
832 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

Do You Really Know How to Configure Your
Software? Configuration Constraints in Source

Code May Help
Xiangke Liao , Shulin Zhou , Shanshan Li, Zhouyang Jia, Xiaodong Liu , and Haochen He

Abstract—Misconfigurations have become one of the major
causes of software failures because of their increasing prevalence
and severity. The complexity of configurations and users’ lack of
domain knowledge are the main reasons for massive misconfigu-
rations. Users usually identify and diagnose misconfigurations by
making a comparison against the conditions that configuration op-
tions should satisfy, which we refer to as configuration constraints;
however, sometimes it is hard for users to accomplish this work.
Some work has been done on obtaining configuration constraints,
especially from source code; nevertheless, only part of the situation
has been considered, such as if-statement code snippets, limiting
its help in misconfiguration diagnosis. In order to better extract
configuration constraints for users’ guidance and misconfigura-
tion diagnosis, we carried out a comprehensive manual study on
the existence and variance of the configuration constraints in the
source code of five different pieces of widely used open-source soft-
ware. Three categories of findings are summarized based on our
study, namely the general statistics, the general features of specific
kinds of constraints, and the obstacles to the automatic extrac-
tion of configuration constraints. With these findings, we proposed
several suggestions to maximize the automatic extraction of con-
figuration constraints. The results show that our suggestions could
improve the extraction of configuration constraints compared to
existing methods.

Index Terms—Automatic extraction, misconfiguration, miscon-
figuration diagnosis, configuration constraints, software reliability.

I. INTRODUCTION

IN RECENT years, software misconfigurations have drawn
tremendous attention for their increasing prevalence and

severity. Yin et al. [1] pointed out that misconfigurations ac-
counted for 27% of failure cases in a major data storage
company in the U.S. Also, misconfigurations were the second

Manuscript received July 31, 2017; revised January 9, 2018 and March 16,
2018; accepted April 28, 2018. Date of publication June 15, 2018; date of current
version August 30, 2018. This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 61690203 and Grant 61532007,
and in part by the National 973 Program of China under Grant 2014CB340703.
This paper was presented in part at the 21st International Conference on Evalu-
ation and Assessment in Software Engineering, Karlskrona, Sweden, June 2017
[27]. Associate Editor: J. Zhang. (Corresponding author: Shulin Zhou.)

X. Liao is with the College of Software, Tsinghua University, Beijing 100084,
China, and also with the College of Computer, National University of Defense
Technology, Changsha 410073, China.

S. Zhou, S. Li, Z. Jia, X. Liu, and H. He are with the College of Computer,
National University of Defense Technology, Changsha 410073, China.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2018.2834419

Fig. 1. Example of VirtualHost setting in Apache Httpd Server.

biggest cause of service outages in Google’s main services,
accounting for nearly 28%, as stated in the report by Barroso
et al. [2]. Furthermore, Rabkin and Katz [3] mentioned that mis-
configuration is the leading cause of Hadoop cluster failures and
the dominant source of support costs, considering the number of
failure cases as well as the total technique support time. Many
other works [4]–[6] also pay attention to such misconfiguration
problems, and many studies [7]–[10] have tried to address it
from different points of view.

The reasons for misconfigurations are mainly twofold. On the
one hand, users often lack domain knowledge for the software
and its configuration options, limiting their correct usage
of configuration options. For instance, for better flexibility
and scalability, software developers usually provide hundreds
of configuration options for current database [11] and web
servers [12], which presents a great challenge for novices and
even experienced users in setting them correctly. Xu et al. [13]
also indicate that, “first, a significant percentage (up to 48.5%)
of configuration issues are about users’ difficulties in finding or
setting the parameters to obtain the intended system behavior;
second, a significant percentage (up to 53.3%) of configuration
errors are introduced due to users’ staying with default values
incorrectly,” which gives data to support our opinion. On the
other hand, the complexity in the configuration procedure also
restricts the usage of software, as mentioned in [13]. In detail,
every single configuration options value should satisfy a valid
range; for instance, the port in Redis should be an integer in the
range from 0 to 65535. Some structural modules should be well
formatted; for example, in Apache Httpd Server, the setting for
virtual host should be between the terms “<VirtualHost>” and
“</VirtualHost>,” as shown in Fig. 1. In addition, there can be
complex relationships between different configuration options.
Take PostgreSQL as an example; the value of configuration

0018-9529 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6125-3330
https://orcid.org/0000-0002-6199-5123
https://orcid.org/0000-0002-9800-6886

LIAO et al.: DO YOU REALLY KNOW HOW TO CONFIGURE YOUR SOFTWARE? 833

option “superuser_reserved_connections” must be less than
“max_connections,” otherwise the PostgreSQL daemon will
close down. Furthermore, if the value of configuration option
“client_request_buffer_max_size” is less than the value of
configuration option “request_header_max_size,” the client-
request package might overflow without enough buffer to hold
the header of the request, let alone the request’s body.

The typical routine for misconfiguration diagnosis is to check
whether the current configuration settings satisfy a certain con-
dition when a misconfiguration happens. We refer to this cer-
tain condition hereinafter as a configuration constraint. If these
configuration constraints could be illustrated in advance, there
would be many benefits for achieving the correct configuration
of the software system, as well as misconfiguration diagnosis
and repair.

As important references for using software, user manuals and
official documentation may have information about configu-
ration constraints in natural language or formatted structures,
but it is hard for users to find them in thousand-page docu-
ments. On the other hand, some developers may not maintain
well-formatted documentation, much less the information of
configurations that users need. More seriously, if the software
documentation is not updated in a timely manner, the constraints
recorded in the documentation could be totally wrong, thus in-
creasing the difficulty of misconfiguration diagnosis. Therefore,
some other approaches are needed to provide the configuration
constraints for users.

To obtain the configuration constraints, current literature has
made much effort. Based on summarizations of three commonly
used mapping structures, SPEX [14] extracts configuration con-
straints from source code based on predefined patterns, such
as if-statement condition checking and handling, lib-function
calling trace, and so on. Then, based on those configuration
constraints, they injected some faults to expose the vulnera-
bilities in the software and detect any inconsistencies between
configuration options. In addition, they also propose several sug-
gestions about configuration design and implementation. The
same effort is also made in [15]. Focusing on the key-value pair
model in configuration files, they present a static analysis tech-
nique to acquire configuration options from source code with
a few manual labeling efforts. In order to reduce the burden of
maintaining configuration documentation, they also gave some
effort to inferring the basic type of configuration options. En-
Core [16] tries to learn configuration constraints from thousands
of users’ configuration files by machine learning algorithms. It is
innovative that EnCore could extract potential and complicated
constraints between different configuration options or even envi-
ronment variables. Nevertheless, the requirement for predefined
constraint templates, which reduces the search space in machine
learning, limits the applicability to common users.

Considering the urgent demand for obtaining configuration
options for users, as well as our conjecture that there must
be some checking mechanism for configuration, we hold the
opinion that it is easy to obtain configuration constraints from
source code with explicit forms. However, we found it is of-
ten not the case based on our study on real-world software.
We manually studied five pieces of widely used open-source

Fig. 2. Example of configuration constraint in if-statement-checking code
snippets in PostgreSQL.

Fig. 3. Example of value range constraints in PostgreSQL.

software, and found that the forms of configuration constraints
vary in different kinds of software, which are not always in
simple if-statement checking situations. For instance, in Post-
greSQL, there might be some constraints in if-statement check-
ing, as shown in Fig. 2, but developers also use some other
forms, such as specific structures, to implement the value range
restrictions. As shown in Fig. 3, the value range of configura-
tion option “GEQO_EFFORT” is defined by structure members
“MIN_GEQO_EFFORT” and “MAX_GEQO_EFFORT,” i.e.,
from 1 to 10. Then, sometimes there is much semantic informa-
tion in the context-sensitive configuration constraints in specific
kinds of software, leading to the rare possibility to achieve au-
tomatic extraction using simple program analysis. Furthermore,
as a consequence of bad configuration design or developers’
negligence, there might be no checking mechanism regarding
configuration constraints at all.

Faced with such situations, we carried out a comprehensive
manual study to uncover the characteristics of configuration
constraints in source code. On that basis, we would be able
to fulfill the automatic extraction of configuration constraints
with respect to the prevention and diagnosis of misconfigura-
tion. In detail, we manually studied five typical widely used
open-source software packages at first. In light of the overall
results, three categories of findings are summarized from differ-
ent aspects, namely the general statistics, the general features of
specific kinds of constraints, and the obstacles to the automatic
extraction of configuration constraints. The general statistics
consist of the proportion of configuration constraints that can be
extracted from source code, the proportion of configuration con-
straints for configuration options with different basic types, and
the general existing forms of configuration variables in source
code. The general features of specific kinds of constraints mainly
focus on the various forms of configuration constraints, the clus-
tered definition and declarations about enumeration constraints,
and the semantic information that could be used in constraint

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

834 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

extraction. Finally, the obstacles to extracting configuration con-
straints mainly lie in the structural configuration options and the
resource-related configuration options.

Based on the aforementioned findings, we propose three sug-
gestions about automatic extraction for different kinds of config-
uration constraints. First, for the configuration options that use
uniform mapping structures, we extracted the numeric value
range of these configuration options with statistical analysis as
well as some semantic information. Then, considering the clus-
tered code snippets for enumeration, some text analysis was used
to extract the value space of the enumerative configuration op-
tions. Finally, with some semantic information on the identifiers
of the function parameters, we improved the dataflow analysis
to obtain semantic meanings of the configuration options. The
experiment’s results show that our methods are efficient in ex-
tracting configuration options using these suggestions.

The rest of this paper is organized as follows. We introduce
the methodology in Section II. Section III describes in detail
the findings regarding configuration constraints in source code
in detail. The strategies for the automatic extraction of con-
figuration constraints and the corresponding experiments are
illustrated in Section IV. Some related work is introduced in
Section V. Finally, we present our conclusion in Section VI.

II. METHODOLOGY

In this section, we will mainly introduce our methodology
for investigating the existence and variance of configuration
constraints in source code. First, based on the research of Xu
et al. [17], as well as our survey, we hold the view that, presently,
there are no mature tools or approaches for extracting config-
uration constraints from source code, except for some trials,
namely SPEX [14] and Rabkin and Katz [15]. Therefore, we
tried to retrieve configuration constraints manually from source
code to figure out the characteristics.

In detail, first of all, we built the collection of configura-
tion options for every studied software packages by searching
the official documentation and manuals. In this procedure, we
first search the Internet to collect commonly used configuration
options for every software; then, we search the occurrence of
these commonly used configuration options in documentation to
locate the most possible chapters or sections about the descrip-
tion of configuration options, and collect all the configuration
options occur; finally, based on the chapter name and mean-
ing, we search catalog of documentation to find other possible
configuration options.

Then, we built the mapping relationship between the con-
figuration options in the configuration file (or our collection of
configuration options) and the program variables in the source
code of the target software. Based on the hypothesis that config-
uration options perform as controllers at runtime as well as our
manual statistics from the survey (mainly in Finding 3 of Sec-
tion III), we believe that configuration variables are usually used
directly without complex assignment and propagation. There-
fore, we manually checked every use scenario for the configu-
ration variables to obtain the relevant configuration constraints.

TABLE I
BASIC INFORMATION ON THE SOFTWARE STUDIED

TABLE II
EXPLANATION OF CONFIGURATION TYPES

The categories of configuration constraints we studied will be
introduced in following section.

A. Dataset

To cover all possibilities as far as we can, we choose MySQL,
Apache Httpd, Redis, Postfix, and PostgreSQL as our target soft-
ware packages. These five pieces of open-source software are
all widely used throughout the world with a long developing
history. To ensure the reliability and effectiveness of our study,
we took the newest stable version of each of these five soft-
ware packages into the study. The basic information about these
software packages is listed in Table I.

B. Study Methodology

In order to figure out the existence of configuration con-
straints in source code, we first determined the main types of
configuration options. Based on the configuration type classifi-
cation in ConfTest [18], as well as our survey on their usage in
official documentation and source code, we found that configu-
ration options may be of various kinds of types and forms, but
their basic type can be classified into limited categories. Con-
sidering the actual usage and generality of the configuration
options in different software packages, we classify the configu-
ration types as simple type and complex type, where the simple
type consists of numeric, string, and enumeration, which are
listed in Table II. In particular, we propose the complex type
that covers all the structural configuration options and software-
specific encapsulated configuration options that are difficult to
present using the simple basic types. For instance, in Apache
Httpd, the configuration of a virtual host needs the configu-
ration option “<VirtualHost>” to be modularized, as shown
in Fig. 1, and configuration option “Options” sets a series of
attributes for a given directory, for instance, “Options Indexes

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

LIAO et al.: DO YOU REALLY KNOW HOW TO CONFIGURE YOUR SOFTWARE? 835

TABLE III
CONFIGURATION CONSTRAINTS AND THEIR EXPLANATIONS

FollowSymLinks.” It is difficult to extract constraints from those
configuration options using general analysis methods, so we
classify them as configurations with complex types. To be clear,
our definitions of the basic types of configuration options in
Table II are more coarse-grained than those in ConfTest [18].
That is because some types of configuration options only exist
in a few software packages, and some of the code snippets that
handle these types are complex and unique, so it is difficult and
unnecessary to summarize a pattern for those configuration op-
tions in our view. Therefore, in our study, we roughly classify
all the configuration options into the aforementioned four types.

With respect to configuration constraints, ConfTest [18] de-
fines specific syntactic and semantic constraints for different
types of configuration options, and SPEX [14] defines several
patterns of code formats as their configuration constraints. Con-
sidering the fact that source code should contain all the infor-
mation about the processing procedure of software, including
handling of configurations, so we could analyze source code to
extract configuration constraints. Based on the summaries of the
code patterns for the configuration constraints of configuration
options with different basic types, as well as the constraints ref-
erenced by ConfTest [18] and SPEX [14], we define our own
constraint categories in Table III. In general, our constraint cate-
gories cover most of the possible situations for the simple types,
and those constraint types represent the main forms of configu-
ration constraints. Specifically, the three constraint types in the
single-dimension constraint category correspond to three sim-
ple configuration types, representing the possible constraints we
could extract from source code for different basic configuration
types. Considering the fact that complex types have various code
formats, we can hardly ever summarize a general code pattern
for the constraints of the structural configuration options and
software-specific encapsulated configuration options in differ-
ent software packages. Therefore, the constraints of the complex
type are not analyzed in our study (There are still methods for
implementing the constraint extraction of some configuration
options in the complex type, but the diversity of configuration
options in different software packages makes the method less
generalizable. Hence, in our study, we omit the constraints of
configuration options with complex types).

The single-dimension constraints contain the constraints
that restrain one single configuration option, while multiple-
dimension constraints restrain more than one configuration
option. In our study, most of these constraints consist of two
configuration options or more, so we name them multiple-
dimension constraint. In detail, the single-dimension constraints
consist of the semantic meaning, value range, and enumeration,

and the multiple-dimension constraints consist of the value
control and multivalue relationship. The explanation of these
configuration constraints are as follows.

The semantic meaning of a configuration option represents
the common resource type that the configuration option repre-
sents. In this paper, we mainly consider five types of semantic
meaning, namely FILE, DIR, PORT, IP, and URL. For instance,
Apache Httpd has a configuration option “ServerRoot,” whose
value is the directory in which Apache Httpd is installed, so
the semantic meaning of “ServerRoot” is DIR. As mentioned
above, we can also determine other types of semantic meaning
by summarize the specific patterns of handling code snippets re-
late to other resource types. But, after our study, we found that
other types of semantic meaning is rare in our studied software
packages. So, we only considered these five types of semantic
meaning in our present study.

The value range of a configuration option limits the values that
this configuration option can be set to. Generally, only numeric
configuration options have constraints of value range. Taking the
configuration option “deadlock_timeout” in PostgreSQL as an
example, the value of “deadlock_timeout” should be an integer
equal to or greater than 1.

The enumeration of a configuration option refers to the value
space that the configuration option could be assigned to. In most
of the studied software, there are configuration options that
have several modes to adjust or control the program runtime
trace, which has limited values for a string setting. If users
use a string that is not in the value space, the program might
be running in an undesired way. For example, the configuration
option “log_timestamps” in MySQL could only be set as “UTC”
and “SYSTEM,” so the enumeration of “log_timestamps” is
“{UTC, SYSTEM}.”

The value control defines the relationship between different
configuration options. In a value control relationship, whether
a configuration option takes effect depends on the value of
another configuration option; we call them the controlee and
controller configuration options. For instance, in PostgreSQL,
only when the configuration option “enable_GEQO” is set
to true can the configuration options “GEQO_threshold” and
“GEQO_pool_size” take effect. In our study, we only take
Boolean configurations as the controller configurations. To sup-
port our conclusion, we randomly selected 20 different code
snippets that satisfy the value-control pattern while the con-
trollers are not Boolean configuration options. All of them are
similar to the example illustrated in Fig. 4. The configuration
options “log_min_messages” and “client_min_messages” are in
the code pattern for value control, but, obviously, this is not a

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

836 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

Fig. 4. Example of a non-value-control constraint in the same code pattern in
postgresql-9.5.6.

constraint for both of these enumerative configurations. Consid-
ering the aforementioned support data and the fact that there are
frequent situations whereby different configuration values are
used in one condition to control a different program’s runtime
routine in different situations, we hold the opinion that those
code patterns that non-Boolean configuration options perform
as controllers are not configuration constraints.

Finally, the multivalue relationship identifies the conditions
that the value of two or more different configuration options
should satisfy. In reality, different configuration options may
have a potential relationship, especially between numeric
configuration options; for instance, the configuration options
“superuser_reserved_connections” and “max_connections” in
PostgreSQL, as mentioned in Section I.

To be clear, the value control and the multivalue relationship
constraints are both related to multiple configuration options,
so they are similar to some degree. However, there are still
some differences between them. The value control constraint
emphasizes the dominance of the controller configuration op-
tion, and the value of the controlee option is almost ignored.
While the configuration options in multivalue relationship con-
straints are equal to each other. This is the biggest difference
between them. Therefore, we classify both these kinds of con-
straints as multiple-dimension constraints.

Based on those configuration types and constraint categories,
we carried out a comprehensive manual study about the exis-
tence and variance of configuration constraints in source code.
In detail, first, two master students and one doctoral student of
our group studied the source code and summarized the possible
code patterns of configuration constraints separately. Then, they
compared and discussed the code patterns together, and deter-
mined the target code pattern for different kinds of configuration
constraints. To be clear, we counted the number of configuration
constraints using the following rules: if a configuration option
has several constraints of one type (for example, configuration
option “opt > 0” and “opt < 100”), then we count it as one
constraint; if a configuration option has several constraints of
different types (for example, configuration options “opt1 > 0”
and “opt1 < opt2”), then we count it as two; if two config-
uration options form a multiple-dimension constraint, then we
count it as two constraints, with one for each option. Next, every
student completed the study for different software packages sep-
arately and recorded the constraints. To ensure the correctness
and completeness of the study, they cross-checked the results
of the manual extraction. We ensured that there were at least

two students who manually analyzed every piece of software.
When there was a disagreement between two students, they first
rechecked the constraints in source code by themselves and tried
to come to an agreement. If they could not reach an agreement,
the third student got involved and gave a final decision about
the results. All of these three students have at least two years
of experience in software development. The overall study took
almost ten man-months.

C. Threats to Validity and Limitations

Considering the limitations of manual analysis, our study
is subject to a validity problem. Specifically, the main sources
come from whether these five software packages could represent
general situations and whether our defined constraint types cover
most situations.

In order to ensure the representiveness of the target software,
we chose these five software packages with diverse functional-
ity, and all of them are ranked top in their own software cat-
egories. As for the representiveness of our defined constraints
types, to ensure most situations were covered, we did a detailed
survey to collect the common configuration types, then defined
the format and types of our target configuration constraints. In
our study, these constraint types cover the main forms of con-
figuration constraints in source code. Although there are indeed
some forms of configuration constraints that are not covered by
our constraints set, it is barely possible to extract these con-
straints automatically, or even by manual analysis. Therefore,
we could ensure that our defined constraint types represented
the most common situations.

III. FINDINGS IN REAL-WORLD SOURCE CODE

Based on our study’s results,1 we summarized seven find-
ings from different aspects. In this section, we will illustrate our
findings in detail, mainly focusing on the existence statistics for
configuration constraints, inspirations for extracting configura-
tion constraints, and the challenges in the automatic extraction
of configuration constraints.

A. General Statistics for Configuration Constraints

Finding 1: Based on the program analysis, we were able
to extract 64% of the configuration constraints with various
code forms on average, while current research only covers 27%,
mainly in if-statement situations.

Table IV shows the existence of configuration constraints in
different software. It is common sense that different software
packages have different levels of configuration checking mech-
anisms. The data in the second column shows that Redis has the
highest proportion of configuration constraints (91.7%), while
Apache Httpd is the poorest one in terms of configuration check-
ing (at 37.5%).

Faced with such situations, with further analysis, we find that
the causes of these results are obvious. Redis has structured if
statements to check the majority of its configuration options,

1All the configuration constraints of our manual study are available at
https://github.com/zhou-shulin/configuration-constraints.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

LIAO et al.: DO YOU REALLY KNOW HOW TO CONFIGURE YOUR SOFTWARE? 837

TABLE IV
DIFFERENT PROPORTIONS OF CONSTRAINTS IN DIFFERENT SOFTWARE

so the proportion of configuration constraints is very high. In
Httpd, a series of set-functions is used to fulfill the mapping
between the configuration value and the relevant variable, and
some of the configuration options are of the string or complex
type. The assignment procedures in some of these set-functions
are too complex, limiting the extraction of the configuration
constraints.

Moreover, with regard to the data in last column of Table IV,
we can see the gaps between the existing constraints in the source
code and the numbers that current research obtained. With fur-
ther analysis, we reveal that the causes are the varying forms of
configuration constraints in different software packages that cur-
rent research does not consider. This will be illustrated in detail
in Findings 3 and 4. For instance, in SPEX [14], the if state-
ments in which the configuration variables are used as judging
conditions are first located. Then, SPEX defines several han-
dling measures to be the failure signals of the software, namely
program exits, aborts, returns an error code, and resets the value
of the configuration variable. When these handling measures
are used in the branch block of the if statement, SPEX inverts
the judging condition as a configuration constraint; otherwise, it
takes the judging condition as a configuration constraint. Never-
theless, few configuration constraints are in this if-check form in
our study results, leading to the lower proportion in last column
of Table IV.

Finding 2: In terms of basic configuration types, numeric
configuration options are better checked, while configuration
options of the string type are always poorly checked.

Table V shows the constraint distribution of different config-
uration option types. It is obvious that, on average, for 98.6%
of configuration options of the numeric types (i.e., integer and
float), the relevant constraints could be retrieved, most reached
100%, except for Httpd. This makes sense because numeric
configuration options are easy to check and prone to mistakes,
so the checking mechanism is enough. As for string-type con-
figurations, in view of the flexible format of string-type con-
figurations, few types could be checked well, such as file path,
directory, and IP. When it comes to configuration options of the
complex type, it is barely possible to extract certain common
configuration constraints, owing to the otherness in the forms
and handling logic among different configuration options and

software, as well as the rich semantic context. For these results,
we hold the view that the proportion of configuration constraints
with numeric and enumeration types should reach 100%, oth-
erwise the checking is weak. As for the configuration options
of the string and complex types, the proportion of configuration
constraints should be as high as possible.

Finding 3: The forms of the variables in different software
packages may be different, but they are mainly global variables
or members of global structures.

In order to find the configuration constraints in the source
code, first, we needed to know the forms of the configuration
options in the source code (i.e., the relevant variables of the
configuration options), which we refer to as configuration vari-
ables. Through our analysis, we determined that configuration
variables are mainly global variables or members of global struc-
tures. Detailed information is listed in Table VI.

As Table VI shows, PostgreSQL and Postfix use global vari-
ables as their configuration variables. Redis uses a global struc-
ture object “server” to store all the configuration variables. In
MySQL, global variables and structures are both used to store
different kinds of configuration variables with different effect
scopes. In Httpd, some structures are used to store different
configuration variables.

Furthermore, the assignment of configuration variables is also
different. PostgreSQL, MySQL, and Postfix mainly use struc-
tural modules to fulfill the assignment of configuration variables.
Redis uses if-statement checking to distinguish different con-
figuration options and assign the setting values to configuration
variables. Httpd uses a series of set-functions to accomplish
the task. To reach the goal of increasing code reuse and cre-
ating a uniform interface, Httpd and MySQL use the offset of
the configuration variables in the structure to distinguish them
when using the same function call. For instance, configuration
options “ServerAdmin” and “ErrorLog” in Httpd use the same
set-function “set_server_string_slot” to accomplish the assign-
ment, as shown in Fig. 5.

Whilst most of these configuration variables are used in the
original forms without reassignment, few are reassigned to lo-
cal variables for the purpose of efficiency. In particular, none
of these configuration variables are used in the form of off-
sets in structures. This finding is instructive in the search for
configuration constraints in source code.

B. General Features of the Existence of Configuration
Constraints

Finding 4: Configuration constraints have various forms,
rather than if-condition statements.

In the survey before our study, we found that current research
focuses on the if-checking patterns to extract configuration
constraints from source code. This makes sense under certain
circumstances. For instance, for the code snippet for the
configuration option “port” in Redis-3.2.5, as shown in Fig. 6,
it is easy to extract its constraint as “0 ≤ port ≤ 65535.” Never-
theless, there are quite a few situations that do not fall into this
pattern based on our study results, especially for configuration
options of the numeric type. Hence, we need further approaches

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

838 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

TABLE V
CONSTRAINT PROPORTIONS FOR CONFIGURATION OPTIONS WITH DIFFERENT BASIC TYPES

TABLE VI
FORMS OF CONFIGURATION VARIABLES IN DIFFERENT SOFTWARE PACKAGES

Fig. 5. Two different configuration options in httpd.2.4.23 share the same
set-function.

Fig. 6. Example of a configuration constraint in if-condition statement in
redis.3.2.5.

to handle those situations. In our study, the majority of numeric
constraints are in structures that conduct the mapping between
the configuration options and the relevant configuration vari-
ables; we call them mapping constraints accordingly. In general,
this kind of mapping constraint widely exists in MySQL, Post-
greSQL, and Postfix. In detail, as Fig. 7 shows, uniform object
declarations are used in MySQL to illustrate the constraints,

Fig. 7. Examples of mapping constraints. (a) MySQL-5.7.16. (b) PostgreSQL-
9.5.6. (c) Postfix-3.1.3.

especially with some macros to improve readability, while
specific structure arrays are used in PostgreSQL and Postfix.

Finding 5: Various forms of enumeration constraints are used
in different software packages, and are not confined simply to
switch-case-statement situations.

Based on our study statistics, we found that enumeration
constraints are rarely found in switch-case-statement patterns in
the investigated software, as shown in Table VII. Therefore, the
current works could only obtain a few enumeration constraints.

Furthermore, with further analysis, we found that the enumer-
ative values of enumeration configuration options are always
concentrated in some clustered code snippets, just as shown in

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

LIAO et al.: DO YOU REALLY KNOW HOW TO CONFIGURE YOUR SOFTWARE? 839

TABLE VII
NUMBERS OF ENUMERATION CONSTRAINTS THAT CAN BE EXTRACTED FROM

SWITCH-CASE STATEMENTS

Fig. 8. Examples of enumeration clustering in source code from different
software packages. (a) PostgreSQL-9.5.6. (b) Httpd-2.4.23.

Fig. 8. In detail, Fig. 8(a) illustrates that a series of structural
arrays are used to build the relevant relationship between the
enumerative values and the enumerative string in PostgreSQL.
Similar methods are used in Redis and MySQL. Fig. 8(b) illus-
trates that macros are used for enumeration to fulfill the assign-
ment of the configuration value to program variable values in
Apache Httpd.

Finding 6: Semantic information is implied in the parameters
of functions that use configuration options.

Current research mainly uses dataflow information to trace
back to a known lib-function to infer the semantic meaning
of a configuration option. However, the statistics of our man-
ual study identify that a great number of configuration options

Fig. 9. Example of semantic information in the parameter identifiers from a
function call in Postfix-3.1.3.

TABLE VIII
PROPORTION OF CONFIGURATION OPTIONS THAT CAN BE TRACED TO KNOWN

LIB-FUNCTIONS AND FUNCTION PARAMETERS

cannot be traced in this way. They are not able to be traced
back to a commonly known lib-function. On the other hand,
we find that the nomenclature of the parameters in the func-
tion always contains semantic information rather than arbitrary
strings. Consequently, we could use the semantic information
in the parameters of function calls to infer the semantic mean-
ing of a configuration option. Taking the configuration option
“shlib_directory” as an example, as shown in Fig. 9, it cannot be
traced back to a known lib-function call during its usage, but it
was called by function “dymap_init,” where the second parame-
ter is “plugin_dir”; thus, the semantic meaning of confiugration
option “shlib_directory” can be inferred to be “DIR” based on
this hint.

Based on this finding, we summarized the statistics of the
aforementioned situation, as shown in Table VIII.

C. Obstacles to Extracting Configuration Constraints

Finding 7: As a consequence of the various structural forms in
different kinds of software, there is no mature method for dealing
with structural configuration options and the effect scope of
configuration options.

In our study, we note that there are widely used structural
configuration options to organize the configuration in Httpd and
MySQL, but the consideration of those situations are as yet
left blank. For instance, configuration keyword “<VirtualHost”
is used to customize the virtual host configuration in Apache
Httpd, as shown in Fig. 1. In these situations, the configuration
settings only take effect in a given virtual host. MySQL also uses
a similar measure, as shown in Fig. 10. Moreover, PostgreSQL
uses specific parameters to limit the effect scope of configu-
ration options, such as keyword “PGC_USERSET” in Figs. 7
and 8(a). When it comes to these parameters that have scope

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

840 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

Fig. 10. Example of the scope effect in the configuration file of MySQL-5.7.16

TABLE IX
PROPORTION OF FILE RESOURCE-RELATED CONFIGURATION THAT

HAS BEEN CHECKED

effect in the program, it is challenging to distinguish the ex-
act scope with rich, context-sensitive information, and complex
implementation, limiting the extraction of those configuration
constraints.

Finding 8: The majority of the studied software packages do
not have sufficient checking mechanisms for resource-related
configuration options.

Various kinds of resources are needed at runtime in a soft-
ware package, such as files, network, hardware, and so on. The
majority of these resources are declared in configuration files un-
der different users’ system environments. To ensure the normal
functioning of the software, the accessibility of those resources
should be guaranteed. In this part of our study, the accessibility
mainly focuses on the existence of those resources. However, it
is a pity that the checking of those resources is lacking gener-
ally. In terms of file resources, the proportions of accessibility
checking are shown in Table IX.

In light of this situation, we speculate that software develop-
ers might think users will prepare the necessary resources and
configure them properly. Nevertheless, it is a great vulnerability
in configuration design and implementation.

IV. AUTOMATIC EXTRACTION OF CONFIGURATION

CONSTRAINTS

Owing to the necessity of extracting configuration constraints
in misconfiguration prevention and diagnosis, as well as our
findings, we will propose several strategies to maximize the
automatic extraction of configuration constraints from source
code. To address this problem, common characteristics and pat-
terns are summarized from various pieces of source code. To
conclude, we will mainly focus on the following three kinds of
configuration constraint:

1) numeric value ranges;
2) enumeration constraints; and
3) the semantic meaning of configuration options.

Fig. 11. Definition of mapping structure in PostgreSQL-9.5.6.

A. Extracting Numeric Value Ranges From Mapping
Code Snippets

As mentioned in Finding 3, the mapping structures of con-
figuration options and relevant variables contain many value
range constraints; i.e., mapping constraints. Although there are
obvious features that could be used to locate the mapping code
snippets [19], it is difficult to extract the constraints from those
snippets without any semantic knowledge. Aiming at this chal-
lenge, we were inspired to use some semantic information to
help with the extraction. For instance, the definition of the map-
ping structure arrays in PostgreSQL is shown in Fig. 11, in
which the value range of integer type configuration is defined
by structure fields “int min” and “int max.” Therefore, if we
could determine the meaning of these fields during the auto-
matic analysis, the accuracy of the constraint extraction would
be much improved. To achieve this goal, we implement our
automatic extraction from two aspects with Clang [20], which
provides a convenient API for the abstract syntax tree (AST) in
C/C++.

1) Constraint Extraction Using Statistical Information:
Based on the observations and methods used in ConfMap-
per [19], we located the main mapping source code snippets
from plenty of source files. Then, we made use of the statistics
for different configuration options in mapping code snippets to
determine the possible value ranges of numeric options. For
instance, the mapping snippets for the integer configuration op-
tions in PostgreSQL are illustrated in Fig. 12. In lines 11, 21,
and 30 of Fig. 12, the “struct config_int ConfigureNamesInt”
declares the “boot_val,” “min,” and “max” of different configu-
ration options. It is obvious that the “min” value is always less
than the “max” value, and the “boot_val” value is always be-
tween them. Hence, we used this hint to find the possible bounds
of value range in the structure declaration. Specifically, when it
comes to an instance of a mapping structure for configuration
option, we used the following formula, which we called relation
formula, to describe the relationship between different numeric
fields: If “struct.fieldi” and “struct.fieldj ” fulfill the formula,
then we count the relationship as “1,” otherwise we count it as
“0.”

struct.fieldi > struct.fieldj .

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

LIAO et al.: DO YOU REALLY KNOW HOW TO CONFIGURE YOUR SOFTWARE? 841

Fig. 12. Example of mapping snippets of integer configuration option in
PostgreSQL-9.5.6.

TABLE X
PERCENTAGE OF DIFFERENT FIELDS THAT SATISFY THE RELATION FORMULA IN

THE MAPPING STRUCTURE OF POSTGRESQL

Then, we calculated the proportion of configuration options
that satisfy this formula for every pair of “struct.field i” and
“struct.field j” in the whole mapping structure. Finally, an
n × n matrix is generated, where n is the number of numeric
fields in the mapping structure. The elements in the matrix,
which we record as “Pctg(fieldi > fieldj),” represent the pro-
portion of configuration options that satisfy the formula; i.e.,
the possibility that the value in “struct.field i” is greater than
“struct.field j.” Based on this matrix, we can identify the pos-
sible relationship between different structure fields, while the
upper bound is always greater than the lower bound in the value
range of a configuration option.

For instance, in PostgreSQL, there are three numeric fields
in the mapping structure; i.e., “boot_val,” “min,” and “max.”
We calculated the n × n matrix as shown in Table X. Based on
the data in Table X, we can see that “field 5” is always greater
than “field 4,” which correspond to the “max” and “min” in the
struct definition, respectively. Therefore, it is highly possible
that “field 5” is the upper bound and “field 4” is the lower bound
of the value range for configuration options in PostgreSQL.

TABLE XI
COLLECTION OF WORDS THAT REPRESENT THE UPPER AND LOWER BOUNDS

2) Constraint Extraction Using Identifier Semantic Informa-
tion: There is plenty of information given in the identifier name
when developers write source code, helping understand, im-
prove, and maintain the software. As Liu et al. [21] mentioned,
if we do not make use of the meaning of identifier, when running
an analysis on a human-written program with meaningful iden-
tifier names and on an equivalent program where all identifiers
are consistently replaced with arbitrary strings, it gives exactly
the same result. We observe that the identifiers of the value
ranges in the mapping structure always use meaningful items,
such as “min” and “max,” “min_val” and “max_val.” Based on
these observations, we made use of items or words that represent
the boundaries to identify the possible value ranges of numeric
configuration options.

To achieve this, we summarized the frequently used words
and items that represent the upper and lower bounds. To remedy
the insufficiency of human experience, we used WordNet [22]
to expand our collection of words and items, which is a lexical
database established by Princeton University that groups En-
glish words into sets of synonyms, and records relations among
these synonym sets or their members. The final collection of
words and items representing the upper and lower bounds is
listed in Table XI.

Based on the collection of words, we checked every field
identifier in the definition of the mapping structure; if the iden-
tifier contains any of the words, we mark the weight of this
identifier as “1,” otherwise as “0.” As some of the identifiers
might be a joining of several words, so we handled this situation
by splitting the identifier using the method in ConfMapper [19],
and checked the split word against the word collection. Finally,
for every identifier, we determined a weight that represents its
meaning, called IdenWeight, where IdenWeight∈ {0, 1}.

3) Configuration Constraints Recommendation: Based on
the two previous steps, we have gotten different aspects of in-
formation for the value ranges in the mapping structure. Next,
we combined these two aspects to be able to recommend the
possible fields that represent value ranges in the mapping struc-
ture. To address this problem, we defined the confidence_level to
represent the possibility of a field being the upper/lower bound
of a value range. The confidence_level is illustrated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

confidencei = α · stat ratioi

+ (1 − α) · iden ratioi

stat ratioi = 1
n · ∑n

j=0,j �=i Pctg(fieldi>fieldj)
iden ratioi = IdenWeight(fieldi)

(1)

where i and j are the sequence numbers of fields in mapping
structure, confidencei is the confidence_level value of the ith

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

842 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

TABLE XII
CONFIDENCE LEVEL FOR DIFFERENT FIELDS IN THE MAPPING STRUCTURE OF

POSTGRESQL

numeric field, n in stat ratioi is the total number of numeric
fields in the mapping structure, α is an adjustable parameter
for controlling the effect of the two aspects mentioned in the
previous two steps. After conducting experiments with different
α values, we recognize the α value of 0.5 as providing a better
effect.

Based on the definition of confidence_level, we chose the
most likely upper bound and lower bound for a numeric configu-
ration option. For instance, the confidence_level of the mapping
structure in PostgreSQL is shown in Table XII. It is obvious
that field5 is the most likely upper bound of the configuration
option, and field4 is the most likely lower bound.

B. Extracting Enumeration Constraints From Clustered
Code Snippets

For the enumeration constraints, we used the clustered code
snippets to extract the enumeration constraints mentioned in
Finding 5. If we locate the clustered code snippets, as Fig. 8
shows, the uniformed structure and characteristics provide much
help in extracting enumeration constraints. Hence, our method
includes two steps for extracting enumeration constraints: 1) lo-
cate the clustered code snippets in the source code; and 2) extract
the enumeration constraints from the clustered code snippets.

1) Locating the Clustered Code Snippets for the Enumeration
Options: For enumeration configuration options, it is common
that they are usually used in assignments or conditional state-
ments with their possible enumerative value used in a discrete
way. Hence, if we find the usage of the program variables for
enumeration options to get their possible values, then observe
the distribution of these enumerative values, the clustered code
snippets can be located.

On the basis of the methods used in ConfMapper [19], we
were able to determine the program variables of the relevant
configuration options. The next step was to find the usage of
the enumeration option in the source code. For a simple assign-
ment statement, it is easy to obtain the enumerative value. For
conditional statements, such as the conditions in if statements
and switch case statements, they always consist of several com-
plex conditions. Taking Fig. 13 as example, the usage of the
enumeration option variable “server.maxmemory_policy” is in
a complex context. To address this situation, we used a binary
condition tree (BCT) to represent the statement and obtain the
enumerative value we want. For the statement shown in Fig. 13,
the corresponding BCT is shown in Fig. 14. Then, based on
BCT, we were able to extract the usage of the enumerative value
from the leaf node, shown as the blue node in Fig. 14. The
switch-case situation could be handled in a similar way.

Fig. 13. Example of a conditional statement in Redis-3.2.5.

Fig. 14. BCT of the example conditional statement in Redis-3.2.5.

Fig. 15. Distribution of the appearance of enumerative values in PostgreSQL-
9.5.6.

After we had identified the enumerative values of the enu-
meration configuration options, it was easy to find the location
distribution of all enumerative values used and confirm the clus-
tered code snippets. For instance, the distribution in PostgreSQL
is illustrated in Fig. 15. The horizontal axis is the source file in
the PostgreSQL projects, and the vertical axis is the line num-
ber where the enumerative value appears. From Fig. 15, we can
see that these enumerative values are mainly clustered in one
single file “guc.c,” so we analyzed this “guc.c” file to get the
enumeration constraints.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

LIAO et al.: DO YOU REALLY KNOW HOW TO CONFIGURE YOUR SOFTWARE? 843

Fig. 16. Example of the mismatch of enumeration value spaces in
PostgreSQL-9.5.6.

2) Analyzing the Clustered Code Snippets With Textual Anal-
ysis and Structural Information: Based on the previous step,
we then used textual analysis to find the possible enumerative
strings, i.e., the value spaces of the enumeration configurations.
In the clustered code snippets, the enumerative string always
comes with an enumerative value, and is surrounded by double
quotation marks. Therefore, we were able to determine get the
enumerative string and value pair by using textual matching and
a similarity comparison. In detail, we found the double quo-
tation marks first, then calculated the similarity between this
string in the double quotation marks and the enumerative value
in several neighboring lines, and, finally we chose the enumer-
ative value with the highest similarity to form an enumerative
pair “<string, value>.”

However, there might be some mismatches for these enu-
merative pairs. Without syntactic or semantic information,
the textual analysis might mismatch the enumerative pair
of another configuration option to this configuration option.
For instance, as shown in Fig. 16, the enumeration con-
straints of configuration option “log_statement” defined in
struct “log_statement_options” are “{none, ddl, mod, all},”
but we might add “verbose” or even “default” in struct
“log_error_verbosity_options” into the enumeration constraints
of “log_statement” if we choose a large analysis scope in the tex-
tual analysis (if we choose a small analysis scope, some enumer-
ativ pair might not be able to be covered). As a consequence, we
used AST to verify the correctness of those enumerative pairs. In
detail, if the majority of those enumerative pairs shared the same
common parent of AST type, we treated this as their subances-
tor AST, and recorded the position of the enumerative value and
string in the subancestor AST. For those pairs that do not share
same parent AST type, we used the common position of the
enumerative string to find its subancestor AST and determined
the corresponding enumerative value, respectively. For exam-
ple in PostgreSQL, one enumerative pair of configuration op-
tion “xmloption” is “<content, XMLOPTION_CONTENT>,”
as shown in frames in Fig. 17. If we found that the majority
of those enumerative pairs shared the same subancestor AST
as “InitListExpr” and were in a corresponding position, then
we were able to find other mismatched enumerative pairs with
this information, and identify the corresponding enumeration

Fig. 17. Example of AST structure of enumeration clustered code snippets in
PostgreSQL-9.5.6.

constraints. For those mismatch situations, because they are in
different sub-ASTs, so we could exclude them from the correct
enumeration constraints. In this example, we determined the
enumeration constraint of configuration option “xmloption” to
be “{content, document}.”

C. Extracting Semantic Meaning Using Function
Parameter Information

To extract the semantic meaning of the configuration options,
we enhanced the dataflow analysis mentioned in SPEX [14] by
adding some semantic information. The detailed procedures are
illustrated in the following section.

1) Tracing the Configuration Variable Usage in the Source
Code: First, we established a dictionary based on our experi-
ence, consisting of some commonly used parameters or abbre-
viations and their associated semantic meaning. For example, if
a parameter in a function call is “filepath,” we think that it has
a semantic meaning of “PATH.” Similarly, another parameter
“root_dir” may have “DIR” as its semantic meaning.

Then, based on this prebuilt dictionary, we conducted a
dataflow analysis, which started from the usage of the con-
figuration variables in the function call. Once a configuration
variable had been used in a function, we traced into the function
implementation and replaced the traced configuration variable
with the parameter of this function in the corresponding posi-
tion. This trace was ended when we traced back to an already
known lib-function or a parameter in the prebuilt dictionary
mentioned previously. Based on this procedure, we could de-
termine the semantic meaning of a configuration option. For
instance, in Fig. 9, variable “var_shlib_dir” contains the value
of configuration option “shlib_directory” in Postfix. When we
traced the use of the variable “var_shlib_dir,” we first traced the
function call “dymap_init” to find its implementation. Then, in
function “dymap_init,” the configuration variable was used as its
second argument, so we replaced variable “var_shlib_dir” with
parameter “plugin_dir.” Then, we looked in our prebuilt dictio-
nary to find parameter “plugin_dir,” and found that “plugin_dir”
has a “DIR” semantic meaning. Hence, we concluded that
the semantic meaning of configuration option “shlib_directory”
is “DIR.”

D. Experiments and Evaluation

In this section, we will conduct experiments to evaluate the
effectiveness of our methods in extracting configuration con-
straints. In detail, there are three experiments with respect to the

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

844 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

TABLE XIII
NUMERIC VALUE RANGES EXTRACTED FROM MAPPING CODE SNIPPETS

TABLE XIV
ENUMERATION CONSTRAINTS EXTRACTED FROM CLUSTERED CODE SNIPPETS

TABLE XV
SEMANTIC MEANING EXTRACTED WITH STRATEGY 3

aforementioned three strategies. Based on the code features we
mentioned in the findings of Section III, we select the software
projects in Tables XIII, XIV, and XV to conduct our experi-
ments. To evaluate the correctness of the extracted results, we
manually analyzed the related code snippets in the target soft-
ware projects, and extracted the corresponding constraints as the
constraints oracle. Then, we checked the results of automated
tools manually to calculate the proportion of constraints that
were successfully extracted.

1) Experiment on Extracting Numeric Value Ranges From
Mapping Code Snippets: We did an experiment on other soft-
ware packages with regard to extracting numeric value ranges
from mapping code snippets, and the results illustrated in
Table XIII show the effectiveness of our method in extracting
the mapping constraints.

2) Experiment on Extracting enumeration Constraints From
Clustered Code Snippets: Based on the method mentioned
about extracting enumeration constraints from clustered code
snippets, we performed experiments on eight software pack-
ages. In addition to the five software packages in the main
study, we also used Percona-Server, MariaDB, and Git in our
experiment. The results in Table XIV show the effectiveness of
our automation.

3) Experiment on Extracting Semantic Meaning Using Func-
tion Parameter Information: Based on the aforementioned

procedure concerning extracting semantic meaning of a con-
figuration option, we conducted an experiment to evaluate the
effectiveness of our method. The final results are listed in
Table XV. From the statistics, we can see that this method can
increase the success rate in semantic-meaning determination in
most software packages.

V. RELATED WORK

This section introduce the related work about misconfigura-
tion diagnosis.

Nowadays, misconfigurations has become one of the major
causes of software failures. Faced with such situations, many re-
searchers have worked hard to tackle these problems. In general,
the research mainly contains the following directions.

Configuration constraint-related research: Some work
has been done regarding configuration constraints in software.
ECC Fixer [10] uses Reiter’s theory of diagnosis to transfer the
problem of configuration options’ value range to a satisfiability
problem (i.e. SAT problem). Based on eCOS, i.e., embedded
configurable operating system, ECC Fixer does not need to
extract configuration constraints. SPEX [14] uses static program
analysis to extract configuration constraints from source code,
mainly targeting if-statement checking situations. Then, based
on these configuration constraints, a tool named SPEX-INJ is
proposed to inject misconfigurations into software, and expose
vulnerabilities in configuration handling and software design.

Misconfiguration judgement: Nowadays, it is hard to judge
whether a software failure is caused by misconfiguration or
software bugs, and few studies have focused on this field. Based
on massive system bug reports, [23] used feature selection tech-
niques, such as information gain and Chi-square, to select signif-
icant terms. Then, a classifier toward bug reports was established
based on different kinds of text mining algorithms. Finally, when
a new bug is reported, using the classifier could quickly judge
whether it is a misconfiguration report or not. Furthermore, some
researchers have tried to generate misconfiguration to evaluate
the response of the software system, thus, enhancing the abil-
ity of misconfiguration judgement. ConfErr [24] uses a human
error model to simulate human mistakes in configuration, e.g.,
typo, copy-paste mistake, and other generic alternations. How-
ever, ConfErr is not guided by the configuration constraints, and
it can only generate deficient misconfigurations, which impedes
the analyses on system reactions. ConfDiagDetector [25] injects
misconfigurations into the software under test, monitors the soft-
ware outcomes under the injected misconfigurations, and uses
natural language processing to analyze the output diagnostic
message caused by each misconfiguration. Based on the analy-
sis results, software developers could improve the error handling
of misconfigurations for better diagnosis.

Misconfiguration Localization: When misconfiguration hap-
pens, it is vital to find out the specific configuration option
causing the error; we call this misconfiguration localization.
Aiming at Windows register errors, Snitch [9] monitors the
read/write events in registers to build a binary decision tree be-
tween the software system and the registers. Then, based on
this decision tree, users can quickly locate the error register

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

LIAO et al.: DO YOU REALLY KNOW HOW TO CONFIGURE YOUR SOFTWARE? 845

items. ConfDiagnoser [26] combines static analysis, dynamic
analysis and compare-based methods to diagnose misconfig-
urations. First, ConfDiagnoser uses thin slicing to collect the
set of program statements that are affected by configuration
options. Then, based on instrumentation techniques, ConfDiag-
noser traces the runtime route to represent the current system
characteristics. Finally, through comparing with the known mis-
configuration’s system character, ConfDiagnoser can locate the
suspicious configuration options. ConfDebugger [8] also uses
forward and backward static program analysis to diagnose mis-
configurations. Specifically, ConfDebugger collects the set of
program statements that are affected by configuration options,
which is called forward analysis, and collects the set of program
statements that could be traced back from stack information,
which is called backward analysis. Finally, the configuration
options that affect the statements in the intersection of these two
sets are the probable error configuration options. Considering
latent misconfiguration, Xu et al. [7] extracted the executable
code snippets about configuration options from source code.
Then, by prerunning these code snippets and evaluating the sys-
tem response, they could check the latent misconfigurations in
the initialization phase of the software.

VI. CONCLUSION

Misconfigurations have increasingly become one of the com-
mon causes of software failure. To diagnose misconfigurations,
configuration constraints have a vital influence. On the basis
that it is urgently necessary to extract configuration constraints,
a comprehensive study was carried out concerning the exis-
tence and variance of configuration constraints in source code.
Based on the study’s results, three aspects of findings were
summarized in respect to the configuration constraints and con-
figuration designs, namely the general statistics, the general
features of specific kinds of constraints, and the obstacles to the
automatic extraction of configuration constraints. Finally, we
proposed three strategies to improve the automatic extraction of
three types of configuration constraints from source code, i.e.,
extracting numeric value ranges from mapping code snippets,
extracting enumeration constraints from clustered code snip-
pets, and extracting semantic meaning using function parameter
information. The experiments’ results show the effectiveness of
our strategies.

REFERENCES

[1] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S.
Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in Proc. ACM Symp. Oper. Syst. Principles,
2011, pp. 159–172.

[2] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” Synthesis
Lectures Comput. Archit., vol. 8, no. 3, pp. 1–154, 2009.

[3] A. Rabkin and R. H. Katz, “How hadoop clusters break,” IEEE Softw.,
vol. 30, no. 4, pp. 88–94, Jul./Aug. 2013.

[4] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen,
“Understanding and dealing with operator mistakes in internet services,”
in Proc. Conf. Symp. Oper. Syst. Des. Implementation, 2004, pp. 61–76.

[5] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in Proc. Conf. Usenix Symp.
Internet Technol. Syst., 2003, pp. 165–171.

[6] A. Team, “Summary of the amazon EC2 and amazon RDS service disrup-
tion in the us east region. amazon web services,” 2011. [Online]. Available:
http://aws.amazon.com/message/65648

[7] T. Xu et al., “Early detection of configuration errors to reduce failure
damage,” in Proc. USENIX Symp. Oper. Syst. Implementation, 2016,
pp. 619–634.

[8] Z. Dong, M. Ghanavati, and A. Andrzejak, “Automated diagnosis of soft-
ware misconfigurations based on static analysis,” in Proc. IEEE Int. Symp.
Softw. Rel. Eng. Workshops, 2013, pp. 162–168.

[9] J. Mickens, M. Szummer, and D. Narayanan, “Snitch: Interactive decision
trees for troubleshooting misconfigurations,” in Proc. Usenix Workshop
Tackling Comput. Syst. Problems Mach. Learn. Tech., 2007, pp. 1–8.

[10] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating range
fixes for software configuration,” in Proc. Int. Conf. Softw. Eng., 2012,
pp. 58–68.

[11] MySQL, 2017. [Online]. Available: http://www.mysql.com/
[12] Httpd, 2017. [Online]. Available: http://httpd.apache.org/
[13] T. Xu, L. Jin, X. Fan, R. Talwadker, R. Talwadker, and R. Talwadker, “Hey,

you have given me too many knobs!: Understanding and dealing with over-
designed configuration in system software,” in Proc. Joint Meeting Found.
Softw. Eng., 2015, pp. 307–319.

[14] T. Xu et al., “Do not blame users for misconfigurations,” in Proc. ACM
Symp. Oper. Syst. Principles, 2013, pp. 244–259.

[15] A. Rabkin and R. Katz, “Static extraction of program configuration op-
tions,” in Proc. Int. Conf. Softw. Eng., 2011, pp. 131–140.

[16] J. Zhang et al., “Encore: Exploiting system environment and correlation
information for misconfiguration detection,” in Proc. Int. Conf. Archit.
Support Program. Lang. Oper. Syst., 2014, pp. 687–700.

[17] T. Xu and Y. Zhou, “Systems approaches to tackling configuration errors:
A survey,” ACM Comput. Surveys, vol. 47, no. 4, pp. 1–41, 2015.

[18] W. Li, S. Li, X. Liao, X. Xu, S. Zhou, and Z. Jia, “Conftest: Generating
comprehensive misconfiguration for system reaction ability evaluation,”
in Proc. Int. Conf. Eval. Assessment Softw. Eng., 2017, pp. 88–97.

[19] S. Zhou, X. Liu, S. Li, W. Dong, X. Liao, and Y. Xiong, “Confmap-
per: Automated variable finding for configuration items in source code,”
in Proc. Int. Conf. Softw. Quality, Rel. Security Companion, 2016,
pp. 228–235.

[20] Clang, 2017. [Online]. Available: http://clang.llvm.org/
[21] H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo, “Nomen est omen:

Exploring and exploiting similarities between argument and parameter
names,” in Proc. Int. Conf. Softw. Eng., 2016, pp. 1063–1073.

[22] WordNet, 2017. [online]. Available: http://wordnet.princeton.edu/
[23] X. Xia, D. Lo, W. Qiu, X. Wang, and B. Zhou, “Automated configuration

bug report prediction using text mining,” in Proc. IEEE Comput. Softw.
Appl. Conf., 2014, pp. 107–116.

[24] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: A tool for assess-
ing resilience to human configuration errors,” in Proc. IEEE Int. Conf.
Dependable Syst. Netw. FTCS DCC, 2008, pp. 157–166.

[25] S. Zhang and M. D. Ernst, “Proactive detection of inadequate diagnostic
messages for software configuration errors,” in Proc. Int. Symp. Softw.
Testing Anal., 2015, pp. 12–23.

[26] S. Zhang and M. D. Ernst, “Automated diagnosis of software configuration
errors,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 312–321.

[27] S. Zhou et al., “Easier said than done: Diagnosing misconfiguration via
configuration constraints analysis,” in Proc. Int. Conf. Eval. Assessment
Softw. Eng., 2017, pp. 196–201.

Xiangke Liao (M’15) received the B.S. degree from
the Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in 1985,
and the M.S. degree from the National University of
Defense Technology, Changsha, China, in 1988.

He is currently a Full Professor and the Dean of
the School of Computer Science, National University
of Defense Technology. His research interests include
parallel and distributed computing, high-performance
computer systems, operating systems, software reli-
ability, cloud computing, and networked embedded

systems.
Prof. Liao is a member of the ACM.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

846 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 3, SEPTEMBER 2018

Shulin Zhou received the B.S. and M.S. degrees from
the School of Computer Science, National University
of Defense Technology, Changsha, China, in 2014
and 2016, respectively. He is currently working to-
ward the Ph.D. degree at the National University of
Defense Technology.

His main research interests include software en-
gineering, software reliability, operating system, and
so on.

Mr. Zhao is a student member of the ACM.

Shanshan Li received the M.S. and Ph.D. degrees
from the School of Computer Science, National Uni-
versity of Defense Technology, Changsha, China, in
2003 and 2007, respectively.

She was a visiting scholar at Hong Kong Uni-
versity of Science and Technology in 2007. She is
currently an Associate Professor with the School of
Computer Science, National University of Defense
Technology. Her main research interests include soft-
ware engineering, software reliability, and operating
system.

Dr. Li is a member of the ACM.

Zhouyang Jia received the B.S. and M.S. degrees
from the School of Computer Science, National Uni-
versity of Defense Technology, Changsha, China, in
2013 and 2015, respectively. He is currently working
toward the Ph.D. degree at the National University of
Defense Technology.

His main research interests include software en-
gineering, software reliability, operating system, and
so on.

Mr. Jia is a student member of the ACM.

Xiaodong Liu received the M.S. and Ph.D. degrees
from the School of Computer Science, National Uni-
versity of Defense Technology, Changsha, China, in
2009 and 2014, respectively.

He is currently an Assistant Professor with the
School of Computer Science, National University of
Defense Technology. His main research interests in-
clude software engineering, software reliability, op-
erating system, and so on.

Dr. Liu is a student member of the ACM.

Haochen He received the B.S. degrees from the
School of Computer Science, National University of
Defense Technology, Changsha, China, in 2017. He
is currently working toward the Ph.D. degree at the
National University of Defense Technology.

His main research focuses on software engineer-
ing.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on June 05,2025 at 01:25:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

