
IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 4, DECEMBER 2018 1393

ConfVD: System Reactions Analysis and Evaluation
Through Misconfiguration Injection

Shanshan Li , Wang Li , Xiangke Liao , Member, IEEE, Shaoliang Peng , Shulin Zhou , Zhouyang Jia,
and Teng Wang

Abstract—In recent years, misconfigurations have become one
of the major causes of software system failures, resulting in nu-
merous service outages. What is worse, misconfigurations are also
costly to diagnose and troubleshoot. This remains a great challenge
for sysadmins (system administrators) to detect, diagnose, or trou-
bleshoot these misconfigurations. Unlike software bugs, misconfig-
urations are more vulnerable to sysadmins’ mistakes. Developers
and researchers are attempting to improve system reactions to mis-
configurations to ease the burden of sysadmins’ diagnoses. Such
efforts would greatly benefit from the techniques that can compre-
hensively detect bad system reactions through injected misconfig-
urations. Unfortunately, few such studies have achieved the above
goal in the past, primarily because they only relied on generic alter-
ations and failed to find a way to systematically generate miscon-
figurations. In this paper, we study eight mature open-source and
commercial software packages and summarize a fine-grained clas-
sification of option types. Based on this classification, we use Aug-
mented Backus–Naur Form to summarize and extract syntactic
and semantic constraints of each type. In order to generate compre-
hensive misconfigurations in the test systems, we propose miscon-
figuration generation methods for our constraints. We implement a
tool named Configuration Vulnerability Detector (ConfVD) to con-
duct misconfiguration injection and further analyze the systems’
reaction abilities to various misconfigurations. We carried out com-
prehensive analyses upon Apache Httpd, MySQL, PostgreSQL,
and Yum. The results of our analysis show that our option clas-
sification covers 96% of 1582 options from the above-mentioned
systems. Our constraints are more fine grained than previous works
and their accuracy was found to be 91% (ascertained by manual
verification). Our technique could improve generic alteration ap-
proaches without constraints, and we found that ConfVD could find
nearly three times the bad reactions that were found by ConfErr. In
total, we found 65 bad reactions from the systems being tested and
our fine-grained constraints contributed 27.7% more bad reactions
than techniques only using coarse-grained constraints.

Index Terms—Constraints, misconfiguration, system reactions,
testing.

Manuscript received July 14, 2017; revised January 25, 2018 and May 12,
2018; accepted August 5, 2018. Date of publication September 24, 2018; date of
current version November 29, 2018. This work was supported in part by National
Natural Science Foundation under Grant 61690203 and Grant 61532007 and
in part by National 973 Program (2014CB340703) of China. This paper was
presented at the 21st International Conference on Evaluation and Assessment in
Software Engineering, Jun. 15–16, 2017, Karlskrona, Sweden [36]. Associate
Editor: Z. Chen. (Corresponding author: Wang Li.)

The authors are with the National University of Defense Technology,
Changsha 410073, China (e-mail:, shanshanli@nudt.edu.cn; liwang2015@
nudt.edu.cn; xkliao@nudt.edu.cn; pengshaoliang@nudt.edu.cn; zhoushulin@
nudt.edu.cn; jiazhouyang@nudt.edu.cn; wangteng13@nudt.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2018.2865962

I. INTRODUCTION

NOWADAYS, system administrators (sysadmins) are faced
with an ever-increasing complexity of configuration. This

is reflected in the large and still increasing number of con-
figuration parameters as well as various configuration con-
straints and consistency requirements [1]. For instance, pop-
ular open-source software systems (such as MySQL, Httpd, and
PostgreSQL) each have more than 200 configuration options
of various types. It is hardly surprising that misconfiguration
has become a critical issue. Several research groups [2]–[5]
have revealed that misconfigurations are largely responsible for
the deterioration of software reliability. One report [6] indi-
cated that misconfigurations caused 30% of all failures in a
commercial storage system. Meanwhile, popular commercial
systems (like Microsoft Azure [7], Amazon web services [8],
and Facebook service [9]) have suffered from misconfigura-
tions (e.g., outages) in recent years. The seriousness of the mis-
configuration problem is often underestimated and has caused
such companies major financial losses every year. According
to Computing Research Association’s report [10], 60%–80% of
the capital outlay in IT departments was spent on administra-
tive expenses, where system configuration is one of the major
operations [11].

Unfortunately, diagnosis of misconfigurations is troublesome.
This is mainly explained as follows:

1) Root causes of misconfigurations are highly mixed.
Fig. 1(a) indicates that misconfigurations result not only
from human mistakes but also inappropriate software im-
plementation. Even though misconfigurations are always
made by sysadmins, inappropriate software implementa-
tion [e.g., “misconfiguration B” in Fig. 1(a), the system
rolls back the sysadmin’s setting without any notification]
has given rise to avoidable sysadmin misunderstandings
and system failures.

2) Misconfigurations are hard to detect before they are trig-
gered. Fig. 1(b) gives an example of how software Yum
failed to detect a latent configuration error. In this case,
the value of the option “cachedir” was incorrectly set,
but Yum still worked until it was called upon to access
the local cache. Although regression testing is widely
used in software development processes, misconfigura-
tions are more likely to be introduced by sysadmins than
developers. This is why so many misconfigurations have
been missed by the checkers.

0018-9529 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0798-974X
https://orcid.org/0000-0002-6900-4507
https://orcid.org/0000-0002-6125-3330
https://orcid.org/0000-0002-4647-2615
https://orcid.org/0000-0002-6199-5123
https://orcid.org/0000-0002-2244-4513
mailto:shanshanli@nudt.edu.cn
mailto:liwang2015@nudt.edu.cn
mailto:liwang2015@nudt.edu.cn
mailto:xkliao@nudt.edu.cn
mailto:pengshaoliang@nudt.edu.cn
mailto:zhoushulin@nudt.edu.cn
mailto:zhoushulin@nudt.edu.cn
mailto:jiazhouyang@nudt.edu.cn
mailto:wangteng13@nudt.edu.cn

1394 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 4, DECEMBER 2018

Fig. 1. Challenges in diagnosing misconfiguration. (a) Complicated miscon-
figuration root cause. (b) Study case of Yum. Misconfigurations is latent in
system until triggered by specified functions. (c) Study case of MySQL. Poor
feedbacks of MySQL obstruct the diagnoses of the misconfiguration.

3) The lack of feedback also obstructs the diagnosis of mis-
configurations. Fig. 1(c) shows that MySQL reports an
error message “can’t start server,” which is not help-
ful for diagnosing misconfigurations. Sysadmins cannot
debug system problems like developers can, and with-
out adequate guidance, there does not seem much like-
lihood of sysadmins solving misconfigurations on their
own.

The severity of misconfigurations has inspired many research
efforts. Most of them concentrate on detecting and diagnosing
misconfigurations. Different approaches (such as program anal-
ysis approaches [12]–[15]) use data flow to automatically di-
agnose misconfigurations. Statistical approaches (such as [16],
STRIDER [17], and EnCore [18]) diagnose misconfigurations
by learning configuration rules from configuration files.

Although the previous approaches have significantly im-
proved the situation, the fundamental issue of misconfigurations
probably lies in the process of configuration design and imple-
mentation. In terms of in-house testing, insufficient research
has been undertaken on detecting system bad reactions (also
known as vulnerability) in handling misconfigurations. ConfErr
[19] and SPEX [20] analyze system reactions by generating and
testing misconfigurations, with the aim of enhancing systems’
abilities to fight against these misconfigurations. In this paper,
we refer to such works as “Misconfiguration Testing” approach.

Researchers and developers would benefit greatly from
a mature misconfiguration testing approach that conducts a
comprehensive analysis of a system’s ability to react to a
misconfiguration. A good software system reaction, which
means error indication and error handling, would greatly ease
the burden of sysadmins diagnosis of misconfigurations. Unfor-
tunately, few such studies have been conducted. Despite being a

pioneer in this field, ConfErr relies on generic alterations to gen-
erate misconfigurations, which weakens its capability to analyze
system reactions. SPEX, taking it a step further, infers five main
categories of constraints (e.g., the condition with which the cor-
rect configuration must be consistent), but it is coarse-grained
in its option types; therefore, as a result of poor diversity,
SPEX does not propose a systematic way of generating those
misconfigurations. Consequently, the variance in the reactions
of misconfigurations cannot be observed by researchers and
developers.

With the aim of improving software reliability, we have im-
plemented a tool known as Configuration Vulnerability Detector
(ConfVD) to conduct error injection tests on software systems.
In order to more comprehensively study systems abilities to react
to misconfigurations, ConfVD uses misconfiguration generation
methods to help inject misconfigurations into the targeted sys-
tem in a more systematic way. Furthermore, we have also tried
to classify the systems reactions to misconfigurations, such as
failures with inadequate diagnostic messages [21].

In this paper, we have summarized and classified 1593 soft-
ware configurations from eight mature open-source and com-
mercial software systems. Based on these classifications, we
have then used normal forms, such as Augmented Backus–Naur
Form (ABNF) [22], to summarize and extract the fine-grained
option constraints. ABNF is a popular technical specification
to define format syntax, and it balances compactness and sim-
plicity. Different from RE, ABNF allows us to separately define
each part of the option value, which helps us generate more
comprehensive syntactic misconfiguration. Furthermore, by vi-
olating these constraints, we have proposed misconfiguration
generation methods to generate and inject a variety of miscon-
figurations into systems. We have then analyzed the statistical
characteristics of different system reactions and tried to reveal
some design problems related to misconfiguration. Based on
these problems, we have then made some suggestions for im-
proving software reaction ability.

The contributions of this paper to the field are as follows:
1) In order to generate effective constraints for each type of

configuration option, we have summarized a comprehen-
sive classification based on a large number of configura-
tion options from eight mature open-source and commer-
cial software packages. Our classification is tree based
and can be easily extended. Based on this classification,
we have proposed syntactic and semantic constraints for
each type. Our analysis results show that our option clas-
sification covers 96% of 1582 options from Httpd, Yum,
PostgreSQL, and MySQL.

2) In this paper, we have considered option constraints, both
syntactically and semantically. Our constraints use ABNF,
which is more fine grained than previous techniques like
EnCore and has been found to be consistent with 91% of
real constraints using manual verification. Furthermore, in
order to generate misconfigurations in a more systematic
way, we have proposed misconfiguration generation meth-
ods for our constraints. The experimental results show that
our fine-grained constraints find 27.7% more bad reactions
than techniques using coarse-grained constraints.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

LI et al.: CONFVD: SYSTEM REACTIONS ANALYSIS AND EVALUATION THROUGH MISCONFIGURATION INJECTION 1395

TABLE I
NUMBERS OF OPTIONS WITH CLASSIFICATION, BY APPLICATIONS

3) We have implemented the ConfVD tool to conduct mis-
configuration injection and analyze system reaction abil-
ities. Based on these results, ConfVD has revealed bad
reactions and implementation problems in systems. We
have evaluated the capability of ConfVD of finding bad
system reactions and the results have shown that ConfVD
finds nearly three times the bad reactions found by generic
alteration approaches.

4) We have defined three types of system reactions to mis-
configurations. Based on these types, we have calculated
the distribution of system reactions and have analyzed the
reasons for these reactions. We found that path misconfig-
urations might be difficult for systems to diagnose due to a
lack of checking of the constraints, both syntactically and
semantically. Our experimental results show that adequate
configuration syntax checking after startup can effectively
help diagnose misconfigurations.

The remainder of this paper is organized as follows: We
present constraints generation in Section II. In Section III, we
explain the process of misconfiguration generation. The analysis
is explained in Section IV, and Section V details our experience
and practice. Our related work is presented in Section VI, and
we conclude this study in Section VII.

II. CONSTRAINTS GENERATION

To understand configuration constraints (i.e., specification of
configuration requirements) better, we study 1593 options in
configuration files from eight widely used software packages in
this section. In order to generate corresponding constraints for
misconfiguration injection, we are attempting to classify these
options by their types. Eight representative software systems in
their field are selected, such as Squid, Nginx, Redis, Nagios,
Lighttpd (core), Puppet, SeaFile, and Vsftpd. To extract the rel-
ative information (e.g., option name, the default value, official
descriptions, etc.) for options, we manually investigate the con-
figuration files as well as related official documents. A study
[23] reveals that nowadays, a large proportion of configurations
are in the form of key-value pairs. Since our study targets key-
value format configuration and to make our study uniform, we
transform options from other formats to key-value pairs.

A. Type Taxonomy

Although Rabkin and Katz [23] have studied type taxon-
omy, they focused on extracting configuration related code.
However, our objective is to infer option-related constraints for

Fig. 2. Type classification.

misconfiguration injection. In order to consider all the options
we find in configurations, a sufficiently fine-grained classifica-
tion is required. As we encounter a new option, we count the
number of occurrences of each option type. Table I statistically
illustrates the main types of options in this paper. These con-
figuration options are obtained mainly from documents such
as guide book or sysadmin manual. If we can not access such
information from the above documents, we also consider con-
figuration files or the source code to speculate on options’ types.

As shown in Table I, it can be obviously found that most
options are well represented by a few sets of types. In Table I,
“other” represents the program-specific option types that are
never seen in other programs (e.g., “name=Fedora $releasever
- $basearch Debug” in yum.conf). We use “other” in the clas-
sification for the reason that it is nontrivial to analyze those
program-specific options, and we are aimed at proposing a com-
mon classification for generating misconfigurations. However,
it does not mean that “other” options cannot be handled. In
Section III, we propose two methods to achieve this goal. Fig. 2

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

1396 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 4, DECEMBER 2018

TABLE II
COVERAGE RATE OF CLASSIFICATION

illustrates our classification as a tree. This classification tree is
also scalable and we can easily supplement it with new option
types.

The evaluation of our classification is based on 1582 options
from other four open-source software systems (Httpd, MySQL,
PostgreSQL, and Yum) as we carefully check whether each
option can be well classified into Fig. 2. As Table II illustrates,
the overall coverage rate [i.e., the proportion of the options if its
type can be found in Fig. 2 (excluding “Others”)] is as high as
96.5%, and at least 95.8% for each system.

Although the classification in this paper is reasonably effec-
tive, we still meet some difficulties. First of all, we find that some
options do not have a single type. Take MySQL’s option “Log-
File” as an example: “LogFile” usually can be set with Path type
by default; however, it also allows URL type for remote invo-
cations. To remove the ambiguity, we only consider the default
values’ type for the option. What is more, in our study, some
software systems use their specific configurations, which are
hard to be transformed into key-value pairs. For example, Httpd
considers the options as directives, and with lots of arguments.
In this case, we can not easily convert them into key-value pairs,
so we only consider each argument’s type of option. “Others”
type in Fig. 2 is a problem too, but, as mentioned above, it is
trivial to analyze those program-specific options. For this prob-
lem, a practical solution is that our classification scales well and
sysadmins can easily incorporate any new types into it.

B. Type Constraints Inference

To comprehensively analyze and evaluate system reaction,
our injected misconfigurations should be as complete as possi-
ble. For that purpose, we infer each configuration type’s fine-
grained constraint, both from inherent constraint or domain
knowledge [e.g., request for comments (RFC) documents]. For-
mers [20] infer constraints from software source code. Unfor-
tunately, there are signs that various constraints remain in the
source code [18], [20], [24], [25], after we analyze a large num-
ber of open-source software packages. Thus, it poses a great
challenge to infer those constraints from source code. In this
paper, on the basis of option’s relationship with the execution
environment, we find that constraints are combined with syn-
tactic aspect and semantic aspect. For example, option of type
PORT is with the syntactic constraint that must be set to an inte-
ger between 0 and 65535. At the same time, it is not allowed to
use the occupied port, which is a semantic constraint, because
it needs the information not only from system itself but also the
execution environment.

Aimed at generating misconfigurations by violating those
syntactic rules, this paper uses type-specific predefined pat-
terns to express option type’s commonly used standardization.
Previous work like EnCore [18] used regular expression (RE)
to express the option type’s string patterns. Similar but dif-
ferent to EnCore, our syntactic constraints can be expressed
by augmented Backus–Naur forms (short for ABNF) [22],
which is a popular Internet specifications in RFC. As shown in
Table III, the pattern of ABNF is composed of several elements.
Besides, ABNF uses common patterns such as RE to define
such elements. Table III illustrates the details of our syntactic
constraints as simplified ABNFs. We adopt this design mainly
because ABNF provides a discrete pattern for each element;
thus, we could define each element’s constraints to obtain fine-
grained constraints of a certain option type. We use an example
to show ABNF’s superiority over RE. Suppose there is an option
“memory = 16M.” Testers may want to test misconfigurations
like “−1 M” (bad number), “16 C” (bad unit). In ABNF, op-
tion “memory” can be described using elements: memory =
number unit, while rule of “number” is “[0–9]+ ” and “unit”
is “[KMG].” Thus, we can mutate each element to generate
misconfigurations like bad number and bad unit. Besides, we
can define the range for the element. For “number,” it can be
from 0 to 64, for example, we can generate misconfiguration
“65M” to violate this constraint. However, when we use RE
“[0–9] + [KMG]” to describe the option’s syntax, obviously,
these features are not supported.

We also improve the ABNF design by adding rules like valid
range for the element in the digital form, which can be found
in Table III. Our inference can use program analysis [24] for
system-specific constraints such as extracting the value range of
the type Count. Owing to space limitations, we show here sim-
plified ABNF as descriptions of syntactic constraints. Elements
“DIGIT,” “ALPHA,” “HEXDIG,” and “OCTET” are all from
core rules of ABNF (RFC2234).

Different from syntactic constraints, in this paper, semantic
constraints are demanded to describe the complicated relation-
ship between systems and their execution environments. For
this purpose, we divide the semantic constraint into two parts:
constraints for the option’s value and the environment-related
attributes for the option’s type. Table IV lists the constraints
for the option’s value according to its type. We take an option
of URL type, for example, to show these constraints cannot be
well expressed by syntactic form. URL option’s value can be
judged as correct or wrong, depending on whether it is consis-
tent with its syntactic form. However, semantic constraints like
whether it is accessible depends on system’s execution environ-
ment, such as the network states. The semantic constraints are
also critical to help generate misconfigurations and deserve our
high attention.

To reflect the requirements from the execution environment,
we define the environment-related attributes for option’s type
in this paper. As listed in Table V, these attributes are as-
signed to different option types, and they refine the requirements
from execution environment, for example, when a URL option
should satisfy the constraint “The URL should be reachable” in
Table IV, we can use attribute “Is URL forbidden by firewall”

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

LI et al.: CONFVD: SYSTEM REACTIONS ANALYSIS AND EVALUATION THROUGH MISCONFIGURATION INJECTION 1397

TABLE III
SYNTACTIC CONSTRAINTS

TABLE IV
SEMANTIC CONSTRAINTS

in Table V with an boolean value “No” to describe it. This paper
uses environment information and domain knowledge to infer
such semantic constraints. This paper is inspired by EnCore
[18], and we classify those attributes into six main resource
types (Network, Services, Hardware, File System, Security, and
Environment Variable).

After inferring the configuration constraints from four mature
software systems, we evaluate the effectiveness of our syntactic
constraints by checking whether related documentation descrip-
tions are consistent with constraints inferred. By manual inspec-
tion, Table VI shows that our syntactic constraints work well

and are consistent with 91% of 1582 options from four popular
software systems. Although EnCore [18] also uses predefined
patterns to speculate option types, syntactic constraints in this
paper are described by improved ABNF. As we take both the
string pattern and the data range (e.g., the value set of Enumer-
ation) into consideration, thus, our syntactic constraints appear
to be more flexible and fine grained. SPEX [20] infers five main
constraints (e.g., Basic type constraint, Data range constraint,
etc.) from the source code but is not fine-grained enough in
Semantic-type constraint. This paper might not include some
other system-specific constraints. However, since we infer such
constraints for misconfiguration generation instead of precise
configuration constraints analyses, we consider the inaccuracy
to be acceptable.

III. MISCONFIGURATION INJECTION

In this section, we answer two questions: How can we use
these constraints to generate misconfigurations and how can
we test system reactions with misconfigurations? To address
these problems, we propose a tool called ConfVD to conduct
misconfiguration injection and analyze system reactions to a
variety of misconfigurations.

A. Misconfigurations Generation

To generate misconfigurations for injection, we propose mis-
configuration generation methods based on the constraints.
The whole misconfiguration generation process can be seen as
three main parts: First, ConfVD parses configuration files into

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

1398 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 4, DECEMBER 2018

TABLE V
ENVIRONMENT-RELATED ATTRIBUTES FOR OPTION TYPE

TABLE VI
PROPORTION OF OPTIONS CONSISTENT WITH

SYNTACTIC CONSTRAINTS

Fig. 3. Misconfiguration generation methods.

structured data (e.g., XML files are used in ConfVD to store
the configuration information such as key, value, etc.) to eas-
ily manipulate the configuration. Second, it modifies structured
original data to generate misconfigurations using generation
methods. Finally, these modified data are assembled again to
generate new configuration files with misconfigurations. As il-
lustrated in Fig. 3, the misconfiguration generation methods we
use can be classified into two main categories: constraint-related
misconfiguration and format-related misconfigurations.

1) Constraint-related misconfiguration: ConfVD can gener-
ate misconfigurations via violating syntactic constraints. First,
after inferring options’ constraints, we can obtain the ABNF
for each option and each ABNF contains at least one element.

TABLE VII
EXAMPLES OF HOW SYNTACTIC MISCONFIGURATIONS ARE GENERATED

Second, ConfVD takes mutation operations on such ABNFs
to generate mutated elements. Third, mutated elements are ag-
gregated with other unchanged ones to generate a new option
value as a candidate syntactic misconfiguration. Finally, all the
candidate syntactic misconfigurations will be checked with spe-
cific ABNFs to make sure they violate the syntactic constraints.
Hence, a new syntactic misconfiguration will be generated.

Mutation operations have a variety of types divided into
element-level and form-level operations. For element-level op-
erations, we randomly substitute, add, convert the case, or delete
a single character in each element of ABNF. Considering the
element in digital form, we generate misconfigurations beyond
its range and modify the digit type it belongs to (e.g., we use
float number when it should be an integer). Form-level opera-
tions only consider ABNFs with multiple elements; in this case,
we disorder, cut out, or repeat one of the elements from the AB-
NFs. The elements after these two operations are called mutated
elements.

Table VII illustrates an example to explain how ConfVD
generates syntactic misconfigurations. For the option “Mem-
Size,” its type is memory, and its ABNF consists of two el-
ements: “Number” and “Unit.” We demonstrate element-level
mutation operations such as “substitute,” “add,” “convert case,”
and “delete” on the element “Unit” and operations “beyond
range” and “change digit type” on the element “Number.” In
fact, each element in ABNF should be processed by these oper-
ations to generate mutated elements. After these element-level

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

LI et al.: CONFVD: SYSTEM REACTIONS ANALYSIS AND EVALUATION THROUGH MISCONFIGURATION INJECTION 1399

Fig. 4. Generation of semantic misconfigurations.

operations, form-level operations like “disorder,” “cut out,” and
“repeat” are also shown in Table VII. To help understand how
mutated elements generate a misconfiguration, we take the re-
sult of the “substitute” operation as an example: after the mu-
tation operation, the value of the element “Unit” of “MB” is
changed to “Ma,” then we aggregate the elements “Number”
and “Unit,” so we get a candidate syntactic misconfiguration of
option “MemSize” as “64Ma.” Finally, this candidate syntactic
misconfiguration will be checked to see whether it is consistent
with the ABNF of “MemSize,” and the answer is no, so a syn-
tactic misconfiguration comes out. It also should be noted that,
for “Others” type options, since they do not have any syntac-
tic constraints, there still are two methods for them to generate
misconfigurations. First, ConfVD can use generic alterations on
option values, such as randomly changing the strings. Second,
sysadmins can supplement a new option type to our type clas-
sification; at the same time, syntactic constraints can also be
defined to help generate misconfigurations.

Generating misconfigurations with constraints defined by
ABNF helps ConfVD to simulate the situations where syntac-
tic errors occur, and it provides comprehensive and systematic
misconfigurations for testing system reactions.

Similar to syntactic misconfigurations, ConfVD generates se-
mantic misconfigurations using semantic constraints. To gen-
erate misconfigurations, resource-related predefined rules are
designed to simulate the violation of semantic constraints, as
shown in Fig. 4. Here we use Path type as an example, at-
tribute “permission” is related to the semantic constraint “The
file should be readable.” To violate the semantic constraint like
“The file should be readable,” we predefine rules to modify
these attributes. For example, we run command like “chmod 000
path” to change the attribute “permission.” Since our purpose is
to change the environment attributes to simulate semantic mis-
configurations, ConfVD changes not only option value but also
execution environment to maximally reproduce the scenarios
when semantic misconfigurations occur.

The processing model of ConfVD for generating semantic
misconfigurations is well customized and scalable. ConfVD al-
ready provides a collection of rules for generating common
misconfigurations and sysadmins can add other custom rules.

2) Format-related misconfiguration: In format-related rules,
considering the fact that configuration files need to meet the
format requirements, ConfVD can generate misconfigurations
as listed in Table VIII, by simulating sysadmins’ common

TABLE VIII
EXAMPLES OF FORMAT-RELATED MISCONFIGURATIONS

mistakes, such as omission or misspelling, while editing those
complex configuration files.

B. Testing

The same misconfiguration may cause different system reac-
tions owing to the different program states. To unify the testing
process, ConfVD uses software’s own test framework [26]–[29]
to test injected misconfigurations. To simulate the situations
when sysadmin meets the misconfigurations, ConfVD runs a
sequence of test scripts such as “launching the server” or “creat-
ing a database.” Before testing the injected misconfigurations, to
eliminate the interference, ConfVD should confirm that system
must be in the proper state by checking whether the system can
pass all test cases.

When testing a misconfiugration, first, ConfVD replaces the
original configuration file(s) with the one(s) containing errors,
and then launches the system. If the system successfully starts
up, ConfVD would run test scripts persistently until system
failure happens or system passes all the test scripts. During the
testing process, ConfVD records the system state by monitoring
the information such as system logs or console output. Finally,
ConfVD analyzes these information to evaluate the system’s
reaction ability of handling misconfigurations.

IV. ANALYSIS

In this section, we analyze and evaluate the system reac-
tion ability from the results of the misconfiguration injection
by ConfVD. Table IX illustrates the software systems and their
information in our studies. Generating misconfigurations for all
those options will lead to the computational complexity’s explo-
sive exponential growth. In order to avoid this issue, we applied
a stratified random sampling on configuration options. In detail,
according to the type classifications in Fig. 2, we divide options
into several subgroups. For each group, options are randomly
sampled with a fraction of the total population. As the number
of options with different types vary greatly among systems, this
sampling method will ensure that estimates can be made with
equal accuracy in different option types of configuration, and
that comparisons of samples with different types can be made
with equal statistical power. As shown in Table IX, we finally
sample 113 options and generate 1273 corresponding miscon-
figurations.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

1400 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 4, DECEMBER 2018

TABLE IX
SYSTEMS ANALYZED

As our purpose is to expose as many configuration vulner-
abilities as possible, ConfVD generates massive and various
misconfigurations. However, there can be redundancy in these
misconfigurations. In other words, two different misconfigura-
tions generated by the ConfVD may share the same software
reaction. With this noise, analyzing the distribution of software
reactions to all injected misconfigurations makes little sense.
Therefore, our analysis of system reactions should be based on
misconfigurations that do not include those duplicated ones. In
our implementation, we eliminate those duplicated misconfig-
urations by checking whether the related log messages are the
same. We first set the systems log verbosity option to the highest
to get more details of the system reactions. After collecting the
logs, we formalize them and remove the variables for compar-
ison. In the end, we get clusters of similar software reactions.
The results are also listed in Table IX.

A. System Reaction Ability Analysis

To evaluate the system reaction ability of handling miscon-
figurations, we classified the reactions into three types: good
reaction, bad reaction, and no reaction. A good reaction is that,
given a particular misconfiguration, the system can precisely
locate the root causes of failures or anomalies using console in-
formation, log messages, etc. A bad reaction would be a system’s
failure to resolve the problems, only providing vague diagnostic
messages, or even ending up with a silent failure. Finally, no
reaction occurs when the system has no reaction at all to the
misconfigurations due to the robust design or inadequate testing
for triggering the latent configuration errors [30].

The overall results of the system reactions are listed in
Table X. In order to help readers better understand different
system reactions, taking a further step, we analyze the root
causes of each reaction.

1) Good reactions: About 34.56% explicitly locate the mis-
configurations by printing log messages that contain the
line number or the name of misconfiguration. Most of
these reactions happened when system checks the validity
of the configuration, primarily during system startup.

2) Bad reactions: About 29.95% triggered the exceptions but
failed to locate the misconfigurations, mainly because op-
tions were not checked, or the checking condition failed to
capture the error. Even though they were detected on ex-
ception, these reactions may be obscure or mislead sysad-
mins in their diagnosis. For example, when Httpd was
misconfigured incidentally by adding the option “Listen
80” twice in the configuration file, the logs after failure
printed “Address already in use” and “Could not bind to
address,” which may confuse sysadmins. Even worse, bad

Fig. 5. Misconfiguration diagnosis rate of different systems with three kinds
of misconfiguration.

reactions may obstruct the diagnosis. We found that bad
reactions (e.g., crashes, hangs, and silent failures) were
caused by improper exception handling or a lack of con-
figuration checking.

3) No reactions: About 35.49% passed all the tests without
raising any exception. There are two reasons: The first
case is the robust design, which allows systems to le-
galize these misconfigurations. For instance, PostgreSQL
allows both “key value” and “key = value” formats, which
would avoid format-related misconfigurations. In the sec-
ond case, there may be latent configuration errors (LC
errors) [30]. Such options are not checked during initial-
ization; hence, we used various test cases to expose as
many errors as we could.

B. Misconfiguration Diagnosis Analysis

In this section, we analyze and evaluate different types of mis-
configurations and their corresponding reactions. Fig. 5 shows
that misconfigurations are from three widely used option types,
i.e., Path, Boolean, and Count. We consider that a reaction with
an explicit indication of misconfigurations represents a good
reaction after system failure. Accordingly, we define “miscon-
figuration diagnosis rate” as the proportion of good reactions
after failures caused by misconfigurations. Results show that
MySQL fails to locate Path-related misconfigurations. When
compared with Path, misconfigurations related to Boolean are
much easier to locate. The diagnosis rate of Httpd and Yum reach
100%, while there is only 60% for PostgreSQL and 74.36% for
MySQL. The main reason is for MySQL only reporting the ex-
ception captured in systems without any location information
about misconfigurations. The diagnosis rates for Count are even
higher than those of Boolean in Httpd (100%), Yum (100%),
and PostgreSQL (66.67%). Similar to the reason for the Boolean

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

LI et al.: CONFVD: SYSTEM REACTIONS ANALYSIS AND EVALUATION THROUGH MISCONFIGURATION INJECTION 1401

TABLE X
OVERALL RESULTS OF SYSTEM REACTIONS

Fig. 6. Case study of Path misconfiguration.

misconfiguration, MySQL still has a low proportion (50%) in
this respect.

Among these three types, Path misconfigurations are the hard-
est to be diagnosed by systems, and even experienced devel-
opers may fail to gracefully handle these misconfigurations.
Fig. 6 shows a study case of Path misconfiguration that oc-
curred in Httpd. We used ConfVD to inject misconfiguration
into the option “ServerRoot” with a nonexistent directory. Httpd
only checked the syntax, but not the semantic constraints (e.g.,
whether the directory is existent). Then, Httpd generated vari-
able “conffile” by merging option “ServerRoot” and option
“Include.” When Httpd tried to open “conffile,” it failed and
printed log messages “Could not open....” It then indicated that
there was a syntax error in option “Include.” The bad reac-
tions found in Httpd come from two main sources: 1) the op-
tions of “Path” type sometimes need concatenation with other
paths. Thus, misconfigurations can propagate through data flow
and have a large scope of impact. 2) Semantic constraints are
harder to check. The popular practice involves trying to open
the path and using the return code to judge whether the opera-
tion is successful, but this does not explain the root cause of the
misconfiguration.

Types of misconfigurations with simple constraints (e.g.,
Boolean, Mode) have a high diagnosis rate, mainly because ver-
ifying the constraints of these types can be done easily. Fig. 7
illustrates how PostgreSQL parses values for Boolean options.
For Boolean options, PostgreSQL uses the parse_bool function
to check that each Boolean option is corrective. It in fact uses the
“parse_bool_with_len” function to make a comparison between
option value and legal values. As shown in Fig. 7, misconfigu-
ration can be located and resolved easily. We surmise that this is
because such constraints have no correlation with the environ-
ment. Therefore, it can be easily judged whether the value of an
option is valid or not.

Fig. 7. Case study of Bool misconfiguration.

Thus, using more simple constraint options in configuration
is highly recommended for developers in order to reduce the
potential misconfigurations. Furthermore, when faced with a
failure, sysadmins require more reasons than symptoms of fail-
ures (e.g., exceptions). We recommend that developers point out
the root causes instead of only recording what happened in the
system and console log messages.

Thus, we highly recommend developers to use simple con-
straints to describe options, to prevent sysadmins introducing
misconfigurations. Moreover, sysadmins require more reasons
than symptoms of failures (e.g., exceptions) in the systems. To
make systems more user-friendly, developers should try to point
out the root causes of failures, instead of only recording what
happened during the failures.

C. Capability Analysis

To demonstrate the need for the fine-grained constraints we
have proposed herein, we have analyzed ConfVDs capabili-
ties by answering two questions: How does ConfVD improve
generic alteration approaches without constraints, and is there
the necessity for fine-grained constraints in misconfiguration
injection?

1) How ConfVD Improves Generic Alterations Approaches
Without Constraints: A straightforward approach to evaluate
the reaction ability of systems is testing with generic alterations.
ConfErr [19] relies on using generic alterations to original

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

1402 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 4, DECEMBER 2018

TABLE XI
CAPABILITY OF CONFVD AND CONFERR IN FINDING BAD SYSTEM REACTIONS

TABLE XII
COMPARISON OF CONFVD WITH A VARIANT THAT ONLY USES

COARSE-GRAINED CONSTRAINTS

configuration options (e.g., omissions, substitutions, and case
alterations of characters). We chose ConfErr because ConfErr is
not guided by constraints. In this section, we show the improve-
ments of ConfVD compared with generic alterations approaches
like ConfErr.

We evaluate the tools’ capability of finding bad system re-
actions by counting the numbers of bad reactions they find.
In Table XI, the number of the undiagnosed misconfigurations
(i.e., misconfigurations of which systems fail to find the root
causes of failures) found by the two tools is presented. These
misconfigurations could possibly have been avoided if ConfVD
or ConfErr had been used to evaluate the system reactions and
harden the system against misconfigurations. Our results reveal
that ConfVD finds more undiagnosed misconfigurations in all
four systems than ConfErr, and undiagnosed misconfiguations
found by ConfErr only account for 38.46% of the ones found
by ConfVD. It should be noted that all the misconfigurations
generated by ConfErr could have been found by ConfVD using
options’ constraints. The inefficiency in ConfErr is for the reason
that widely used mature systems are able to detect the violation
of configuration formats, but to diagnose constraint-related mis-
configurations, it requires not only domain knowledge but also
environmental information, which enables ConfVD to find the
potential bad reactions of systems.

2) Is There a Necessity for Fine-Grained Constraints in Mis-
configuration Injection: State-of-the-art techniques like SPEX
[20] use coarse-grained constraints to help generate misconfigu-
rations. However, those coarse-grained constraints (such as data
type and value range) are insufficient for generating misconfig-
urations. In order to demonstrate the need for fine-grained con-
straints, we evaluated a variant of ConfVD by removing the fine-
grained constraint-related misconfigurations. Like SPEX, this
variant simply generates misconfigurations only using coarse-
grained constraints (e.g., Basic type constraint, Data range con-
straint, etc.), these constraints are inferred from source code,
and they do not concern the semantic-type-specific character-
istics. We used our own implementation of the technique. We
were unable to use SPEX because it assumes the availability of
source code and needs annotations from domain-specific knowl-
edge. The experimental results are shown in the “Variant with
Simple Constraints” column of Table XII. The variant without
fine-grained constraints only found 47 undiagnosed misconfig-
urations, a reduction of 27.69% from the 65 of ConfVD. By

Fig. 8. Two examples of system reactions to misconfigurations.

contrast, ConfVD uses fine-grained constraints to generate and
inject these comprehensive misconfigurations into targeted sys-
tems to test their reactions.

As illustrated in Fig. 8, the top misconfiguration violates the
simple constraint: the option type of “DocumentRoot” is a direc-
tory path. Httpd detected this misconfiguration. However, bad
reactions occurred when faced with the bottom misconfiguration
as it violated the fine-grained constraints. Httpd easily found the
misconfiguration of simple constraints but failed to identify fine-
grained ones. Our study confirms that a comprehensive test for
systems against misconfigurations would improve the quality
assurance.

ConfVD’s fine-grained constraints were extremely useful for
Httpd and MySQL but did not affect the results for PostgreSQL
and Yum. We surmise that this is because although many mis-
configurations are injected, fine-grained constraints were not
necessary in the 72.3% of cases in which the misconfigurations
of simple constraints could find bad system reactions. However,
that may not always be enough. Therefore, it remains important
to use fine-grained constraints to generate misconfigurations and
find bad system reactions that might discourage sysadmins.

D. Validity Limitations

There are several major limitations in terms of the validity of
our analyses.

1) Although the eight software systems we studied in
Section II are both mature and large, our classification,
which is on the basis of them, may not be representative
of other systems. In order to verify the generalization of
our option type classification and avoid the issue of over-
fitting, the configuration options we used for classifica-
tion are taken from eight open-source software packages,
while those used for validation in Section II-A are taken
from other four open-source software packages.

2) Only a few sets of popular system options are considered
in our studies. Some system options may not be con-
sidered in our studies, which may influence our results.
Therefore, we choose those most frequently used options
and believe that these common options are representative
of the options in most situations.

3) All the analyses and evaluations are on the basis of man-
ually checking the system and console logs, which may
introduce errors. To ensure the correctness, we double-
check all the results.

4) Our misconfiguration generation method may omit some
kinds of misconfigurations. To reduce this limitation, we
plan to analyze more sysadmin reports from software
projects and improve our methods.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

LI et al.: CONFVD: SYSTEM REACTIONS ANALYSIS AND EVALUATION THROUGH MISCONFIGURATION INJECTION 1403

V. EXPERIENCE AND PRACTICE

In this section, we provide some advice and best practices
based on what we have observed from the systems evaluated for
misconfiguration issues.

Avoiding inconsistency: There are lots of good habits in
handling unit inconsistency. For instance, PostgreSQL al-
ways assigns numbers to options with units (e.g., option like
“max_stack_depth = 100 kB”). To the opposite, a lack of nec-
essary explanations or ambiguous descriptions in configuration
may raise sysadmins’ confusion and trap them into making mis-
configurations.

Making configuration simple and easy: Sysadmin-friendly
configurations are also meaningful for reducing the occurrences
of misconfigurations. Our study finds many ambiguous descrip-
tions of configuration options in sysadmin guidebooks. Xu et al.
[1] reveal a lot of useful findings, which leads to a few guide-
lines for simplifying configuration. They also study configura-
tion navigation as an intermediate solution to help sysadmins
understand configuration.

Early checking: During our analysis and evaluation, we con-
duct a study on the source code of these systems under evalua-
tion, and find that PostgreSQL manages the system configura-
tion using a consistent interface. For example, it uses function
“parse_and_validate_value” to check each value of the option
right after the system startup and reports any misconfigurations
it found. Early checking helps sysadmins effectively detect mis-
configurations during system’s startup.

Friendly comment: Through those comments in configura-
tion files, PostgreSQL explicitly informs sysadmins of usage
of specified options (e.g., “#1s-600s,” “#defaults to “local-
host”; use “*” for all”). Such comments can also be found
in other systems, but there is still a large number of soft-
ware systems lacking in friendly comment. Adequate comments
could guide sysadmins to configure options more efficiently and
correctly.

VI. RELATED WORK

Recently, aimed at solving misconfiguration problems, re-
searchers have focused on detecting [18], [31] and troubleshoot-
ing [12], [14], [15], [32]–[34] misconfigurations. Although it is
helpful to understand the misconfigurations and improve the re-
liability of systems, only a few efforts [19], [20] have focused
on evaluating system reaction ability of handling misconfigura-
tions.

Misconfiguration testing: Aimed at improving software reli-
ability, we can analyze and evaluate systems reactions to mis-
configurations. ConfErr [19] is a pioneer in misconfiguration
testing. It relies a Generic Error Modeling System framework
to produce human errors (e.g., typo, copy–paste mistakes, etc.)
in configurations. However, ConfErr can only generate deficient
misconfigurations without constraints, which hinders the eval-
uation of system reactions. Another work, SPEX [20], pushes
the boundary of the ConfErr, as it infers constraints from the
source code to identify misconfiguration vulnerabilities by in-
jecting misconfigurations that violate those constraints. How-
ever, its coarse-grained constraints of option types result in poor

diversity in the injected misconfigurations. On the basis of fine-
grained constraints of option type classification, ConfVD gener-
ates comprehensive misconfigurations, which means we could
effectively analyze and evaluate the system reaction ability of
handling misconfigurations.

Detecting and troubleshooting misconfigurations: Misconfig-
uration detection [18], [31] refers to checking the potential con-
figuration errors before the misconfigurations manifest, while
misconfiguration troubleshooting [12], [14], [15], [32]–[34] is
carried out in response to an already happened misconfiguration.
EnCore [18] infers the configuration rules between systems and
the executing environments to detect misconfigurations using
a machine-learning method. Aimed at automatically diagnos-
ing the root causes of performance problems, X-ray [12] pro-
poses a technique for troubleshooting the potential misconfigu-
rations. At the same time, the major contribution of this paper
is proposing fine-grained constraints from option types classi-
fication. These option type classification based constraints can
guide sysadmins and researchers to detect potential misconfigu-
rations. Meanwhile, misconfiguration troubleshooting can also
benefit from our work, since we have a comprehensive analysis
and evaluation of system reactions.

System reactions study: There are also some other research
works on system reactions to misconfigurations. ConfDiagDe-
tector [21] focuses on detecting inadequate diagnostic messages
for misconfigurations. Based on 546 real-world misconfigu-
rations, Yin et al. [6] conducted a comprehensive empirical
misconfiguration characteristic study. Xu et al. [35] studied on
access-denied messages, showing that many of today’s software
systems miss the opportunities for providing adequate feedback
information, imposing unnecessary obstacles to correct resolu-
tions. This paper also benefits from these works’ insights on
system reaction’s characteristics.

Configuration characteristic study: The former has drawn
lots of efforts on characteristics on configuration that provides
us with fundamental thesis. Rabkin and Katz [23] propose a
classification of configuration option types in several Java ap-
plications for automatically extracting the related source code.
Our classification differs from Rabkin’s work mainly in the ob-
jectives: their main purpose is to extract those options from
source code, while we intended to use these constraints for mis-
configuration injection. Thus, this paper requires a more com-
prehensive classification to infer as fine-grained constraints as
possible. SPEX [20] and EnCore [18] have a further research on
configuration constraints using program analysis and machine
learning. Zhou et al. [24], [25] focus on the characteristics of
option constraints by investigating source code.

VII. CONCLUSION

As misconfiguration has become one of the most serious
issues, to analyze and evaluate the system reaction ability of
handling misconfigurations, in this paper, we propose a method
to infer type-related constraints for misconfiguration injection.
We study eight mature systems to summarize a comprehensive
classification of option types. On the basis of this classifica-
tion, we use ABNF to extract fine-grained constraints of each

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

1404 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 4, DECEMBER 2018

type. To generate comprehensive misconfigurations in the test
systems, we propose misconfiguration generation methods for
our constraints. We implement a tool named ConfVD to con-
duct misconfiguration injection and further analyze and evaluate
the system reaction ability of handling various misconfigura-
tions. Our analysis result shows that our option classification
covers 96% of 1582 options from Httpd, Yum, PostgreSQL,
and MySQL. Our constraints are more fine grained than SPEX
and Encore, and the consistency was found to be 91% through
manual verification. Our technique could improve generic alter-
ations approaches without constraints, and we found that Con-
fVD could find nearly three times the bad reactions found by
ConfErr. In total, we found 65 bad reactions from the systems
under test and our fine-grained constraints contributed 27.7%
more bad reactions than techniques only using coarse-grained
constraints.

REFERENCES

[1] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey, you
have given me too many knobs!: Understanding and dealing with over-
designed configuration in system software,” in Proc. Joint Meet. Found.
Softw. Eng., 2015, pp. 307–319.

[2] J. Gray, “Why do computers stop and what can be done about them,”
Tandom Comput., Cupertino, CA, USA, Tech. Rep. TR-85.7, vol. 30,
no. 4, pp. 88–94, 1985.

[3] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen,
“Understanding and dealing with operator mistakes in internet ser-
vices,” in Proc. Conf. Symp. Oper. Syst. Des. Implementation, 2004,
pp. 61–76.

[4] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in Proc. 4th Usenix Symp.
Internet Technol. Syst., 2003, pp. 1–1.

[5] L. Barroso, J. Clidaras, and U. Hoelzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” Synthesis
Lectures Comput. Architecture, vol. 8, no. 3, p. 154, 2009.

[6] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S.
Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in Proc. ACM Symp. Oper. Syst. Princ., Cas-
cais, Portugal, Oct. 2011, pp. 159–172.

[7] Y. Sverdlik, “Microsoft: Misconfigured network device led to azure
outage,” 2012. [Online]. Available: http://www.datacenterdynamics.
com/focus/archive/2012/07/microsoft-misconfigured-network-device-
led-azure-outage. Accessed on: Jan. 29, 2017.

[8] A. Team, “Summary of the amazon EC2 and amazon RDS service dis-
ruption in the US east region,” 2011. [Online]. Available: http://aws.
amazon.com/message/65648. Accessed on: Jan. 29, 2011.

[9] J. Robert, “More details on today’s outage,” 2010. [Online].
Available: https://www.facebook.com/notes/facebook-engineering/more-
details-on-todays-outage/431441338919,” Accessed on: Jan. 29, 2017.

[10] G. Fitzgerald, “Grand research challenges in information systems,” Com-
puting, vol. 23, no. 3, pp. 337–344, 2003.

[11] T. Xu and Y. Zhou, “Systems approaches to tackling configuration errors:
A survey,” ACM Comput. Surv., vol. 47, no. 4, pp. 1–41, 2015.

[12] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause
diagnosis of performance anomalies in production software,” in Proc.
Usenix Conf. Oper. Syst. Des. Implementation, 2012, pp. 307–320.

[13] M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis,” in Proc. Usenix Conf. Oper.
Syst. Des. Implementation, 2010, pp. 1–11.

[14] A. Rabkin and R. Katz, “Precomputing possible configuration error diag-
noses,” in Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2011, pp. 193–
202.

[15] S. Zhang and M. D. Ernst, “Automated diagnosis of software configuration
errors,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 312–321.

[16] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y. M. Wang, “Auto-
matic misconfiguration troubleshooting with peer pressure,” in Proc. Conf.
Symp. Oper. Syst. Des. Implementation, 2004, pp. 17–17.

[17] Y. M. Wang et al., “Strider: A blackbox, state-based approach to change
and configuration management and support,” in Proc. Usenix Conf. Syst.
Admin., 2003, pp. 159–172.

[18] J. Zhang et al., “Encore: Exploiting system environment and correlation
information for misconfiguration detection,” in Proc. Int. Conf. Archit.
Support Program. Lang. Oper. Syst., 2014, pp. 687–700.

[19] L. Keller, P. Upadhyaya, and G. Candea, “ConfErr: A tool for assess-
ing resilience to human configuration errors,” in Proc. IEEE Int. Conf.
Dependable Syst. Netw. FTCS DCC, 2008, pp. 157–166.

[20] T. Xu et al., “Do not blame users for misconfigurations,” in Proc. 24th
ACM Symp. Oper. Syst. Princ., 2013, pp. 244–259.

[21] S. Zhang and M. D. Ernst, “Proactive detection of inadequate diagnostic
messages for software configuration errors,” in Proc. Int. Symp. Softw.
Test. Anal., 2015, pp. 12–23.

[22] E. D. Crocker, “Augmented BNF for syntax specifications: ABNF,”
1997. [Online]. Available: https://tools.ietf.org/html/rfc2234,” Accessed
on: May 2, 2018.

[23] A. Rabkin and R. Katz, “Static extraction of program configuration op-
tions,” in Proc. Int. Conf. Softw. Eng., Waikiki, Honolulu, HI, USA, May
2011, pp. 131–140.

[24] S. Zhou, X. Liu, S. Li, W. Dong, X. Liao, and Y. Xiong, “Confmapper:
Automated variable finding for configuration items in source code,” in
Proc. IEEE Int. Conf. Softw. Qual. Rel. Secur. Companion, 2016, pp. 228–
235.

[25] S. Zhou et al., “Easier said than done: Diagnosing misconfiguration via
configuration constraints analysis: A study of the variance of configuration
constraints in source code,” in Proc. Int. Conf. Eval. Assess. Softw. Eng.,
2017, pp. 196–201.

[26] PostgreSQL, “PostgreSQL 9.6.1 documentation,” 2017. [Online]. Avail-
able: https://www.postgresql.org/docs/9.6/static/pgbench.html.

[27] Apache, “Apache http test project,” 2017. [Online]. Available: http://
httpd.apache.org/test/,” Accessed on: Jan. 29, 2017.

[28] MySQL, “The mysql test framework,” 2017. [Online]. Available: https://
dev.mysql.com/doc/mysqltest/2.0/en/,” Accessed on: Jan. 29, 2017.

[29] Yum, “Qa:testcase yum basics,” 2017. [Online]. Available: http://
fedoraproject.org/wiki/qa:testcase_yum_basics,” Accessed on: Jan. 29,
2017.

[30] T. Xu et al., “Early detection of configuration errors to reduce failure
damage,” in Proc. Usenix Conf. Oper. Syst. Des. Implementation, 2016,
pp. 619–634.

[31] V. Ramachandran, M. Gupta, M. Sethi, and S. R. Chowdhury, “Determin-
ing configuration parameter dependencies via analysis of configuration
data from multi-tiered enterprise applications,” in Proc. Int. Conf. Auto-
nomic Comput., Jun. 15–19, 2009, Barcelona, Spain, pp. 169–178.

[32] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Padmanabhan, and
G. M. Voelker, “Netprints: Diagnosing home network misconfigurations
using shared knowledge,” in Proc. 6th USENIX Symp. Netw. Syst. Des.
Implementation, 2009, pp. 349–364.

[33] M. Attariyan and J. Flinn, “Using causality to diagnose configuration
bugs,” in Proc. Usenix Annu. Tech. Conf., Boston, MA, USA, 2008,
pp. 281–286.

[34] J. Mickens, M. Szummer, and D. Narayanan, “Snitch: Interactive deci-
sion trees for troubleshooting misconfigurations,” in Proc. 2nd Usenix
Workshop Tackling Comput. Syst. Probl. Mach. Learn. Techn., 2007,
Art. no. 8.

[35] T. Xu, M. N. Han, L. Lu, and Y. Zhou, “How do system administrators
resolve access-denied issues in the real world?” in Proc. CHI Conf. Human
Factors Comput. Syst., 2017, pp. 348–361.

[36] W. Li, S. Li, X. Liao, X. Xu, S. Zhou, and Z. Jia, “Conftest: Generating
comprehensive misconfiguration for system reaction ability evaluation,”
in Proc. 21st Int. Conf. Eval. Assess. Softw. Eng., 2017, pp. 88–97.

Shanshan Li is an Associate Professor with the Department of Computer Sci-
ence, National University of Defense Technology, Changsha, China. She has
published more than 50 papers. Her main research interests include empirical
software engineering, with a particular interest in software quality enhancement,
defect prediction, and misconfiguration diagnosis.

Prof. Li is a member of ACM. She is a recipient of several awards including
the Distinguished Paper Award in Saner 2018, Spotlight paper in Transactions
on Parallel and Distributed System, etc.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://aws.amazon.com/message/65648
http://aws.amazon.com/message/65648
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
https://tools.ietf.org/html/rfc2234
https://www.postgresql.org/docs/9.6/static/pgbench.html.
http://httpd.apache.org/test/
http://httpd.apache.org/test/
https://dev.mysql.com/doc/mysqltest/2.0/en/
https://dev.mysql.com/doc/mysqltest/2.0/en/
http://fedoraproject.org/wiki/qa:testcase_yum_basics
http://fedoraproject.org/wiki/qa:testcase_yum_basics

LI et al.: CONFVD: SYSTEM REACTIONS ANALYSIS AND EVALUATION THROUGH MISCONFIGURATION INJECTION 1405

Wang Li received the B.S. and M.S. degrees from the School of Computer
Science, National University of Defense Technology, Changsha, China, in 2015
and 2017, respectively, where he is currently working toward the Ph.D. degree.

His main research interests include software engineering, software reliability,
software configuration, and so on.

Xiangke Liao (M’15) received the B.S. degree from the Department of
Computer Science and Technology, Tsinghua University, Beijing, China, in
1985, and the M.S. degree from National University of Defense Technology,
Changsha, China, in 1988.

He is currently a Full Professor and the Dean of the School of Computer, Na-
tional University of Defense Technology. His research interests include parallel
and distributed computing, high-performance computer systems, operating sys-
tems, software reliability, cloud computing, and networked embedded systems.

Prof. Liao is a member of the ACM.

Shaoliang Peng is the Executive Director with the National Supercomputing
Center in Changsha, Changsha, China, and is an Adjunct Professor of BGI,
and National University of Defense Technology, Changsha, China. He was a
Visiting Scholar with CS Department, City University of Hong Kong from 2007
to 2008 and at BGI Hong Kong from 2013 to 2014. His research interests include
high-performance computing, bioinformatics, big data, virtual screening, and
biology simulation. He has published dozens of academic papers on several
internationally influential journals, including Science, Nature Communications,
Cell AJHG, Genome Biology, Cancer Research, ACM/IEEE TRANSACTIONS,
BIBM, and so on.

Shulin Zhou received the B.S. and M.S. degrees from the School of Computer
Science, National University of Defense Technology, Changsha, China, in 2014
and 2016, respectively, where he is currently working toward the Ph.D. degree.

His main research interests include software engineering, software reliability,
operating system, and so on.

Zhouyang Jia received the B.S. and M.S. degrees from the School of Computer
Science, National University of Defense Technology, Changsha, China, in 2013
and 2015, respectively, where he is currently working toward the Ph.D. degree.

His main research interests include software engineering, software reliability,
operating system, and so on.

Mr. Jia is a student member of the ACM.

Teng Wang received the B.Eng. degree in software engineering from National
University of Defense Technology, Changsha, China, in 2017, where he is cur-
rently working toward the Master’s degree at the College of Computer Science.

His research interests include program analysis, software quality, and soft-
ware security.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:24:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

