J. Flinn. “Automating configura-
tion troubleshooting with dynamic information flow analy-
sis.”Usenix Conference on Operating Systems Design and
ImplementationUSENIX Association, 2010:237-250.

[9] Yuan, D., Mai, H., Xiong, W., Tan, L., Pasupathy, S., &
Pasupathy, S. (2010). SherLog: error diagnosis by connect-
ing clues from run-time logs.Fifteenth Edition of ASPLOS
on Architectural Support for Programming Languages and
Operating Systems(Vol.38, pp.143-154). ACM.

[10] Zhang, Sai. “ConfDiagnoser: an automated configuration er-
ror diagnosis tool for Java software.” International Conference
on Software Engineering IEEE, 2013:1438-1440.

[11] Palatin, N., Leizarowitz, A., Schuster, A., & Wolff, R.
(2006). Mining for misconfigured machines in grid sys-
tems.Twelfth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Philadelphia, Pa,
Usa, August(pp.687-692). DBLP.

[12] Bauer, L., Garriss, S., & Reiter, M. K. “Detecting and resolv-
ing policy misconfigurations in access-control systems.”Acm
Transactions on Information & System Security14.1(2011):1-
28.

11

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

[13] Zhang, Jiaqi, et al. “EnCore: exploiting system en-
vironment and correlation information for misconfig-
uration detection.”Acm Sigarch Computer Architecture
News49.1(2014):687-700.

[14] Yuan, D., Xie, Y., Panigrahy, R., Yang, J., Verbowski, C.,
& Kumar, A. (2011). Context-based online configuration-
error detection.Usenix Conference on Usenix Technical
Conference(pp.28-28). USENIX Association.

[15] Jiang, W., Li, Z., Li, Z., Li, Z., Li, Z., & Zhou, Y. (2009).
Understanding customer problem troubleshooting from stor-
age system logs.Proccedings of the, Conference on File and
Storage Technologies(pp.43-56). USENIX Association.

[16] W. Jiang. Understanding storage system problems and diag-
nosing them through log analysis. Ph.D. Dissertation. (2009).

[17] Keller, L, P. Upadhyaya, and G. Candea. “ConfErr: A tool for
assessing resilience to human configuration errors.”IEEE In-
ternational Conference on Dependable Systems and Networks
with Ftcs and DCCIEEE, 2008:157-166.

[18] Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T.,
& Yuan, D., et al. (2013). Do not blame users for
misconfigurations.Twenty-Fourth ACM Symposium on Op-
erating Systems Principles(pp.244-259). ACM.

[19] StackOverflow, https://stackoverflow.com/

[20] ServerFault, https://serverfault.com/

[21] Wang Li, Shanshan Li, Xiangke Liao, Xiangyang Xu, Shulin
Zhou, and Zhouyang Jia. 2017. ConfTest: Generating Com-
prehensive Miscon guration for System Reaction Ability Eval-
uation . In Proceedings of EASE’17, Karlskrona, Sweden,
June 15-16, 2017, 10 pages.

[22] Shulin Zhou. Evolution-Oriented Failure Diagnosis of Soft-
ware Configuration: [D].Changsha: National University of
Defense Technology, 2016. [in Chinese].

[23] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Pro-
ceedings of the 2004 Inter- national Symposium on Code
Generation and Op- timization (CGO’04), March 2004.

[24] The Apache HTTP Test Project. Retrieved March 20, 2018
from http://httpd.apache.org/test/

[25] The MySQL Test Framework. Retrieved March
20, 2018 from https://dev.mysql.com/doc/dev/mysql-
server/latest/PAGE MYSQL TEST RUN.html

[26] PostgreSQL 9.3.23 Documentation. Retrieved March 20,
2018 from https://www.postgresql.org/docs/9.3/static/regress-
run.html

[27] M. Porter. An algorithm for suffix stripping. Program,
14(3):130-137, 1980.

[28] Dan, Gusfield.Algorithms on strings, trees, and sequences:
computer science and computational biology. Cambridge Uni-
versity Press, 1997.

[29] Yuan, C., Lao, N., Wen, J. R., Li, J., Zhang, Z., & Wang, Y.
M., et al. (2006). Automated known problem diagnosis with
event traces.Acm Sigops Operating Systems Review,40(4),
375-388.

[30] Su, Ya Yunn, M. Attariyan, and J. Flinn. “Auto-
Bash:improving configuration management with operating
system causality analysis.” ACM, 2007:237-250.

[31] Attariyan, Mona, and J. Flinn. “Using Causality to Diagnose
Configuration Bugs. ”Usenix Technical Conference, Boston,
Ma, Usa, June 22-27, 2008. ProceedingsDBLP, 2008:281-286.

[32] Wang,Y.M.,Verbowski,C.,Dunagan,J.,Chen,Y.,Wang,H.J.,&Yuan,
C., et al. (2003). Strider: a black-box, state-based approach to
change and configuration management and support. Science
of Computer Programming, 53(2), 143-164.

[33] Xu, Tianyin, and Y. Zhou. “Systems Approaches to
Tackling Configuration Errors: A Survey.”Acm Computing
Surveys47.4(2015):1-41.

[34] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble.
2004. Configuration debugging as search: Finding the needle
in the haystack. In Proceedings of the 6th USENIX Con-
ference on Operating Systems Design and Implementation
(OSDI’04).

[35] James Mickens, Martin Szummer, and Dushyanth Narayanan.
2007. Snitch: Interactive decision trees for troubleshooting
misconfigurations. In Proceedings of the 2nd USENIX Work-
shop on Tackling Computer Systems Problems with Machine
Learning Techniques (SYSML’07).

[36] Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y,
Savage S. Be conservative: enhancing failure diagnosis with
proactive logging. In: Proc. of the 10th Symp. on Operating
Systems Design and Implementation (OSDI). 2012. 293-306.

[37] Jia, Zhouyang, et al. “SMARTLOG: Place error log statement
by deep understanding of log intention.” IEEE, International
Conference on Software Analysis, Evolution and Reengineer-
ing IEEE Computer Society, 2018:61-71.

12

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:23:45 UTC from IEEE Xplore. Restrictions apply.

